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I. INTRODUCTION 

Differentiation of commonly encountered features in in- 
door environments is an important problem for intelligent 
systems for applications such as map building, navigation, 
obstacle avoidance, and target tracking. Since sonar sen- 
sors are light, robust, and inexpensive devices, they are a 
suitable choice for these applications. 

Sensory information from a single sonar has  poor angular 
resolution and is usually not sufficient to differentiate more 
than a small number of target primitives [l]. Improved tar- 
get classification can be achieved by using multi-transducer 
pulse/echo systems and by employing both amplitude and 
time-of-flight (TOF) information. In this paper, the per- 
formances of different classification and fusion schemes in 
target differentiation and localization of commonly encoun- 
tered features in indoor environments are compared. These 
include a target differentiation algorithm (TDA), statistical 
pattern recognition techniques [k-nearest neighbor (k-NN) 
classifiers, kernel estimator (KE), and parameterized den- 
sity estimator (PDE)], linear discriminant analysis (LDA), 
fuzzy c-means clustering algorithm (FCC), and artificial 
neural networks (ANN). The fusion techniques used in this 
study are Dempster-Shafer evidential reasoning (DS), sim- 
ple majority voting (SMV), and voting schemes with pref- 
erence ordering and reliability measures. 

11. BACKGROUND ON SONAR SENSING 
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Fig. 1.  (a) Sensitivity region of an ultra~onic transducer. (b) Joint 

In our system, two identical ultrasonic transducers a and 
b with  center-to-center separation d are employed to im- 
prove the angular resolution of a single transducer. The 
transducers can operate both as transmitter and receiver 
to detect echo signals reflected from targets nithin their 
joint sensitivity region (Fig. 1). 

The targets used in this study are plane (P), corner (C), 
acute corner (AC), edge (E) and cylinder (CY) (Fig. 2 ) .  
Since the wavelength of operation (A E 8.6 mm at fo = 
40 kHz) is much larger than the typical roughness of sur- 
faces encountered in laboratory environments, targets in 
these environments reflect acoustic beams specularly, like 
a mirror. Detailed physical reflection models of these tar- 
gets are provided in 121. In the following, &., &, Aob, 
and Abo denote the maximum values of the sonar echo sig- 
nals, and t,,, t b b ,  tab, and tba denote the TOF readings 
extracted from these signals. The first index in the sub- 
script indicates the transmitting transducer, the second in- 
dex denotes the receiver. 

sensitivity region of a pair of ultra~onic transducers. 

In commonly used TOF systems, an echo is produced 
when the transmitted pulse encounters an object and a 
range valuer = ctJ2 is produced when the echo amplitude 
first exceeds a preset threshold level T at time to back at 
the receiver. Here, to is the TOF and c is the speed of 
sound in air. 

It is observed that the echo amplitude decreases with in- 
creasing target range (.) and absolute value of the target 
azimuth (161). The echo amplitude falls below T when 16'1 > 
tl,, which is related to  the aperture radius a and the reso- 
nance frequency fo of the transducer by 8, = sin-' (*>. 61c 
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Fig. 2. Horizontal cross sections of the targets differentiated 

111. TARGET DIFFERENTIATION ALGORITHM 
The TDA has its roots in the P/C differentiation al- 

gorithm developed in [l] based on the idea of exploiting 
amplitude differentials in resolving target type. In [Z], it 
is extended to  include other target primitives using both 
amplitude and TOF differentials: 
i f  [toa(Q) - t ,b(Q)] > ktut and [ t b b ( O )  - tb . (Q)]  > ktut then AC 
else i f  [Aae(a) - A,b(Q)] > k A U A  and [Abb(a) - Ab,(a)] > ~ A U A  

then P 
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else if [max{A. . (o)} -max(Abb(~)] ]  < kaoa and 
[max(Abb(a))-max{A,b(n))] < kAUA then c 
else E, CY or U 

. .  
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The k A ( k c )  is the number of amplitude (TOF) noise stan- 
dard deviations ua(ot) and is employed as a safety margin 
to achieve robust differentiation. Differentiation is achiev- 
able only in those cases where the difference in amplitudes 
(TOFs) exceeds k ~ u ~ ( k ~ u ~ ) .  If this is not the case, a deci- 
sion cannot be made and the target type remains unknown. 

