
SE4SEE: A Grid-Enabled Search Engine for South-East Europe 
 

B. Barla Cambazoglu, Ata Turk, Evren Karaca, 
Cevdet Aykanat, Bora Ucar, and Tayfun Kucukyilmaz 

Computer Engineering Department 
Bilkent University 

Bilkent 06800, Ankara, Turkey 
Phone: +90 312 290 1625 Fax: +90 312 266 4047 

E-mail: berkant@cs.bilkent.edu.tr 
 

Onur Temizsoylu 
TÜBİTAK, ULAKBİM, YÖK Binası B5 Blok 

Bilkent 06539, Ankara, Turkey 
 

Abstract - Search Engine for South-East Europe (SE4SEE) 
is an application project aiming to develop a grid-enabled 
search engine that specifically targets the countries in the 
South-East Europe. It is one of the two selected regional ap-
plications currently implemented in the SEE-GRID FP6 
project. This paper describes the design details of SE4SEE 
and provides an architectural overview of the application. 

 
 

I. INTRODUCTION 
 

The ever-growing size of the Web when coupled with 
the number of users querying the Web pages requires the 
use of state-of-the-art search engines [1], [2] for accessing 
valuable information. In the last decade, an explosion was 
observed in the number of publicly usable search engines. 
These engines varied in many aspects, including coverage 
over the pages (e.g., the whole Web, topic-specific, or lan-
guage-specific), geographical locality, provided user 
interface (e.g., keyword-based or directory-based), archi-
tectural design issues employed (i.e., indexing, 
compression, filtering), and the way the results are pre-
sented to users. 

Although many others exist, page coverage and fresh-
ness are the most important challenges that a search engine 
must face. Among these, page coverage refers to the 
amount of indexed Web pages reachable by user queries, 
and page freshness is a measure of how up-to-date the in-
dexed content is relative to the original copy in the Web. 
Higher coverage allows users to access more pages, thus 
improving recall. Similarly, high freshness may be said to 
be increasing the relevance of the returned pages, thus im-
proving precision. 

Considering the fact that the number of Web pages is in 
the order of billions and it takes more than a month to fully 
index the Web, even with the most powerful parallel com-
puting systems, it is seen that both coverage and freshness 
are outstanding problems before general-purpose search 
engines. A solution, which recently became popular to 
these problems is personalized or focused search. In this 
approach, an on-demand and dynamic search is started on 
the original copies of pages in the Web. Pages are re-
trieved in a focused manner by following the hyperlinks 
within the pages. The relevance of a page to what the user 
requested is evaluated by some metric. This type of search 
explicitly solves both coverage and freshness problems. 
The coverage problem is no longer an issue since the user 
is free to retrieve as many pages as he requests. Freshness 
is not an issue since the search is performed over the origi-
nal copies of pages. The disadvantage of personalized 

search is that the required computational resource (e.g., 
CPU, volatile memory, disk storage, network) capacities 
are quite high. 

In this paper, we present the design details of a grid en-
abled, personalized search engine (SE4SEE), one of the 
two regional applications [3] in SEE GRID [4], a European 
Union FP6 project.  Since it is a regional application, 
SE4SEE specifically targets the Web pages located in the 
countries of South East Europe. The application is com-
posed of two components, a Web crawling component for 
retrieving pages and a categorization component for evalu-
ating relevance of retrieved pages. This paper provides the 
design details of these two components and discusses fur-
ther grid-related issues. 

The outline of the paper is as follows. Sections II and III 
respectively provide a brief overview about Web crawling 
and text categorization. Then, in Section IV, we make a 
brief introduction to Grid computing. We present the ar-
chitectural components of SE4SEE in Section V. Finally, 
we point at some future work and conclude in Sections VI 
and VII, respectively. 

