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Abstract—In this paper we consider the problem of finding the
optimum beamforming vectors for the downlink of a multiuser system,
where there are individual signal to interference plus noise ratio (SINR)
targets for each user. Majority of the previous work on this problem
assumed a total power constraint on the base stations. However, since
each transmit antenna is limited by the amount of power it can transmit
due to the limited linear region of the power amplifiers, a more realistic
constraint is to place a limit on the per antenna power. In a recent
work, Yu and Lan proposed an iterative algorithm for computing the
optimum beamforming vectors minimizing the power margin over all
antennas under individual SINR and per antenna power constraints.
However, from a system designer point of view, it may be more desirable
to minimize the total transmit power rather than minimizing the power
margin, especially when the system is not symmetric. Reformulating the
transmitter optimization problem to minimize the total transmit power
subject to individual SINR constraints on the users and per antenna
power constraints on the base stations, the algorithm proposed by Yu
and Lan is modified. Performance of the modified algorithm is compared
with existing methods for various cellular array scenarios.

I. INTRODUCTION

Multiple input multiple output (MIMO) techniques are becoming
an essential component of wireless broadband access systems as they
can provide high gains in spectral efficiency over single antenna sys-
tems by exploiting spatial diversity and multiplexing gains. In order
to achieve high spectral efficiencies in the downlink of a multiuser
system, the base stations transmit independent data to several mobile
users simultaneously by properly adjusting the transmitted signal such
that the interference observed at the mobile users is minimized. In fact
under a total power constraint, the sum capacity achieving strategy
for the MIMO downlink is shown to be a combination of a nonlinear
precoding scheme for interference precancellation, known as dirty
paper coding (DPC), and transmit beamforming [1]-[3].

We consider the problem of selecting beamforming (BF) vectors
given perfect channel state information at the base stations such that
individual signal to interference plus noise ratio (SINR) targets are
achieved at the mobile users. Significant progress has recently been
made on this problem. In [4], an iterative algorithm to compute the
optimal power allocation and BF vectors maximizing the minimum
SINR margin subject to a total transmit power constraint is proposed.
Furthermore, it is shown that this algorithm can be modified to
determine the optimal transmission strategy minimizing the total
transmit power subject to individual SINR constraints. The algorithm
in [4] is later extended to the case where base stations employ DPC
together with BF to further reduce the interference at the users [5]. A
fast iterative algorithm extending the results in [4] to the case where
beamforming vectors are under a quadratic constraint is provided
in [6]. Wiesel et al. provided an alternative simple and iterative
algorithm based on reformulating the original nonconvex optimization
problem as a second order cone programming problem in [7].
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Majority of the previous work on downlink BF with individual
SINR constraints assume a total transmit power constraint. However,
in practice, each transmit antenna is limited in the amount of power
that it can transmit due to the limited linear range of its power
amplifier. Therefore, it is more realistic to consider the transmitter
optimization problem under a per antenna power constraint. Per
antenna power constraint is also required for cooperative downlink
systems, where the base stations cooperate in transmitting information
to users in the system, as each cooperating base station will have its
own power limitation on its antennas [8]. Optimum power allocation
using zero-forcing (ZF) beamformers under per antenna power con-
straints has been investigated in [8], [9]. However, ZF beamformers
are known to be suboptimal especially when the signal to noise ratio
(SNR) and the number of users are not sufficiently large due excessive
use of power to null out the interference.

In a recent work, Yu and Lan proposed an efficient iterative method
for computing the BF vectors minimizing the power margin over
all antennas under individual SINR constraints [10]. In the same
work, an interior point method for characterizing the achievable rate
region under per antenna power constraints is provided. However, the
algorithm for computing the BF vectors minimizing the power margin
over all antennas assumes that the given set of SINR constraints
are feasible. Therefore, the algorithm may give unpredictable results
when the SINR constraints are not feasible. Furthermore, minimizing
the total power subject to individual SINR and per antenna power
constraints may be more desirable than minimizing the power margin
over all antennas from the system designer point of view, especially
when the system is not symmetric.

In this work, we reformulate the transmitter optimization problem
in [10] as finding the BF vectors minimizing the total transmit power
under individual SINR constraints at the users and per antenna power
constraints at the base stations. Following the Lagrangian duality
formulation, we modified the iterative algorithm in [10] to compute
BF vectors minimizing the total transmit power. We compared the
per antenna power consumption of the modified algorithm to existing
methods for different cellular array configurations.