IV. DEMPSTER-SHAFER E V I D E N T I A L  REASONISG 

In DS, each sensor’s opinion is tied to a belief measure 
or basic probability mass assignment (BPMA) using belief 
functions (31. These are set functions which assign numer- 
ical degrees of support on the basis of evidence, but also 
allow for the expression of ignorance. A frame of discern- 
ment, n, represents a finite universe of propositions and a 
BPMA, m(.), maps the power set of to the interval [0,1]. 
The BPMA satisfies the conditions: 

740) = 0, 1 74.4) = 1 (1) 
Acn 

A set with a non-zero BPMA is afocal element. The belief 
or total support that is assigned to a set or proposition .-I 
is obtained by summing the BPxf.4~ over all subsets of .-I: 

Bel(A) = 1 m(B)  (2) 
B Z A  

The uncertainty i n  the measurements of each sonar pair 
is represented by a belief function having target type or 
feature as a focal element with BPMA m(.): BF = 
{feature; m( feature)}. 

The BPMA is the underlying function for decision mak- 
ing using DS. It is defined based on the TD.4 and is thus 
dependent on amplitude and TOF differentials such that 
the larger the differential, the larger the degree of be- 
lief. The BPMA is made to plane, corner, and acute cor- 
ner as m@),m(c), and m(ac), respectively. The remain- 
ing belief represents ignorance, or undistributed probabil- 
ity mass, and is assigned to an ‘unknown’ target type as 

The sequential combination of multiple bodies of evi- 
m(u) = 1 - [m@) + m(c) + m(ac)]. 

dence can be obtained for n sensor nodes as: 
BF = ( ( ( B F I  CB BFz) CB BF3).  . . CB BF,) (3) 

where C Chh=fing,=O m~(f,)mz(gj) represents conflict 

v. CONFLICT RESOLUTION THROUGH VOTING 
Multi-sensor systems exploit sensor diversity to  acquire 

a wider view of a scene under observation. This diver- 

A .  Drflerent Voting Schemes 

In SMV, the votes are given equal weight and the group 
decision is taken as the outcome with the largest number 
of votes. Although SMV provides fast and robust fusion in 
some problems, there exist some drawbacks that limit its 
usage. For example, when all outcomes receive equal votes, 
a group decision cannot be reached. Moreover, it does 
not take into account the distribution of the decisions of 
dissenting classifiers. To overcome these drawbacks, more 
sophisticated voting schemes assigning preference ordering 
and reliability measures over the possible target types can 
be employed. Total preference is taken as the sum of the 
products of preference order assigned to each target type 
and the reliability measure assigned to the corresponding 
sensor node [6]. 

A . 1  Reliability Measure Assignment 

Assignment of belief to range and azimuth estimates is 
based on the observation that the closer the target is to the 
surface of the transducer, the more accurate is the range 
reading, and the closer the t,arget is to the line-of-sight of 
the transducer (0 = 0”), the more accurate is the azimuth 
estimate. Therefore, belief assignments to range and az- 
imuth estimates can be made as follows: 

Five different reliability measures are assigned to sensor 
node i which are different functional combinations of m ( r )  
and m(8) 161. Their performances are compared. 

VI. STATISTICAL PATTERN RECOGNITION TECHNIQUES 

An object coming from one of N classes is classified into 
class wj if its vector representation x is in region ni. A 
rule which partitions a space into regions R,, i = 1 , .  . . , N 
is called a decision rule. Boundaries between regions are 
decision surfaces. The p(wi)  are the a priori Probabilities 
of an object belonging to class w,,i = 1 , ’ .  , N .  To classify 
an object with vector representation x ,  a posteriori prob- 
abilities p(wi lx) ,  i = 1,. . . , N can be compared and the 
object is classified to class wk according to Bayes mini- 
mum emor rule: 

p(wklx) > p(w,lx) for all i # k =+ x E Rk (6) 

Since these a posteriori probabilities are rarely known, 
they need to  be estimated. Using Bayes’ theorem 

[ p ( w i l x )  = P ( X l W i ) P ( W d ] :  P(4 

~(xIwk)P(wk) > P(XIwi)P(wi) for all i # k * x E Ok (7) 
sity can give rise to conflicts, which must be resolved when 
the system information is combined to reach a group deci- 
sion or to form a group value or estimate. Voting has the 
advantages of being computationally inexpensive and, to  a 
certain degree, fault-tolerant [4]. Its major drawback is the 
consistency problem of Arrow which states that there is no 
voting scheme for selecting from more than two alternatives 

where p(xlwi) are the clascconditional PDFs. The set 
of vector representations used to  estimate these class- 
conditional PDFs is called design or training set. The per- 
formance of any decision rule can be assessed in a different 
set of vector representations which is called the test set. 