 
 

II. WEB CRAWLING 
 

Web crawling [5], [6], [7], [8] is the process of locating, 
fetching, and storing a set of pages in the Web. A typical 
Web crawler, starting from a set of seed pages, locates new 
page URLs by parsing the downloaded pages and extract-
ing the hyperlinks within. Extracted URLs are stored in a 
FIFO fetch queue for further retrieval. Crawling continues 
until the fetch queue gets empty or a satisfactory number 
of pages is downloaded. Usually, many crawler threads 
execute concurrently in order to overlap network opera-
tions with CPU processing, thus increasing the throughput. 

In personalized search, since only a limited subset of the 
pages is requested, it is not wise to crawl every page. A 
more clever approach is to analyze page contents and in-
sert into the fetch queue only those pages that are highly 
relevant to the user request. The basic idea behind this is 
that if a page is relevant, then its links are also likely to be 
relevant. This type of a focused crawl has the benefits of 
reducing the crawl time and increasing the quality of the 
returned pages in terms of precision. 

However, deciding the relevance of a page is a challeng-
ing task. In the literature, most works cast this problem as 
a machine learning problem. In this work, we use text 
categorization techniques to measure the degree of rele-
vance of pages to user queries. The next section provides 
some background on text categorization. 



III. TEXT CATEGORIZATION 
 

Text categorization [9], [10], [11] is the task of assign-
ing a category to a given text document by analyzing the 
attributes of the textual material contained in the docu-
ment. In other words, it can be defined as the process of 
choosing a type or topic for a piece of text among a prede-
fined set of types or topics. Text categorization, as other 
text processing problems such as topic identification, text 
summarization, and text clustering are, is a rather hard 
problem to be solved. At the extreme case, a mixture of 
natural language processing and artificial intelligence 
techniques, which perform semantic and contextual analy-
sis, is necessary for accurate categorization of text 
documents. 

However, in this work, the focus is on statistical tech-
niques [12], which rely solely on syntactical analysis and 
were abundantly used for categorization in the past. In the 
literature, different techniques are proposed as solution to 
the text categorization problem. These solutions are mainly 
based on application of different machine learning algo-
rithms on text categorization. Applications of k-nearest 
neighbor [13], [14], naïve Bayesian [15], neural networks 
[16], and decision trees [17] are among the most popular 
examples. 

The main reasons which prevent further improvement 
on both efficiency and accuracy of the algorithms men-
tioned above result from the nature of textual data. As 
pointed out in many works, the basic reason is the high 
dimensionality of the attribute space of a document and the 
high amount of sparsity in documents’ attribute spaces. In 
other words, the number of distinct terms that may occur in 
a document data set is in the order of ten thousands, but 
only a small fraction of these terms occur in a single 
document. In most works, this high-dimensionality prob-
lem is attacked and eliminated within a special 
preprocessing step. This preprocessing step mainly con-
tains either all or some of the following techniques: stop-
word elimination, stemming, word grouping, and feature 
selection [18]. In the implementation of the SE4SEE appli-
cation, we try to incorporate these techniques into the text 
categorization component as much as possible. 

 
 

IV. GRID COMPUTING 
 

Grid is a type of parallel and distributed system that en-
ables sharing, selection, and aggregation of geographically 
distributed autonomous resources dynamically at runtime 
depending on their availability, capability, performance, 
cost, and users’ quality-of-service requirements [19]. Ac-
cording to the functionality they provide, grid systems may 
be classified as computational, data, or service grids. Com-
putational grids are usually made up of high-performance 
servers, which together supply a vast computing power to 
the users. Data grids store large amounts data distributed 
across multiple computers and aim to let the users from 
different organizations share and manage the data. Service 
grids are systems that provide software services that 
cannot be provided by a single machine. 

As we stated in Section I, the computational require-
ments for personalized Web search are quite 
overwhelming for a traditional PC. To begin with, a high 
amount of processing power is needed to parse the crawled 
page contents, extract the hyperlinks, and categorize the 

pages. Along with processing power, large amounts of 
volatile memory is needed to manage the data structures, 
which continuously and quickly grow during the crawl. If 
the page download rate is higher than the throughput of the 
text classifier, secondary storage may also be needed to 
temporarily store the downloaded pages. The final and 
probably the most important requirement is on the network 
bandwidth. The network bandwidth affects the duration of 
the search session and hence indirectly affects the cover-
age. All these requirements make personalized Web 
searching a suitable target for grid computing. 

