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CHARACTERISTIC LIE ALGEBRA AND CLASSIFICATION OF

SEMIDISCRETE MODELS

I. T. Habibullin∗† and A. Pekcan∗

We study characteristic Lie algebras of semi-discrete chains and attempt to use this notion to classify

Darboux-integrable chains.

Keywords: integrability, discrete equation, Liouville-type equation

1. Introduction

Investigating the class of hyperbolic-type differential equations of the form

uxy = f(x, y, u, ux, uy) (1)

has a very long history. Various approaches have been developed for seeking particular and general solutions
of this kind of equation. Several definitions of the integrability of the equation can be found in the literature.
According to the one given by Darboux, Eq. (1) is said to be integrable if it reduces to a pair of ordinary
(generally, nonlinear) differential equations or, more exactly, if any solution of it satisfies equations of the
form [1] (also see [2])

F (x, y, u, ux, uxx, . . . , Dm
x u) = a(x), G(x, y, u, uy, uyy, . . . , D

n
y u) = b(y) (2)

for appropriately chosen functional parameters a(x) and b(y), where Dx and Dy are differentiation operators
with respect to x and y, ux = Dxu, uxx = Dxux, and so on. The functions F and G are called the y and x

integrals of the equation.
Darboux himself proposed an effective criterion for Darboux integrability: Eq. (1) is integrable if and

only if the Laplace sequence of the linearized equation terminates at both ends. A rigorous proof of this
statement was found only recently [3].

Shabat developed an alternative method for investigating and classifying the Darboux integrable equa-
tions based on the notion of a characteristic Lie algebra. We briefly explain this notion. We begin with the
basic property of the integrals. Obviously, each y integral satisfies the condition

DyF (x, y, u, ux, uxx, . . . , Dm
x u) = 0.

Differentiating by applying the chain rule, we define a vector field X1 such that

X1F =
(

∂

∂y
+ uy

∂

∂u
+ f

∂

∂ux
+ Dx(f)

∂

∂uxx
+ · · ·

)
F = 0. (3)
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Hence, the vector field X1 solves the equation X1F = 0. But the coefficients of the vector field depend on
the variable uy in general while the solution F does not. This severely restricts F ; in fact, F must satisfy
one more equation, X2F = 0, where X2 = ∂/∂uy. But then the commutator of these two operators must
also annihilate F . Moreover, for any X from the Lie algebra generated by X1 and X2, we obtain XF = 0.
This Lie algebra is called the characteristic Lie algebra of Eq. (1) in the x direction. The characteristic
algebra in the x direction is defined similarly. By virtue of the famous Jacobi theorem, Eq. (1) is Darboux
integrable if and only if both of its characteristic algebras are finite-dimensional. The characteristic Lie
algebras for the systems of nonlinear hyperbolic equations and their applications were studied in [4].

In this paper, we study semidiscrete chains of the form

t1x = f(t, t1, tx) (4)

from the standpoint of Darboux integrability. Here, the unknown t = t(n, x) is a function of two independent
variables: one discrete (n) and one continuous (x). We assume that ∂f/∂tx �= 0. A subscript denotes a
shift or a derivative, for instance, t1 = t(n + 1, x) and tx = ∂t(n, x)/∂x. Below, we let D denote the shift
operator and Dx denote the x derivative: Dh(n, x) = h(n+1, x) and Dxh(n, x) = ∂h(n, x)/∂x. We use the
subscript for iterated shifts: Djh = hj .

