
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: http://www.tandfonline.com/loi/tgis20

A hybrid representation for modeling, interactive
editing, and real-time visualization of terrains with
volumetric features

Çetin Koca & Uğur Güdükbay

To cite this article: Çetin Koca & Uğur Güdükbay (2014) A hybrid representation for
modeling, interactive editing, and real-time visualization of terrains with volumetric
features, International Journal of Geographical Information Science, 28:9, 1821-1847, DOI:
10.1080/13658816.2014.900560

To link to this article:  https://doi.org/10.1080/13658816.2014.900560

View supplementary material 

Published online: 09 Apr 2014.

Submit your article to this journal 

Article views: 292

View Crossmark data

Citing articles: 6 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=tgis20
http://www.tandfonline.com/loi/tgis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2014.900560
https://doi.org/10.1080/13658816.2014.900560
http://www.tandfonline.com/doi/suppl/10.1080/13658816.2014.900560
http://www.tandfonline.com/doi/suppl/10.1080/13658816.2014.900560
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2014.900560&domain=pdf&date_stamp=2014-04-09
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2014.900560&domain=pdf&date_stamp=2014-04-09
http://www.tandfonline.com/doi/citedby/10.1080/13658816.2014.900560#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/13658816.2014.900560#tabModule


A hybrid representation for modeling, interactive editing, and
real-time visualization of terrains with volumetric features

Çetin Koca and Uğur Güdükbay*

Department of Computer Engineering, Bilkent University, Ankara, Turkey

(Received 16 December 2013; accepted 28 February 2014)

Terrain rendering is a crucial part of many real-time applications. The easiest way to
process and visualize terrain data in real time is to constrain the terrain model in
several ways. This decreases the amount of data to be processed and the amount of
processing power needed, but at the cost of expressivity and the ability to create
complex terrains. The most popular terrain representation is a regular 2D grid, where
the vertices are displaced in a third dimension by a displacement map, called a
heightmap. This is the simplest way to represent terrain, and although it allows fast
processing, it cannot model terrains with volumetric features. Volumetric approaches
sample the 3D space by subdividing it into a 3D grid and represent the terrain as
occupied voxels. They can represent volumetric features but they require computa-
tionally intensive algorithms for rendering, and their memory requirements are high.
We propose a novel representation that combines the voxel and heightmap approaches,
and is expressive enough to allow creating terrains with caves, overhangs, cliffs, and
arches, and efficient enough to allow terrain editing, deformations, and rendering in
real time.

Keywords: terrain representation; terrain editing; terrain visualization; caves; overhangs;
cliffs; voxel; heightmap

1. Introduction

The most popular terrain representations are based on heightmaps, which usually define
the terrain surface as a regular grid on a 2D plane. Each vertex on the plane is displaced
along the height axis according to the heightmap. There are variations to this approach,
such as using a nonuniform grid of vertices; however, as heightmap representations
sample the terrain from a top-down view, they cannot represent volumetric features
such as caves, overhangs, arches, and even vertical cliffs.

Volumetric (voxel-based) representations are inherently able to model various volu-
metric features because they sample the 3D space, but they have their own set of
problems. Ray tracing, for example, is still very slow at rendering large and detailed
terrains in real time. Modern GPUs are designed to render polygons efficiently, and many
real-time rendering applications that use volumetric representations extract a polygonal
surface to use hardware-accelerated rendering. This, however, incurs extra overhead.
Because of sampling of the 3D space, a voxel representation is several orders of
magnitude larger than a heightmap representation. Volumetric representations thus
usually need to be compressed for memory efficiency, which incurs another performance

*Corresponding author. Email: gudukbay@cs.bilkent.edu.tr

International Journal of Geographical Information Science, 2014
Vol. 28, No. 9, 1821–1847, http://dx.doi.org/10.1080/13658816.2014.900560

© 2014 Taylor & Francis



penalty due to decompression in real time. It is also difficult to use smoothly varying
level-of-detail (LOD) techniques with voxel representations.

To deal with the issues mentioned above, many real-time applications model volu-
metric features as separate 3D meshes and place them on relevant parts of the terrain.
Because these meshes do not seamlessly blend into the terrain, various tricks are used to
conceal artifacts where the model and mesh meet, such as placing rocks at the entrance of
a cave. Such hacks, however, constrain the size and detail level of volumetric features
because they cannot use optimizations specific to terrain models.

Dedicated graphics hardware has recently become common and powerful, and the
quality of real-time renderings has greatly increased. Although a terrain can now be
rendered in a much higher level of detail, due to the limitations of the traditional
approaches, model complexity has not shown the same amount of improvement. Many
simple and efficient algorithms are designed to operate on heightmaps but are not directly
usable with any other representation. A new representation must be designed to benefit
from existing algorithms, or new algorithms must be developed. We propose a terrain
representation that can uniformly model elevation data and volumetric features in real-
time applications to create a surface terrain, which is also able to represent the artifacts
such as caves, overhangs, and cliffs. These features are not add-ons but rather they are
modeled as part of the terrain itself.

1.1. Overview of the proposed approach

Heightmap-based representations cannot handle volumetric terrain features. Voxel repre-
sentations cannot be directly rendered using hardware acceleration; they require large
amounts of memory, and they lack the necessary algorithms for high-quality real-time
rendering. We propose a hybrid terrain representation: we use a relatively low-resolution
voxel representation to model coarse volumetric features. Then, 2D surface patches are
generated to construct the polygonal terrain surface for rendering. To further increase the
resolution, heightmaps are used to displace these 2D surface patches in a third dimension.
Our approach contributes the following to the field:

● A hybrid representation that can model terrains with volumetric features such as
caves, overhangs, arches, and cliffs.