 
 

V. SE4SEE ARCHITECTURE 
 

A. Overview 
 

The basic goal of the SE4SEE application is to let the 
users have an environment in which Web pages can be 
searched and gathered in an on-demand and focused man-
ner, thus ensuring the freshness of the gathered documents. 
The underlying structure of the proposed work consists of 
a crawling and a categorization component. The user que-
ries involve a category and a country name. Upon 
receiving a query, the crawling component, starting from a 
predetermined set of seed pages, is made responsible for 
gathering the pages that match the user’s requests from the 
Web. The downloaded pages are categorized by the text 
classifier, and the resulting set of pages is returned to the 
user. The set of categories (e.g., news, festivities, sales, 
etc.) are predetermined. The application requires language-
specific tools for categorization, a set of initial seed pages 
for crawling each category, and a set of training documents 
to build a text classification model. 

Fig. 1 depicts a sample search scenario over the 
SE4SEE architecture. In the figure, there are six SE4SEE 
servers, two located in Bulgaria, three in Turkey, and one 
in Croatia. The specialized Web portal resides in Ankara, 
Turkey. Authenticated clients from any of the participating 
countries use Java enabled Web browsers to connect to the 
Web portal and submit queries. For example, in the figure 
a user from Romania wants to find the hotels in Croatia 
and thus submits this query to the Web portal. The portal 
then locates an available grid node in Croatia that will act 
as a SE4SEE server and sends a job description to it. The 
SE4SEE server initiates a crawling job and collects the 
URLs of the hotels in Croatia. The collected URLs are 
then stored in the output sandbox. Upon user’s request, the 
sandbox is retrieved and displayed by the Web portal. 

 
B. Web Portal 

 
In order to effectively provide a Web-based access to 

the SE4SEE infrastructure and to make the application 
available to a large number of users, deployment of a Web 
portal is necessary. This Web interface should conceal the 
details of the underlying grid infrastructure along with the 
technologies used. The Web portal should also provide a 
transparent and user-friendly interface to the non-expert 
user, as the target audience is not guaranteed to be tech-
nology-savvy. 

The Web portal is currently being developed using the 
GridSphere portal framework [20]. The functionalities that 
will be provided within the portal include authenticating 
users, accepting user queries from clients, submitting que-



ries to SE4SEE servers, and collecting the outputs gath-
ered from the servers in order to display the results to 
clients. The user will be able to select from a number of 
service-providing sites to submit its search query. The un-
derlying operations performed by the Web portal are to 
communicate with MyProxy server in order to authenticate 
users, to generate a job description in JDL (job description 
language) for user queries, to submit the job descriptions 
to UI (user interface) nodes of the selected sites, to moni-
tor the submitted jobs, and finally to collect the outputs by 
using the EDG (European Data Grid) utilities in the LCG 2 
infrastructure [21]. Since users may not always harvest the 
collected outputs immediately, a file proxy server must 
keep the results for a period. 

 
C. SE4SEE Servers 

 
The servers of the SE4SEE applications run the LCG 2 

infrastructure to initiate crawling jobs for the user queries. 
The crawling jobs require seed pages in order to start 
crawling. These seed pages need to be country- and cate-
gory-specific, and hence, they are provided to the SE4SEE 
servers by the Web portal in the input sandbox. The 
crawled pages are then categorized. In order to effectively 
categorize the collected pages, the server requires lan-
guage-specific categorization tools such as stop-word 
eliminators and stemming tools. These tools are provided 
either by the Web portal in the sandbox of the job descrip-
tion or by using GridFTP if their sizes are very large. The 
URLs that fall into the user-specified categories after the 
completion of the crawling and categorization jobs will be 
posted to the Web portal in the output sandbox. 