We now introduce the notions of integrals for semidiscrete chain (4). The x integral is defined similarly
to the continuous case. We call a function F = F (x, n, t, t1, t2, . . . ) depending on a finite number of shifts
an x integral of chain (4) if the condition DxF = 0 is satisfied. In accordance with the continuous case, it
is natural to call a function I = I(x, n, t, tx, txx, . . . ) an n integral of chain (4) if it is in the kernel of the
difference operator: (D − 1)I = 0. In other words, an n integral is invariant under the action of the shift
operator DI = I (also see [5]). We can write it in the expanded form

I(x, n + 1, t1, f, fx, fxx, . . . ) = I(x, n, t, tx, txx, . . . ). (5)

We note that (5) is a functional equation; the unknown is taken at two different “points.” This produces
the main difficulty in studying discrete chains. Such problems occur when trying to apply the symmetry
approach to discrete equations (see [6]). But the concept of the Lie algebra of characteristic vector fields
provides an effective tool for investigating chains.

We introduce vector fields as follows. We concentrate on main equation (5). Obviously, its left-hand
side contains the variable t1 while the right-hand side does not. Hence, the total derivative of DI with
respect to t1 must vanish. In other words, the n integral is in the kernel of the operator Y1 := D−1∂D/∂t1.
We similarly verify that I is in the kernel of the operator Y2 := D−2∂D2/∂t1. Indeed, the right-hand side
of the equation D2I = I, as follows immediately from (5), is independent of t1, and the derivative of D2I

with respect to t1 therefore vanishes. Proceeding thus, we easily prove that for any natural number j, the
operator Yj = D−j∂Dj/∂t1 solves the equation YjI = 0.

So far, we have shifted the argument n forward. We now shift it backward and use main equation (5)
written as D−1I = I. We rewrite original equation (4) as

t−1x = g(t, t−1, tx), (6)

which can be done because of the condition ∂f/∂tx �= 0 assumed above. In the expanded form, the equation
D−1I = I becomes

I(x, n − 1, t−1, g, gx, gxx, . . . ) = I(x, n, t, tx, txx, . . . ). (7)

The right-hand side of this equation is independent of t−1, and the total derivative of D−1I with respect
to t−1 is hence zero, i.e., the operator Y−1 := D∂D−1/∂t−1 solves the equation Y−1I = 0. Moreover, the
operators Y−j = Dj∂D−j/∂t−1 also satisfy similar conditions Y−jI = 0.
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Summarizing the above reasoning, we conclude that the n integral is annihilated by any operator from
the Lie algebra L̃n generated by the operators [7]

. . . , Y−2, Y−1, Y−0, Y0, Y1, Y2, . . . , (8)

where Y0 = ∂/∂t1 and Y−0 = ∂/∂t−1. The algebra L̃n consists of the operators from sequence (8),
all possible commutators, and linear combinations with coefficients depending on the variables n and x.
Obviously, Eq. (4) admits a nontrivial n integral only if the dimension of the algebra L̃n is finite. But it
is not clear that the finiteness of dimension of L̃n suffices for the existence of an n integral. We therefore
introduce another Lie algebra called the characteristic Lie algebra of Eq. (4). In addition to the operators
Y1, Y2, . . . , we first define the differential operators Xj = ∂/∂t−j for j = 1, 2, . . . .

The following theorem allows defining the characteristic Lie algebra.

Theorem 1.1. Equation (4) admits a nontrivial n integral if and only if the following two conditions

hold:

1. The linear envelope of the operators {Yj}∞1 is finite-dimensional (its dimension is denoted by N).

2. The Lie algebra Ln generated by the operators Y1, Y2, . . . , YN , X1, X2, . . . , XN is finite-dimensional.

We call Ln the characteristic Lie algebra of (4).

Remark. It is easy to prove that if the dimension of {Yj}∞1 is N , then the set {Yj}N
1 constitutes a

basis in the linear envelope of {Yj}∞1 .

2. Characteristic Lie algebra Ln

We study some properties of the characteristic Lie algebra introduced in Theorem 1.1. We begin by
proving the remark, which follows immediately from Lemma 2.1.