II. SYSTEM MODEL

The notation used in the paper is as follows. Boldface letters is used
to denote vectors and matrices. For a given matrix A, AT AT A,
tr(A) and A;; denote the transpose, the conjugate transpose, the
inverse, the trace and the (4, j)th element of A, respectively. I denotes
the identity matrix and diag(b) denotes a diagonal matrix whose ith
diagonal element is b;. The expectation operation is denoted as E[:].

We consider a multiuser system where a base station with N
antennas is transmitting independent information to K users, each
equipped with a single antenna. We assume that the channel is a
frequency flat fading channel and is known at both the base station
and the users. Let x = [z1,...,2x]" denote the transmit signal
vector and h{’ denote the 1 x N channel vector consisting of channel
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gain between ith user and the base station antennas. The noise at
ith user, n;, is modeled as circularly symmetric complex Gaussian
random variable with zero mean and variance 2. The received signal
at the user ¢ is then given by

Yi :hf{x+ni. (@))]

Since the base station is using beamforming, the information for
the users is mapped to the transmitted signal by

K
x =Y siwi, @)

k=1
where s; is the normalized information symbol for user k& with
E[|sk|?] = 1 and wy, is the beamforming vector for user k. Note

that with this formulation, the power allocation for the kth user is
given as P, = wi wy. The power consumption for the nth base
station antenna is given by P, = E[|z,|?] :<Z§{:1 wiwl

Assuming that the users do not cooperate and do not erﬁgloy
sophisticated interference cancellation or suppression techniques, the
interference from other users will be treated as additional noise and

the signal to interference plus noise ratio (SINR) for user ¢ given by

H_ |2
SINR; = [ w| 3)
3 hffwi 2 + o2
b=t

can be used as a performance metric.

III. OPTIMAL BEAMFORMING WITH SINR AND PER ANTENNA
POWER CONSTRAINTS

The problem of interest is to determine the optimal BF vectors
minimizing the total transmit power subject to individual SINR
requirements on the users corresponding to possibly different QoS
requirements and per antenna power constraints. The optimization
problem can be stated as

K
minimize wawk 4)
W leeny W K P
K
subject to (Z w]-w]H> <P, n=1,...,N, )
j=1 nn
Ihw;|? .
—_—— >V =1,...,K, 6
SThfwifror =7 ©
k#i
where 71, ...,vKk are the target SINRs and Py, ..., Py are the per

antenna power requirements.
Yu and Lan considered the following related problem and proposed
an elegant iterative algorithm based on Lagrangian dual problem:

minimize « @)
W ey W QO
K
subject to (Z wiw) ) <aP, Vn, @®)
Jj=1 nn
|hi"wi|® :
m >y Vi, ©)
iz

which is aiming to minimize the maximum power margin j 2 / P; over
all antennas [10]. From a system designer point of view, minimizing
the total power is more critical than minimizing the power margin,
especially when the system is not symmetric. Note that since there

is no constraint on « to satisfy a < 1, if the problem is infeasible,
the algorithm will result in « > 1 violating the power constraints.

In this section, using the Lagrangian duality framework, we will
modify the iterative algorithm in [10] to find the optimum BF vectors
for the original problem stated in (4)-(6). Note that the original
problem is not convex, however as noted in [10], it can be stated
as a second-order cone program (SOCP) by restricting h w, to be
real valued. As a result, strong duality holds and we can solve the
dual problem.

The Lagrangian function of the SOCP has the same form as the
Lagrangian function of the original problem given by

K
LW,Q,)\) =) \o® — u(Q®)
i=1 (10)

K
A
+yowi (Q +1+> Ahshi' - Tzhkth>Wk7

k=1 J#k
where Q = diag([q1,...,qn]) and X = [A1,..., k] are the
matrices of dual variables for the antenna power and the SINR
constraints, respectively and ® = diag([Pi,...,Pn]) and W =
[W1,...,Wk]. The dual function is therefore given by
9(Q,A) = min L(W,Q,X) (1D
W lgeeey w K

which is unbounded unless Q + I+ )
positive semidefinite [10].
Defining

2x AR — 2Bk s

K T
Wi = <I+Q+Z)\jhjh§{> hy, (12)
J

1

where (.)! denotes the matrix pseudoinverse, for given Q and A, the
optimum wj, minimizing (11) satisfies
1
Wi = Wi (1 + —) AkthWk (13)
Tk
Since the optimum wj makes the term with BF vectors in (10)

zero, the dual variables corresponding to SINR constraints satisfy
the following set of fixed point equations