More generally, classification rules can he written as 

that is locally consistent &der all possible conditions [5]. qk(x) > qi(x) for all i # k 3 x E Rk (8) 
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where q, is a discriminant function. Therefore, discrimi- 
nant functions can be replaced with PDFs for computa- 
tional simplicity. Linear discriminant functions result+.in 
additional computational advantages. 

A. Kernel Estimator (KE) 
KE is a class of PDF estimator first proposed by Parzen 

in 1962 [7]. In KE, the class-conditional PDF estimates are 
of the form: 

(9) 

where x is the d-dimensional rector at  which the estimate 
is being made and xj's, j = 1,.  . . , n; are samples in the 
design set. In this equation, ni is the total number of sam- 
ple points in class w,, h is called the spread or smooth- 
ing parameter or bandwidth of a KE, and K ( z )  is a ker- 
nel function which satisfies the conditions K ( z )  2 0 and 
J K ( z ) d z  = 1. Usually, h is chosen as a function of n, such 
that lim,,,,, h(n;) = 0. There are various approaches to 
select h if a constant h is to be used [8].  

B. k-Nearest-Neighbor (k -NN)  Method 
Let k be the number of patterns from a combined set 

which are nearest neighbors of a pattern x, arid ki of them 
come from class w,. Then a k-NN estimator for class w; 
can be defined as: 

The pattern x is classified as belonging to class wnL if k,,, = 
max;(k;). 

Another interpretation of the k-NN estimator which re- 
lates it to the KE can be found in [9]. Let rk(x) be the 
Euclidean distance from x to the kth N N  of x in the train- 
ing set and p(x1w;) estimates are taken as 

This estimator is referred as generalized k-NN estimator. 

C. PDE with Normal Models 
' '  

to be a d-variate normal such that 
In this method, each class-conditional PDF is assumed 

where i = 1 , .  . . , N ,  pi's and Xi's denote the class mean 
and covariance matrices, respectively. They must be esti- 
mated by using techniques such as the maximum likelihood 
estimator based on the design set [lo]. 

Normal models (NM) used with PDE are divided into 
two as heteroscedastic and homoscedastic models. In the 
homoscedastic NM, all class-covariance matrjces are equal 
(Xi = X for all i = l , . .  . , N ) .  Usually X is taken as 
the weighted average of each class-covariance matrix es- 
timate [ l l ] .  In the heteroscedastic NM, different class- 
covariance matrices are used for each class. 

D. Linear Discriminant Analysis (LDA) 
In LDA, discriminant functions q(x)'s are linear func- 

tions of zi such that q(x) = a, + C;=, a;z; = aTz where 
z = (1, x ~ ) ~  is the augmented observation vector. The aim 
of LDA is to find the weight vector a, based on the design 
set which consists of two class samples such that 

i) aTzi > O1 whenever xi is a sample from class w1, and 
ii) aTzi < 0, whenever xi is a sample from class w2. 

Although the generalization of LDA to N classes can 
be done in different ways, here we have chosen to use 
N - 1 two-class decision rules, each one separating Ri,  i = 
1,. . ., N - 1 from all Rj  j = 1 , .  . . , N ;  j # i. 

VII. FUZZY C-MEANS CLUSTERING (FCC) 

FCC bas been developed by Dunn 1121 and extended by 
Bezdek. It minimizes the following objective function with 
respect to fuzzy membership p;j and cluster centers Vi: 

c N  

J,,, = x(~ij)'" / I  Xj - Vi I l l  (12) 
i=* j = ,  

where 1 1  x I I i =  xTAx. A is a d x d positive definite matrix 
which specifies the shape of the clusters, d is the dimension 
of the input patterns Xj (j  = 1,. . . , N ) ,  N is the number of 
patterns, and rn > 1 is the weighting exponent for pij and 
controls the fuzziness of the resulting clusters. Usually, A is 
chosen as the d x d  identity matrix which leads the definition 
of Euclidean distance resulting in spherical clusters. 