Lemma 2.1. If the operator YN+1 for some integer N is a linear combination of the operators with

fewer indices,

YN+1 = α1Y1 + α2Y2 + · · · + αNYN , (9)

then we have a similar expression for any integer j > N ,

Yj = β1Y1 + β2Y2 + · · · + βNYN . (10)

Proof. Because of the property Yk+1 = D−1YkD, it follows from (9) that

YN+2 = D−1(α1)Y2 + D−1(α2)Y3 + · · · + D−1(αN )(α1Y1 + · · · + αNYN ). (11)

We now easily complete the proof of the lemma by induction.

Lemma 2.2. The commutativity relations

[Y0, Y−0] = 0, [Y0, Y1] = 0, [Y−0, Y−1] = 0

hold.
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Proof. The first of the relations is obvious. To prove the other two, we find a coordinate representation
of the operators Y1 and Y−1 acting in the class of locally smooth functions of the variables x, n, t, tx, txx, . . . .
By direct computation,

Y1I = D−1 d

dt1
DI = D−1 d

dt1
I(t1, f, fx, . . . ) =

=
{

∂

∂t
+ D−1

(
∂f

∂t1

)
∂

∂tx
+ D−1

(
∂fx

∂t1

)
∂

∂txx
+ · · ·

}
I(t, tx, txx, . . . ), (12)

we obtain

Y1 =
∂

∂t
+ D−1

(
∂f

∂t1

)
∂

∂tx
+ D−1

(
∂fx

∂t1

)
∂

∂txx
+ D−1

(
∂fxx

∂t1

)
∂

∂txxx
+ . . . . (13)

We now note that all the functions f , fx, fxx, . . . depend on the variables t1, t, tx, txx, . . . and are indepen-
dent of t2. Hence, the coefficients of the vector field Y1 are independent of t1, and the operators Y1 and Y0

therefore commute. Similarly, using the explicit coordinate representation

Y−1 =
∂

∂t
+ D

(
∂g

∂t−1

)
∂

∂tx
+ D

(
∂gx

∂t−1

)
∂

∂txx
+ D

(
∂gxx

∂t−1

)
∂

∂txxx
+ . . . , (14)

we can prove that [Y−0, Y−1] = 0.

The following statement proves very useful for studying the characteristic Lie algebra Ln.

Lemma 2.3. Let the vector field

Y = α(0)∂t + α(1)∂tx + α(2)∂txx + . . . , (15)

where αx(0) = 0, solve the equation [Dx, Y ] = 0. Then Y = α(0)∂t.

The proof is based on the formula

[Dx, Y ] =
(
αx(0) − α(1)

)
∂t +

(
αx(1) − α(2)

)
∂tx + . . . . (16)

Therefore, if ax(0) = 0, then a(1) = 0; but if ax(1) = 0, then a(2) = 0; and hence a(j) = 0 for all j > 0.
An expanded coordinate form of the operator Y1 is already given in formula (12). It can be verified

that the operator Y2 is a vector field of the form

Y2 = D−1
(
Y1(f)

)
∂tx + D−1

(
Y1(fx)

)
∂txx + D−1

(
Y1(fxx)

)
∂txxx + . . . . (17)

This immediately follows from the equation Y2 = D−1Y1D and coordinate representation (12). We prove
similar formulas for an arbitrary j by induction:

Yj+1 = D−1
(
Yj(f)

)
∂tx + D−1

(
Yj(fx)

)
∂txx + D−1

(
Yj(fxx)

)
∂txxx + . . . . (18)

Lemma 2.4. For the operators Dx, Y1, and Y−1 considered on the space of smooth functions of

t, tx, txx, . . . , the commutativity relations

[Dx, Y1] = pY1, [Dx, Y−1] = qY−1 (19)

hold, where p = −D−1(∂f/∂t1) and q = −D(∂g/∂t−1).
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Proof. We recall that

Y1 =
∂

∂t
+ D−1

(
∂f

∂t1

)
∂

∂tx
+ D−1

(
∂fx

∂t1

)
∂

∂txx
+ . . . . (20)

Using (16), we find [Dx, Y1]:

[Dx, Y1] = −D−1(ft1)∂t + D−1
(
Dx(ft1) − fxt1

)
∂tx + . . . . (21)