 
D. Web Crawler Component 

 
This component, developed using the WebSphinx Web 

crawler library [22], performs the crawling task. The gen-
eral architecture for the crawler is depicted in Fig. 2. In 
general, there are several threads running concurrently. 
Each thread is composed of three main parts: a download 
manager, a URL manager, and a storage manager. The 
download manager is responsible for locating the DNS en-
tries for the pages and fetching them from the Web. Each 
downloaded page is passed to the URL manager. The URL 
manager parses the pages and extracts the new URLs con-

tained within them. The URLs pointing at pages that are 
not previously fetched are stored in a common URL queue, 
accessible by all threads. The URL manager is also re-
sponsible for providing new URLs to the download 
manager for retrieval. The storage manager saves the pages 
supplied by the download manager on the disk. 

The WebSphinx API provides methods to set the crawl-
ing parameters such as the seed pages, maximum size of 
crawled pages, characteristics of the links that can be fol-
lowed, and the type of the Web graph traversal technique 
that will be used. For a crawling request, which is in the 
form of a country and category pair, a crawler is initiated 
in the queried country that uses the category’s country-
specific seed pages as its starting point. It is important to 
assign a query for a user-specified country to a worker 
node located in the target region. This approach allows 
geographically close Web pages to be downloaded faster 
and hence uses the available network bandwidth more ef-
fectively and efficiently. Thus, this scheme suits well to 
grid computing and the selected regional application. 

 
E. Text Categorization Component 

 
Fig. 3 depicts the general picture of the input-output re-

lation among the modules of the classification system that 
has been designed and implemented. In the figure, an el-
lipse corresponds to a module or more specifically a piece 
of code, which can be compiled and executed independ-
ently. Solid oblong boxes represent the files stored on the 
disk. The arrows on the arcs between the files and the 
modules indicate whether the file is supplied as input to a 
module or generated by it. Dashed boxes are the inputs 
passed as parameters to a module during the initial module 
startup. Bold lines indicate user interaction. The corpus 
creator and corpus parser modules are the two preprocess-
ing modules used prior to text categorization. They are 
shortly described below: 

Corpus creator: The aim of the corpus creator is to 
transform a given document collection into a common and 
standard format.  This module performs all text filtering 
tasks on the given collection, i.e., it eliminates white 
spaces and removes punctuation from the text. The ex-
tracted alphanumeric character groups are converted into 
upper case and written into a single, formatted corpus file. 
Since the collection of input documents can be unfor-
matted and vary in size and structure, it may be necessary 
to modify the I/O routines of this module depending on the 

 
Fig.  1. A search scenario over the SE4SEE architecture. 
 

 
Fig.  2. The Web crawling component. 

 



input’s properties. Hence, it is preferred to use a separate 
corpus creator module for each document collection at 
hand. 

Corpus parser: Once the collection is converted into a 
standard corpus format, the corpus parser module can be 
used to generate the files that keep detailed information 
about the corpus. The corpus parser module reads a single 
corpus file and produces five output files. These newly 
generated files are all in ASCII format and are used by the 
text classifier. The corpus parser module is able to apply 
some cleansing procedures on the input document corpus.  
If a stop-word file is available in the working directory, the 
stop-words are eliminated. In this module, it is also possi-
ble to remove very short or long terms, discard completely 
numeric terms, and apply stemming on the terms. 

Text classifier: The core of the classification system is 
the text classifier module. This module is a wrapper, which 
calls the appropriate machine learning classifiers for the 
text classification task. It is also possible to run each clas-
sifier as a stand-alone application. This module offers 
several validation techniques and hides the details of parti-
tioning the training document set. The classifier to be used 
and its options are passed as input to the module. The 
wrapper first reads the document collection for training 
purposes and generates a classification model. It then con-
secutively reads the documents whose categories are to be 
predicted from the disk and tries to guess a category for 
each document using the classifier chosen from the classi-
fier library. 