VIII. ARTIFICIAL NEURAL NETWORKS (ANN) 

ANNs have been widely used in a variety of applica- 
tions [13]. They consist of an input layer, one or more 
hidden layers, and a single output layer, each comprised of 
a number of neurons. ANNs have three distinctive char- 
acteristics: The model of each neuron includes a smooth 
nonlinearity, the hidden layers extract progressively more 
meaningful features, and the ANN exhibits a high degree 
of connectivity. Due to the presence of distributed form 
of nonlinearity and high connectivity, theoretical analysis 
of ANNs is difficult. ANNs are trained to compute the 
boundaries of decision regions in the form of connection 
weights and biases by using training algorithms such as 
back-propagation (BP) and generating-shrinking (GS). 

A.  Preprocessing of the Input Signals 

A. l  Fourier Transform (FT) 

defined as: 
The discrete Fourier transform (DFT) of a signal f(n) is 

where N is the length of the signal f(n). The DFT can be 
represented in matrix notation as fl = Ff where f is an 
N x 1 column vector, F is the N x N DFT matrix, and fl 
is the DFT o f f .  
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A.2 Fractional Fourier Transform (FRT) 

for 0 < (a(  < 2 as [14] 
The ath-order FRT fa(.) of the function f(u) is-defihed 

f.(u) k Irn K,(u,u')f(u')du' (14) 
-m 

~ ~ ( u , " ' )  C. .a, exp [ j z ( Z  c o t e  - 2uu'csco + u'2cotn)I (15) 

where 

The kernel K,(u,u') approaches 6(u - U') and 6(u + U ' )  

as a approaches 0 and f-2, respectively, and are defined as 
such a t  these values. The FRT reduces to the ordinary FT 
when a = 1 and is linear and index additive; that is, the 
ai th-order FRT of the asth-order FRT of a function equals 
the (al + a2)th-order FRT. With a similar notation as in 
the case of DFT, the ath-order discrete fractional Fourier 
transform (DFRT) o f f ,  denoted fa, can be expressed as 
fa = Faf  where Fa is the N x h' DFRT matrix which 
corresponds to the ath power of the ordinary DFT matrix 
F .  

A.3 Hartley Transform (HT) 
HT 1151 is another widely-used technique in signal pro- 

cessing applications 1151. The discrete Hartley transform 
(DHT) of a signal f(n) is defined as: 

A 1 
N - l  

H ( k )  = 'H{f(n)} = f (n)  cas ( Z n k )  (17) 

A where cas(z) = cos(z) + sin(z) and N is the length of the 
signal f(n).  There is a close relationship between DFT and 
DHT such that if the DFT of a signal f(n) is expressed as 
F ( k )  = F ~ ( k ) - - j F l ( k ) ,  then its DHT is related to the real 
and imaginary parts of the DFT by H ( k )  = F*(k) + F l ( k ) .  
The DHT can also be represented in matrix notation as 
hl = H f  where f is an N x 1 column vector, H is the 
N x N DHT matrix, and hl is the DHT o f f .  

A.4 Wavelet Transform (WT) 
The discrete wavelet transform (DWT) of a function 

k=-m j =O k=-m 

where c(k)=<f(t) ,rpk(t)>= J f ( t ) v k ( t ) d t  and d ( j , k ) =  
< f(t),&*(t) > = J f ( t ) $ j , k ( t ) d t .  The coefficients 

correspond to the 
DWT of signal f ( t ) .  These coefficients completely describe 
the original signal and can be used in a way similar to 
Fourier series coefficients. The procedure of finding the 
DWT coefficients can be summarized as: 

{ c ( k ) } Z - ,  and {d ( j ,  k)}j,o,k.-m m,m 

M-1 

c1(k) = h(m - Zk)Cj+l(rn) (19) 
l l l=O 

H e r e , k = 0 , 1 ; . . , 2 J N - l  where N isthenumberofsam- 
ples of the original signal that should be a power of 2. 
In these equations, h(n) ,  n = 0,. . ' ,  A4 - 1 is a low-pass 
filter called the scaling filter and g(n) is an high-pass fil- 
ter called the wavelet filter related to the scaling filter by 
g ( n )  = (-l)"h(Af - 1 - n) ,  n = O,. . . ,M - 1. Usually, 
c,(k)'s are taken as the samples of the original signal. 