For an arbitrary function H , we have

[Dx, ∂t1 ]H(t, t1, tx, txx, . . . ) = DxHt1 −
∂

∂t1

DxH =

= (Htt1tx + Ht1t1t1x + · · · ) − ∂

∂t1

(Httx + Ht1t1x + · · · ) = −Ht1ft1 . (22)

Setting H = f and H = fx, we obtain [Dx, ∂t1 ]f = −ft1ft1 , [Dx, ∂t1 ]fx = −fxt1ft1 , and so on. We
substitute these equations in (21) and find

[Dx, Y1] = −D−1

(
∂f

∂t1

){
∂

∂t
+ D−1

(
∂f

∂t1

)
∂

∂tx
+ D−1

(
∂fx

∂t1

)
∂

∂tx
+ · · ·

}
=

= −D−1

(
∂f

∂t1

)
Y1. (23)

Similarly, we can prove that [Dx, Y−1] = −D(∂g/∂t−1)Y−1.

We now prove Theorem 1.1. We suppose that there exists a nontrivial n integral F =F (t, tx, . . . , t[N ])
for Eq. (4) with t[j] = Dj

xt for any natural number j. Then all the vector fields in the Lie algebra M

generated by {Yj, Xk} for j = 1, 2, . . . and k = 1, . . . , N2 with an arbitrary N2 satisfying N2 ≥ N annihilate
F . We show that dimM < ∞. We first consider the projection of the algebra M given by the operator PN :

PN

( −1∑
i=−N2

x(i)∂ti +
∞∑

i=0

x(i)∂t[i]

)
=

−1∑
i=−N2

x(i)∂ti +
N∑

i=0

x(i)∂t[i] . (24)

Let Ln(N) be the projection of M . Then the equation Z0F = 0 is obviously satisfied for any Z0 in Ln(N).
Obviously, dimLn(N) < ∞. Let the set {Z01, Z02, . . . , Z0N1} form a basis in Ln(N). Any Z0 in Ln(N) can
be represented as a linear combination

Z0 = α1Z01 + α2Z02 + · · · + αN1Z0N1 . (25)

We suppose that the vector fields Z, Z1, . . . , ZN1 in M are related to the operators Z0, Z01, . . . , Z0N1 in
Ln(N) by the formulas PN (Z) = Z0, PN (Z1) = Z01, . . . , PN (ZN1) = Z0N1. We must prove that

Z = α1Z1 + α2Z2 + · · · + αN1ZN1. (26)

We use the following lemma in the proof.

Lemma 2.5. Let F1 = DxF and F be an n integral. Then we have ZF1 = 0 for each Z in M .
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Proof. It is easy to verify that F1 is also an n integral; indeed, DF1 = DDxF = DxDF = DxF = F1.
It was shown above that any Z in M annihilates the n integrals.

We apply the operator Z −α1Z1 −α2Z2 − · · · −αN1ZN1 to the function F1 = F1(t, tx, txx, . . . , t[N+1]):

(Z − α1Z1 − α2Z2 − · · · − αN1ZN1)F1 = 0. (27)

We can write this expression as

(Z0 − α1Z01 − α2Z02 − · · · − αN1Z0N1)F1 +
(
X(N + 1) − α1X1(N + 1) −

− α2X2(N + 1) − · · · − αN1XN1(N + 1)
) ∂

∂t[N+1]
F1 = 0, (28)

where X(N +1), X1(N +1), . . . , XN1(N +1) are the coefficients of ∂t[N+1] of the vector fields Z, Z1, Z2, . . . ,

ZN1 . The first term in (28) vanishes (see linear combination (25)). In the second term, the factor
∂F1/∂t[N+1] = ∂F/∂t[N ] is nonzero. We then obtain

X(N + 1) = α1X1(N + 1) + α2X2(N + 1) + · · · + αN1XN1(N + 1). (29)