Ak = L ,

-
K

<1 + %) h! (1 +Q+ lejh]-hjﬂ> hy,
=

(14)

for all k. If the original problem is feasible, then the SINR constraints
should be met with equality. Therefore, as in [10], defining wj =
/8, W, the scaling factors satisfy [d1, . .. ,5K]T = G '102, where
1 denotes an all ones vector, Gi; = % [Wfh;|? and G;; =
— Wi h .

The Lagrange dual problem is then stated as

K
2
max > Mo? — n(Q®) (15)
k=1
subject to
1
Ak = —, V& (16)
K
(1 + %) h¥ (1 +Q +]§1A]-hjhj.f> hy,
Q : diagonal, Q > 0.
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The argument of the maximization problem in (15) can be shown
to be concave in Q with a subgradient diag(b) — ®, where b, =
(et

kﬁelnce the iterative algorithm in [10] is modified as follows to solve
@-(6).

1) Initialize: t — 0, Q®: diagonal.

2) t—t+1.

3) Solve (14) for A©) with Q — Q@) using fixed point iteration

method.
4) Compute w'" using (12) with Q — Q*~ V) and A, — A",
5) Compute the BF vectors as W](:) = \/a\?vg) where 0, =

K
UQE(G_I)}W' with G;; = ,%“LLHVAV,E’&”2 and Gij =
= i

, following a similar approach as in [10].

f|h_Hw(.”|2
1 J -
6) Update Q™ as

g = max (0,¢17" + i (diag(6®) — @), (D)

K H
where b£f> = (Z W,(f) (W}(:)) and . is the step size.
k=1

7) Go to Step 2 if the algorithm did n(?tnconverge.

Since strong duality holds, the nonconvex optimization problem
in (4) can be solved globally by the convex dual problem by the
algorithm given above. One can easily show that the fixed point
iteration converges, as the derivative of the iteration function has norm
less than 1. Similarly, one can show that the subgradient projection
algorithm for finding the optimum Q converges [10].

Note that as stated in [10], one can also incorporate the case where

the base station utilizes DPC with encoding order 7(1),...,m(K).
In this case, the SINR for user 7 (7) is given as
hZ w2
SINR,(j) = — (o Wr o (18)
> by Wag|? + 0
k=i+1

With DPC, the algorithm is modified as follows. The vector in (12)
is now computed as

k T
Wr(k) = (I +Q+ Aw(j)hwmhf(j)) hegy. (19

j=1
The optimal BF vectors are given as W (k) = 1/0x(k)Wr(k), Where
[6x(1)s- -+ 0x(x)]" = G '10® with the upper diagonal matrix G
computed as

1 )¢ H 2 .
T Wrobe@l™, 1=
Gij = —|VA\/'7}\,](]-)hﬂ-(i)|27 7> (20)
0, otherwise.
Finally, the fixed point equation in (14) is modified as
Vr(k) )
Ay = | ———
* ( L+ ym)
@y

. t
hylr) (I +Q+ Z/\wmhw(j)hfw> hr (k)

j=1
IV. NUMERICAL RESULTS

Even though the algorithm presented in Section III is general

for an arbitrary channel, in order to provide insight we consider a

simple cellular network model inspired from [11], where N cells
are arranged on a circle. Users in each cell are served by a single
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Fig. 1. Comparison of MYL and YL method for an asymmetric circular

cellular array. Average BS antenna powers are plotted with solid lines and the
minimum (maximum) BS antenna powers are plotted with dotted lines.

antenna base station (BS) located in the middle of the cell and due
to an orthogonal multiple access scheme, each BS serves only one
user in its cell at a given time/frequency/code. The users are assumed
to be equipped with a single antenna and receive signals from three
closest base stations only. The entries of the channel matrix H is
modeled as

1, 1=y
I i= d(G+1,N
H,;=¢% "7 " (]. tLN) (22)
a; i= mod (j—1,N)
0  otherwise,
where af ,ab € [0,1] and determine the level of interference from

a BS to users in two immediate neighboring cells. We assume that
BSs are connected to each other by a high capacity backbone and
cooperate in transmission of information to the users.