A.5 Self Organizing Feature Map 

Self organizing ANNs are obtained by unsupervised 
learning algorithms that have the ability to form internal 
representation of the network that model the underlying 
structure of the input data without supervision. These 
networks are commonly used to solve the scaling prohleni 
encountered in supervised learning procedures. I t  is possi- 
ble to achieve best results with these networks as feature 
extractors prior to a linear classifier or a supervised learn- 
ing process 1131. hlost commonly used algorithm for gener- 
ating these networks is Kohonen's self organizing feature- 
mapping algorithm (IiSOFhl) (171 in which the weights 
are adjusted from the input layer to the output layer. The 
output neurons are interconnected with local connections 
and are geonietrically organized in one, two, three, or ercn 
higher dimensions. 

1 s .  EXPERIMENTAL STUDIES 

Panasonic transducers with aperture radius a = O.G5 cm, 
resonance frequency j o  = 40 kHz, and 8, % 54" 1131 
are used (Fig. 1) with a center-to-center separation of 
d = 25 cm. The sensing unit is mounted on a stepper mi- 
tor with step size 1.8" whose motion is controlled through 
the parallel port of a PC. Data acquisition is through a 12- 
bit 1 MHz PC A/D card. Starting a t  the transmit time, 
10,000 samples of each echo signal are collected and thresh- 
olded. The amplitude information is extracted by finding 
the maximum value of the signal after the threshold is ex- 
ceeded. 

The targets employed in this study are: cylinders with 
radii 2.5, 5.0 and 7.5 cm, a planar target, a corner, an edge 
of 8, = go", and an acute corner of 8, = GOo. Amplitude 
and TOF patterns of these targets are collected with the 
sensing unit described above at 25 different training loca- 
tions (.,e) for each target (Fig. 3). The target primitive 
located at range T and azimuth 8 is scanned by the sensing 
unit for scan angle -52" 5 a 5 52" with 1.8" increments. 
For given scan range and motor step size, 58 (= s) 
angular samples of each of amplitude and TOF patterns 
[Am(a), Abb(a), Aob(a), &(a) ; tm(a), tbb(a), tab(a), 
tba(a)] are acquired at each target location. Four similar 
sets of scans are collected for each target a t  each location, 
resulting in 700 (= 4 data sets x 25 locations x 7 tar- 
get types) sets of signals to construct the training data. 
This training data is used in statistical pattern recognition 
techniques, LDA, FCC, and ANNs. 

Two different sets of test data are constructed to assess 
and compare the performances of the different classifica- 
tion and fusion techniques. For test data I, each target is 
placed in turn in each of the 25 training positions in Fig. 3. 

28 



d , o , ,  d 
I< ,,. 

T/Rb TIRa 

Fig. 3. Discrete network training localions. 

Four sets of patterns are collected for each combination of 
target type and location, again resulting in 700 sets of pat- 
terns. While collecting test data 11, targets are situated 
at  randomly generated locations within the area shown in 
Fig. 3, not necessarily corresponding to one of the 25 grid 
locations. 

Initially, the TD.A is employed at each angular step to 
classify and localize the target. Then, DS and various vot- 
ing schemes are used to fuse decisions made at  each of the 
58 angular steps to reach a single decision for a pattern set. 
Weighted averages of the 58 range and azimuth estimates 
in a pattern set are calculated to find the range and the 
azimuth of the target. In DS, these weights are the be- 
lief values assigned to range and azimuth estimates at each 
angular step. In SMV, these weights are taken as one for 
both range and azimuth at  each angular step. In voting 
schemes including preference ordering and reliability mea- 
sures, reliabilities assigned at each angular step are used 
as weights. In this case, preference orders are taken as the 
belief values assigned to each target a t  each angular step. 

In statistical pattern recognition techniques, LDA, and 
FCC, three different training (design) sets are constructed 
using training data consisting of different vector represen- 
tations. In each design set, seven classes each with 100 
vector representations exist. These are: 

'"'I' ..:[...I.,. A b * ( " ] .  A - b ' y a  ( -1.  in.ial. l b b I - l .  ' * + ) p a  

I' ..:[...i., - A . * ( ~ l .  l b l l ' l -  A b s ( - ) .  L D P I * . )  - t.L''l. Lbb''1 -%.'a) 

-9: [lA&, - A & ~ . = l ! l A b b ~ . = l  - A b a ~ * l l .  l&*l.=l- **&(l)l+ l . 4 d - I  - *b.(nl 

I' lh*'-l - t.b(allllbb'al -%*(") I .  l I a e ( o / 1  - * d i ~ ) l + l t h b ' - )  - I b * l ~ l l  

The first vector representation x1 is taken as the raw pat- 
terns without any processing, except for averaging the cross 
terms which should ideally be equal. The second vector 
representation xz has been motivated by the TDA. The 
third vector representation XQ is motivated by the differ- 
ential terms which are used to assign belief values to the 
targets classified by the TDA [2]. 