Equation (29) shows that

PN+1(Z) = α1PN+1(Z1) + α2PN+1(Z2) + · · · + αN1PN+1(ZN1). (30)

Hence, we can prove formula (26) by induction. Therefore, the Lie algebra M is finite-dimensional. We now
construct the characteristic algebra Ln by using M . Because dim M < ∞, the linear envelope of the vector
fields {Yj}∞1 is finite-dimensional. We choose a basis in this linear space consisting of Y1, Y2, . . . , YK for
K ≤ N ≤ N2. Then the algebra generated by Y1, Y2, . . . , YK , X1, X2, . . . , XK is finite-dimensional because
it is a subalgebra of M . This algebra is just the characteristic Lie algebra of Eq. (4).

We suppose that conditions 1 and 2 in Theorem 1.1 are satisfied. Then there exists a finite-dimensional
characteristic Lie algebra Ln for Eq. (4). We show that Eq. (4) then admits a nontrivial n integral. Let
N1 be the dimension of Ln and N be the dimension of the linear envelope of the vector fields {Yj}∞j=1.
We take the projection Ln(N2) of Ln defined by the operator PN2 in (24). Obviously, Ln(N2) consists of
finite sums Z0 =

∑−1
i=−N x(i)∂ti +

∑N2
i=0 x(i)∂t[i] where N = N1 − N2. Let Z01, . . . , Z0N1 form a basis in

Ln(N2). Then we have the N1 = N + N2 equations Z0jG = 0, j = 1, . . . , N1, for a function G depending
on N + N2 + 1 = N1 + 1 independent variables. By the well-known Jacobi theorem, there then exists a
function G = G(t−N2 , t−N2+1, . . . , t−1, t, tx, txx, . . . , t[N ]) that satisfies the equation ZG = 0 for any Z in
Ln. But it is actually independent of t−N2 , . . . , t−1 because X1G = 0, X2G = 0, . . . , XN2G = 0. Therefore,
the function G is G = G(t, tx, txx, . . . , t[N ]).1

We note one more property of the algebra Ln. Let π be a map that sends each Z in Ln to its conjugate
D−1ZD. Obviously, the map π acts from the algebra Ln into its central extension Ln ⊕ {XN1+1} because
we have D−1YjD = Yj+1 and D−1XjD = Xj+1 for the generators of Ln. Obviously, [XN1+1, Yj ] = 0 and
[XN1+1, Xj ] = 0 for any integer j ≤ N1. Moreover, XN1+1F = 0 for the function G = G(t, tx, . . . , t[N ])
mentioned above, which implies that ZG1 = 0 for G1 = DG and for any vector field Z in Ln. Indeed,
for any Z in Ln, we have a representation of the form D−1ZD = Z̃ + λXN1+1 where Z̃ in Ln and λ is a
function. Hence,

ZG1 = ZDG = D(D−1ZDG) = D(Z̃ + λXN1+1)G = 0. (31)
1Such a function is not unique; any other solution of these equations depending on the same set of variables can be

represented as h(G) for some function h.
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Therefore, G1 = h(G) or DG = h(G). In other words, the function G = G(n) satisfies an ordinary first-
order difference equation. Its general solution can be written as G = H(n, c), where H is a function of two
variables and c is an arbitrary constant. Solving the equation G = H(n, c) for c, we obtain c = F (G, n).
The function F = F (G, n) found is just the sought n integral. In fact, DF (G, n) = Dc = c = F (G, n), and
hence DF = F . This completes the proof of Theorem 1.1.

3. Restricted classification

Different approaches to classifying integrable nonlinear differential (pseudodifferential) equations are
known. One of the most popular and powerful is based on higher symmetries. The theoretical aspects
of this method were first formulated in the famous paper by Ibragimov and Shabat [8]. Several classes of
nonlinear models were tested by this method in [9]. The symmetry approach allowed Yamilov to find all
integrable chains of the Volterra type [10]: ut(n) = f

(
u(n−1), u(n), u(n+1)

)
. The consistency approach to

classifying integrable discrete equations was studied by Adler, Bobenko, and Suris in [11]. A classification
based on the notion of the recursion operator was studied in [12].