Classifier library: As the machine learning library, Har-
binger Machine Learning Toolkit [23] is used. The 
classifiers supported by this toolkit (currently around 10) 
are collected under four main headings: instance-based 
classifiers, probabilistic classifiers, symbolic learning clas-
sifiers, and neural network classifiers. A more thorough 
discussion of classifier options, file formats, and several 
examples can be found in the Harbinger Machine Learning 
Toolkit manual [23]. 
 
 

F. Client Side 
 

There are no special hardware and software require-
ments necessary at the client side apart from Java and a 
Web browser. Executables and required data files are pre-
pared and then sent through the job input sandbox by the 
Web portal. The user is provided with an interface that al-
lows selection from available grid nodes and specification 
of the crawling country, crawling category, crawling time, 
and many additional crawling and categorization parame-
ters. The output is displayed as a list of URLs that fall into 
the category and crawling specifications given by the user. 

 
G. Further Grid Considerations 

 
On-demand crawling and categorization is a time-

consuming task. The produced results may not be available 
in a short amount of time. Hence, a proxy is necessary on 
the Web portal. The purpose of this proxy is to mediate be-
tween the user and the SE4SEE computing elements. This 
allows the user to harvest the outcome of the search proc-
ess, i.e., the gathered set of pages in the future. Another 
issue is monitoring the status of a submitted search task. It 
is important to notify the user about the status of such a 
long-lasting job. We plan to use the EDG features from 
LCG 2 for monitoring. 

 
 

VI. FUTURE WORK 
 

In the current implementation, the downloaded pages 
are temporarily stored for the sole purpose of categoriza-
tion. A possible extension may be to provide a cache 
keeping previously obtained sets of URLs in order to pro-
vide faster and direct access to highly requested pages. 
Another extension may be to collect several user queries 
and submit them as batch jobs. This may allow the sharing 
of crawled pages among different search tasks. Yet another 
extension is to provide asynchronous and incremental up-
date to query results. The query results may have a certain 
life-time (at most certificate life-time). The SE4SEE serv-
ers may send newly crawled results to the Web portal, 
where the previous results are merged.  

 
 

VII. CONCLUSIONS 
 

The primary goal of the SE4SEE application is to pro-
duce a category-based, on-demand search facility that 
offers access to the set of Web pages located in the South 
East Europe region in an efficient and user-friendly fash-
ion. Moreover, this application aims to form the necessary 
infrastructure and lead the way to a general-purpose search 
engine that considers the needs of the South East European 
citizens. However, the ultimate goal of the SE4SEE appli-
cation is to enhance dissemination of information and 
socio-cultural integration among the countries in the re-
gion by providing access to a common knowledge base. 
Finally, it must be stated that, the categorized data that will 
be obtained as the outcome of the application is of great 
importance to many scientific disciplines. It is possible to 
conduct statistical, sociological, and physiological experi-
ments on the collected Web data. 

 
 

 
Fig.  3. The text categorization component. 

 



ACKNOWLEDGEMENTS 
 

This publication is based on the work performed in the 
framework of the FP6 project SEE-GRID, which is funded 
by the European Community. The SEE-GRID consortium 
consists of eleven contractors: ten representatives or incu-
bators of National Grid Initiatives (NGIs) from SE 
European countries and CERN. The consortium contrac-
tors that represent NGIs are: GRNET (Greece), SZTAKI 
(Hungary), ICI (Romania), CLPP (Bulgaria), TUBITAK 
(Turkey), ASA (Albania), BIHARNET (Bosnia Herzego-
vina), UKIM (FYRoM), UOB (Serbia-Montenegro), RBI 
(Croatia). 

 
REFERENCES 

 
 [1] L. Page and S. Brin, “The Anatomy of a Large-Scale Hy-

pertextual Web Search Engine”, Proceedings of the 
Seventh World-Wide Web Conference, pp. 107–117, 1998. 