We first consider an asymmetric circular cellular array scenario
with N = 10 cells, where af and a? are randomly chosen. Figure 1
compares the BS antenna power as a function of a common target
SINR for the users computed using the algorithm presented in
Section III denoted as MYL and the algorithm in [10] denoted as YL.
The solid lines represent the average BS antenna power and the dotted
lines represent the minimum (maximum) BS antenna power over the
antennas. MYL algorithm computes the BF vectors minimizing the
total transmit power subject to SINR and per BS antenna power
constraints and YL algorithm minimizes the power margin over all
BS antennas under the same constraints. As seen in the figure, MYL
algorithm results in a lower total transmit power, especially for high
SINR targets, but BS antenna powers have higher variation. On the
contrary, YL algorithm results in less variance since the algorithm
balances the power margin over the antennas, but the total transmit
power is higher.

In [8], an algorithm that computes the optimum user power alloca-
tion with zero forcing (ZF) BF vectors maximizing the minimum rate
over the users subject to per antenna power constraints is proposed.
The performance of the modified YL algorithm is compared with
that of the ZF BF for a symmetric circular cellular array with
ol = ag’- = «, Vj and N = 5 in Figure 2. The average BS

J
antenna power is plotted as a function of SINR achieved at the users
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Fig. 2. Comparison of the average BS antenna power using optimum BF
vectors (MYL) and zero forcing (ZF) BF vectors for a symmetric circular
cellular array with different o and N = 5.

for various «. When the interference is low, i.e. « is small, the
total transmit power with both approaches are the same. However,
when the interference is high, to achieve the same target SINR at the
users ZF beamforming requires higher total transmit power. This is as
expected since nulling the interference completely requires excessive
use of the transmit power.

The sum capacity achieving transmission scheme is a combination
of beamforming with dirty paper coding (DPC), a successive encod-
ing scheme for precancelling the interference [1]-[3]. To compare the
BS antenna power consumption with a downlink transmission scheme
employing beamforming only and a scheme employing beamforming
with DPC, we considered a symmetric circular array scenario with
N = 15 and a = 0.5. In Figure 3 the BS antenna power
consumption of the two transmission schemes computed using the
algorithm presented in Section III are presented. Solid lines denote
the average BS antenna power and dotted lines denote the minimum
(maximum) BS antenna power. The curve marked with o indicates
the transmission scheme with BF only and the curves marked with *
indicate the results for the scheme using BF with DPC. As expected,
to achieve the same target SINR at the users, BF only scheme uses
higher BS antenna power than that for BF with DPC using encoding
order m = [1,..., N]. Since the channel is symmetric, the transmit
power from all BS antennas are equal for the BF only case. However,
since DPC encoding introduces asymmetry to the problem, there is a
high variation in the BS antenna power for the BF with DPC scheme,
especially for high target SINR values.

V. CONCLUSIONS

We consider the problem of finding the optimal beamforming
vectors for the downlink of a wireless network minimizing the total
transmit power subject to individual SINR constraints at the users and
per antenna power constraints at the base stations. Per BS antenna
power constraints are more realistic as each antenna is limited by
the linear range of its power amplifier. Furthermore, per BS antenna
power constraints are also required for macrodiversity systems where
the base stations cooperate in transmission of the information to the
users. In this case the antennas of the super-transmitter are located
in separate base stations each with their own power limitations. This
problem was investigated in [10], however the optimization criteria
was chosen as minimizing the power margin over all antennas. As
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Fig. 3. Comparison of the BS antenna power consumption of the transmission
scheme utilizing BF only and the scheme utilizing DPC with BF for a
symmetric circular cellular array with N = 15 and o = 0.5. Curve marked
with o indicates BF only and the curves with * indicate BF with DPC schemes.
Solid lines denote the average BS antenna power and the dotted lines denote
the minimum (maximum) BS antenna power.

illustrated in Section IV, this approach might result in excessive
power consumption, especially when the system is asymmetric. Using
the Lagrangian duality formulation, we modified the algorithm in [10]
to compute the optimum BF vectors minimizing the total transmit
power. Performance of the proposed algorithm is compared with the
existing methods. It is observed that the computational complexity
of the proposed algorithm is lower than that of [10].
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