In this paper, we attempt to use the notion of the characteristic Lie algebra in the problem of classifying
Darboux-integrable discrete equations of form (4). The classification problem is to describe all chains
admitting finite-dimensional characteristic Lie algebras in both directions. In fact, the problem of studying
the algebra generated by operators (8) seems quite difficult. We therefore start with a very simple case.

Formulation of the problem. We study the problem of finding all Eqs. (4) for which the Lie algebra
generated by the operators Y1 and Y−1 is two-dimensional. We set Y1,−1 = [Y1, Y−1] and require that the
relation Y1,−1 = λY1 + µY−1 be satisfied. It follows from explicit formulas (13) and (14) that the vector
field Y1,−1 does not contain a summand with the term ∂/∂t; hence, µ = −λ. The commutators of the basic
vector fields with the total-derivative operator admit simple expressions (see Lemma 2.4). Evaluating the
commutator [Dx, Y1,−1], we have

[Dx, Y1,−1] =
[
Y1, [Dx, Y−1]

]
−

[
Y−1, [Dx, Y1]

]
= [Y1, qY−1] − [Y−1, pY1] =

= Y1(q)Y−1 + qY1,−1 − Y−1(p)Y1 + pY1,−1 = (p + q)Y1,−1 + Y1(q)Y−1 − Y−1(p)Y1.

We recall that by the reasoning above, there must exist a coefficient λ = λ(n, x) such that

Y1,−1 = λ(Y1 − Y−1). (32)

The problem is to find f in the equation t1x = f(t, t1, tx) for which constraint (32) holds.
We commute each side of Eq. (32) with the operator Dx,

[Dx, Y1,−1] = [Dx, λY1] − [Dx, λY−1] =

= (p + q)λ(Y1 − Y−1) + Y1(q)Y−1 − Y−1(p)Y1 =

= Dx(λ)Y1 + λpY1 − Dx(λ)Y−1 − λqY−1,

and compare two different expressions for the commutator. This gives the conditions

qλ − Y−1(p) = Dx(λ), pλ − Y1(q) = Dx(λ), (33)

which form an overdetermined system for the unknown λ (which must satisfy two equations simultaneously).
Solving them for λ and Dx(λ), we obtain the equations

λ =
Y−1(p) − Y1(q)

q − p
, Dx(λ) =

qY1(q) − pY−1(p)
p − q

, (34)

787



which immediately yield

Dx

(
Y−1(p) − Y1(q)

q − p

)
=

pY−1(p) − qY1(q)
q − p

. (35)

We first note that this equation contains both f and its inverse g. We eliminate g. We recall that
t1x = f(t, t1, tx) and tx = f(t−1, t, t−1x), where t−1x = g(t, t−1, tx). Differentiating the identity tx =
f
(
t−1, t, g(t, t−1, tx)

)
with respect to t−1, we obtain

D−1

(
∂f

∂t
(t, t1, tx)

)
+ D−1

(
∂f

∂tx
(t, t1, tx)

)
∂g

∂t−1
= 0, (36)

which implies that

gt−1 = −D−1

(
ft

ftx

)
, (37)

and hence D(gt−1) = −ft/ftx . We write Eq. (35) explicitly. We first evaluate Y1(q) and Y−1(p), where
p = −D−1(ft1) and q = ft/ftx ,

Y1(q) =
{
∂t + D−1(ft1)∂tx + D−1(fxt1)∂txx + · · ·

} ft

ftx

=

=
(

ft

ftx

)
t

+ D−1(ft1)
(

ft

ftx

)
tx

, (38)

Y−1(p) = −
{

∂t −
ft

ftx

∂tx − D

(
∂gx

∂t−1

)
∂txx − · · ·

}
D−1(ft1) =

= −
(
D−1(ft1)