 [2] Google homepage, http://www.google.com/ 
 [3] SEE-GRID Project Deliverable D3.1: Specifications of 

Regional Applications 
 [4] SEE-GRID homepage, http://www.see-grid.org/ 
 [5] B.B. Cambazoglu, A. Turk, and C. Aykanat, “Data-Parallel 

Web Crawling Models”, Lecture Notes in Computer Sci-
ence, vol. 3280, pp. 801–809, 2004. 

 [6] A. Heydon and M. Najork, “Mercator: A Scalable, Exten-
sible Web Crawler”, World Wide Web, vol. 2, no. 4, pp. 
219–229, 1999. 

 [7] J. Cho and H. Garcia-Molina, “Parallel Crawlers”, Pro-
ceedings of the Seventh World-Wide Web Conference, pp. 
124–135, 2002. 

 [8] V. Shkapenyuk and T. Suel, “Design and Implementation 
of a High-Performance Distributed Web Crawler”, Interna-
tional Conference on Data Engineering, pp. 357–368, 
2002. 

 [9] Y. Yang and X. Liu, “A Re-examination of Text Categori-
zation Methods”, Proceedings of ACM SIGIR Conference 
on Research and Development in Information Retrieval, 
pp. 42–49, 1999. 

[10] M. Grobelnik and D. Mladenic, “Efficient Text Categoriza-
tion”, Text Mining Workshop on ECML-98, 1998. 

[11] W. Lam, M. E. Ruiz, and P. Srinivasan, “Automatic Text 
Categorization and Its Applications to Text Retrieval”, 
IEEE Transactions on Knowledge and Data Engineering, 
vol. 11, no. 6, pp. 865–879, 1999. 

[12] Y. Yang, “An Evaluation of Statistical Approaches to Text 
Categorization”, Journal of Information Retrieval, vol. 1, 
no. 1/2, pp. 67–88, 1999. 

[13] E. Han, G. Karypis, and V. Kumar, “Text Categorization 
Using Weight Adjusted k-Nearest Neighbor Classifica-
tion”, Proceedings of the 5th Pacific-Asia Conference on 
Knowledge Discovery and Data Mining, pp. 53–65, 2001. 

[14] T. Yavuz and H.A. Guvenir, “Application of k-Nearest 
Neighbor on Feature Projections Classifier to Text Catego-
rization”, Proceedings of the 13th International Symposium 
on Computer and Information Sciences, pp. 135–142, 
1998. 

[15] A. McCallum and K. Nigam, “A Comparison of Event 
Models for Naive Bayes Text Classification”, AAAI-98 
Workshop on Learning for Text Categorization, 1998. 

[16] H.T. Ng, W.B. Goh, and K.L. Low, “Feature Selection, 
Perceptron Learning, and a Usability Case Study for Text 
Categorization”, Proceedings of the 20th International 
Conference on Research and Development in Information 
Retrieval, pp. 67–73, 1997. 

[17] D.D. Lewis and M. Ringuette, “A Comparison of Two 
Learning Algorithms for Text Categorization”, Proceed-
ings of the Third Annual Symposium on Document Analysis 
and Information Retrieval, pp. 81–93, 1994. 

[18] D.D. Lewis, “Feature Selection and Feature Extraction for 
Text Categorization”, Proceedings of Speech and Natural 
Language Workshop, pp. 212–217, 1992. 

[19] Grid Computing Info Centre, 
   http://www.gridcomputing.com/gridfaq.html 
[20] GridSphere: A Portal Framework,  
  http://www.gridsphere.org 
[21] LCG-2 Middleware Overview, 
  https://edms.cern.ch/file/498079/0.1/LCG-mw.pdf 
[22] Websphinx: Personal Customizable Web Crawler, 
  http://www.cs.cmu.edu/~rcm/websphinx/ 
[23] B.B. Cambazoglu and C. Aykanat, “Harbinger Machine 

Learning Toolkit Manual”, Technical Report, BU-CE-
0502, Bilkent University, Department of Computer Engi-
neering, Ankara, 2005. 

 