Thirdly, ANNs are employed. Performance of ANNs is 
affected by the choice of parameters related to the network 
structure, training algorithm, and input signals, as well as 
parameter initialization. We considered samples of the fol- 
lowing different signal representations as alternative inputs 
to the ANNs: 

Xl ,  x2, x3 
DWT of xl, x2, XQ a t  different resolutions j 
DFT of xi,Xz,x3 
DFRT of xlr x2, xQ at different orders a 
DHT of X ~ , X Z , X Q  

Features of xi, x2, x3 extracted by KSOFM 

The first three input signal representations are the same 
vector representations used above for statistical pattern 
recognition techniques, LDA, and FCC. In this case, they 
have been used both in their raw form and after taking 
their DFT, DFRT, DHT, and DWT, as well as after fea- 
ture extraction by KSOFM. The ath-order DFRT of these 
three input signal representations for a values varying from 
0.05 to 0.95 with 0.05 increments are used. DWT of each 
signal representation a t  different resolutions j are used. Fi- 
nally. the features extracted by using KSOFM are used as 
input signals both prior to ANNs and linear classifiers. 

Initially, ANNs are trained by using BP to classify and 
localize these target types. Next, modular AXNs for each 
type of input signal have been implemented in which three 
separate networks for target type, range, and azimuth, each 
trained with BP, are employed. ANNs using the same in- 
put signal representations are also trained with the GS al- 
gorithm. This algorithm can he applied to target classifi- 
cation but not localization [SI. 

To make a comparison of all differentiation and fusion 
techniques employed in this study, highest percentages of 
correct classification obtained with each method are given 
in Table X. With the TDA and the fusion techniques based 
on this algorithm (DS, and various voting schemes) which 
do not use training data, only three of the target types 
employed in this study (P, C, and AC) can be differenti- 
ated. However, all targets can be differentiated with the 
other methods. The fact that the other methods are able 
t o  distinguish all target types indicates that  they must be 
making more effective use of the available data than the 
TDA. Statistical pattern recognition techniques, LDA, and 
FCC cannot be used for target localization, unlike all of the 
other methods. The highest percentages of correct classi- 
fication is 100% and is obtained with non-modular ANN 
trained with BP employing the DFRT. However, best lo- 

1,calization is achieved with the modular ANN trained with 
BP  employing the DWT. The lowest percentage of cor- 
rect classification is 61% and is obtained with the TDA. 
For most cases, vector representation XI gives the best re- 
sults, followed by x~ and x ~ .  Note that different vector 
representations are not applicable to TDA and fusion tech- 
niques based on this algorithm since they determine the 
target type by using differential signal xz obtained by us- 
ing original signal x1 and they assign belief values to their 
decisions using XQ. For most cases, the results obtained 
with test data I are the best for all methods except the 
TDA and the fusion techniques based on this algorithm. 
However, the gap between the results of test data I and I1 
is higher for statistical pattern recognition techniques and 
LDA than that for all other methods. 
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raw signal 
DWT 
DFT 

DHT 
KSOFM 

DFRT 

KSOFM with linear classifier (6) 

TABLE I: 
OVERVIEW OF T H E  METHODS COMPARED, THE TARGET TYPES ENCLOSED IN BRACES CAN BE RESOLVED ONLY 
AS A GROUP, T H E  NUMBERS IN PARENTHESES ARE FOR MODULAR NETWORKS, WHEREAS T H E  NUMBERS IN 
BRACKETS ARE FOR NETWORKS TRAINED WITH GS. 

95 (95) (951 79/89(73/95) not Ptored 
98 (99) [97] 71/90(80/92) 
97 (98) (971 64/86(72/94) 

99 (97) (971 67/84(62/84) 
7R (76) 1131 24/69(21/66) 

100 (98) 1971 75/~3(68/8fi) 

P.C.AC,E.CY 85 yes 42/80 used. not stored yes no 
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