)
t
+

ft

ftx

(
D−1(ft1)

)
tx

. (39)

Substituting these equations in (35), we obtain

Dx

{−
(
D−1(ft1)

)
t
+ (ft/ftx)

(
D−1(ft1)

)
tx

−
(
(ft/ftx)t + D−1(ft1)(ft/ftx)tx

)
ft/ftx + D−1(ft1)

}
=

=
D−1(ft1)

((
D−1(ft1)

)
t
− (ft/ftx)

(
D−1(ft1)

)
tx

)
ft/ftx + D−1(ft1)

−

−
(ft/ftx)

(
(ft/ftx)t + D−1(ft1)(ft/ftx)tx

)
ft/ftx + D−1(ft1)

. (40)

Equation (40) is rather difficult to study, and we impose one more restriction on f . We suppose that
f = a(t) + b(t1) + c(tx). We then find the variables p, q, Y1(q), and Y−1(p) in terms of a, b, and c:

p = −D−1(ft1) = −b′(t),

q = −D(gt−1) =
ft

ftx

=
a′(t)
c′(tx)

,

Y1(q) =
(
∂t + b′(t)∂tx

) a′(t)
c(tx)

=
a′′(t)
c′(tx)

− b′(t)a′(t)c′′(tx)(
c′(tx)

)2 ,

Y−1(p) =
(

∂t −
a′(t)
c′(tx)

∂tx

)(
−b′(t)

)
= −b′′(t).
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Substituting these expressions in (35) gives

DxG(t, tx) =
b′(t)b′′(t) −

(
a′(t)/c′(tx)

)[(
a′′(t)/c′(tx)

)
−

(
b′(t)a′(t)c′′(tx)/

(
c′(tx)

)2)]
a′(t)/c′(tx) + b′(t)

, (41)

where

G(t, tx) =
−b′′(t) −

(
a′′(t)/c′(tx)

)
+

(
b′(t)a′(t)c′′(tx)/

(
c′(tx)

)2)
a′(t)/c′(tx) + b′(t)

. (42)

Obviously, the left-hand side of Eq. (41) is of the form (∂G/∂t)tx + (∂G/∂tx)txx and contains the variable
txx, while the right-hand side does not contain it. This gives the additional constraint ∂G/∂tx = 0.

The investigation of Eq. (41) is tediously long. We therefore give only the answers. The details can be
found in [13].

Theorem 3.1. If Eq. (4) with a particular choice of f(t, t1, tx) = a(t)+ b(t1)+ c(tx) has the operators

Y1 and Y−1 such that the Lie algebra generated by these two operators is two-dimensional, then f(t, t1, tx)
has one of the forms

1. f(t, t1, tx) = c(tx) + γt1 + β,

2. f(t, t1, tx) = γ log |tx| + (1/γ) log(et − e) + β,

3. f(t, t1, tx) = γ(tx + βeαt) + βeαt1 + η,

4. f(t, t1, tx) = γ
(
tx + β sinh(αt + λ)

)
+ β cosh t1 + η, or

5. f(t, t1, tx) = γtx
2 + βtx + αt + η,

where c(tx) is an arbitrary function and α, β, γ, λ, and η are arbitrary constants.

Moreover, in cases 1, 3, and 4, if the corresponding characteristic Lie algebras are also two-dimensional,
then the equations have the forms

a. t1x = tx,
b. t1x = tx + et + et1 , or
c. t1x = tx + β sinh t + β cosh t1,

and they have the respective n integrals

I = txx,

I =
e2t

2
+

t2x
2

− txx,

I =
β2

2
cosh2 t − βtx cosh t +

t2x
2

+ βtx sinh t − txx +
β2

2
n.

We note that b also has an x integral of the form

F = et1−t + e2t1−t2−t + et1−t2 . (43)

Hence, t1x = tx + et + et1 is a discrete analogue of the Liouville equation.
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This work was supported in part by the Scientific and Technological Research Council of Turkey
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