● A surface extraction method to extract a polygonal surface of a volumetric repre-
sentation, where the terrain surface is constructed using surface patches.

2. Related work

Terrain representation is essential for many types of applications, but there is no silver
bullet that addresses the needs and constraints of all applications. Furthermore, real-time
terrain rendering is closely coupled with advances in GPU technology.

2.1. Heightmap-based representations

Heightmap-based representations sample the terrain surface from a top-down view. This
sampling can be performed regularly or irregularly. Regular sampling is easy to work
with; the geometry is constrained, well-defined, and memory efficient. Since vertex
connectivity is implicit, it is sufficient to store a grid of height values.

1822 Ç. Koca and U. Güdükbay



2.1.1. Triangulated irregular networks

Triangulated irregular networks (TINs), on the other hand, sample heights irregularly to
represent more-detailed areas using more samples (Peucker et al. 1978). Kumler (1994)
states that a regular grid representation requires less memory than a TIN when their detail
levels are equal. Computing a TIN is usually more complex, but algorithms such as
Delaunay triangulation can be used to generate TINs. Peucker et al. (1978) propose an
algorithm that creates the optimal triangulation of a terrain surface for a given number of
triangles. It is more difficult to manage TINs once they are generated, as the whole model
needs to be regenerated every time the resolution changes. Texturing TINs is also more
complex than regular grids (Fan et al. 2004) and generating TINs is CPU-intensive.
Garland and Heckbert (1995) propose an optimized algorithm for generating a TIN
from a heightmap. The resulting TIN, however, may result in artifacts, such as thin
triangles.

Gross et al. (1995) propose an efficient real-time LOD computation approach that uses
a quadtree to represent the terrain surface. Cohen-Or and Levanoni (1996) propose a
continuous LOD approach for TINs where several TINs at different LODs are generated
and blended at the vertex level in real time to avoid popping artifacts. Lindstrom et al.
(1996) propose a continuous LOD approach for terrains that use regular grid sampling of a
heightmap. They divide the terrain into blocks of different LODs and store the blocks in a
quadtree. The LOD computation is performed at the block level by selecting the appro-
priate block, and at the vertex level by selecting the important vertices. Although the
internal representation uses a regular grid, the resulting geometry used for rendering is
a TIN.

Evans et al. (2001) propose the right-triangular irregular network (RTIN), a more-
restricted TIN, that using a bintree, ensures that the generated triangles are right-angled.
The bintree provides more detail where it is needed by iteratively splitting the triangles at
a higher level. The vertex positions and connectivity information are stored implicitly,
making it more memory efficient than TINs. Duchaineau et al. (1997) propose another
algorithm that uses RTIN, called ROAM: real-time optimally adapting meshes. This is one
of the most popular real-time terrain-rendering algorithms because it addresses some
important problems in an efficient way, such as LOD, view frustum culling, and creating
triangle stripes for efficient rendering. ROAM utilizes frame-to-frame coherence to reduce
computational cost and is one of the few approaches that supports real-time terrain
deformation. ROAM can control the generated triangle count thanks to its hierarchical
representation, but as it requires geometry updates on every frame, it is not as popular for
modern GPUs. Several algorithms similar to ROAM are proposed but they have rather
simple geometry updates and work on batches of primitives (Pomeranz 2000, Levenberg
2002, Ulrich 2002).

2.1.2. LOD management

Hoppe proposes progressive meshes which can work on any type of mesh, and later
updates the approach to refine the mesh in a view-dependent way, taking view frustum,
surface orientation, and screen-space geometric error into account (Hoppe 1997). Hoppe
(1998) still later adapts the approach to real-time terrain rendering and introduces geo-
morphs to provide temporal coherence. Hu et al. (2009) then update it to utilize GPU
parallelism.

International Journal of Geographical Information Science 1823



Chunk-based LOD algorithms are not precise because they assume that the required
LOD for the entire chunk is the same. Röttger et al. (1998) propose a precise continuous
LOD algorithm for heightmap-based terrains, which uses a quadtree and works at the
vertex level. The surface is generated by recursively visiting the quadtree in a top-down
manner. The distance to the observer and surface roughness are taken into account so that
smooth surfaces are rendered with fewer vertices even if they are closer. The continuity of
the surface, however, requires there to be at most one LOD difference on the borders.
Smooth LOD is obtained by geometry morphing.

Ulrich (2002) proposes to render massive terrains by combining the quadtree repre-
sentation with RTINs. Each internal quadtree node stores its own chunk of geometry and
texture. When a node is to be rendered, the geometry is sent to the GPU. Ulrich also
proposes a paging scheme, where the node data is loaded on demand. Cignoni et al.
(2003b) propose an approach where a hierarchical representation of vertex batches is
stored in a bintree. This allows rendering massive terrains because it does not require the
entire data to be loaded in the main memory. There is a high computational cost for
preprocessing large terrains. The authors later extend this method to render planet-sized
terrains (Cignoni et al. 2003a), using pre-fetching to guess the chunks that will be needed.

In the early 2000s, GPUs became mainstream and more powerful than CPUs for
graphics processing. Real-time terrain representations and algorithms adapted to this by
moving computations to GPUs. Algorithms thus focused more on feeding the GPU, rather
than trying to fine tune and sort out each vertex on the CPU. One such method uses
geometrical mipmaps (de Boer 2000), where a regular grid is divided into equal-sized
square vertex batches. The mipmap level of a particular batch is determined by the
distance to the observer, and vertex morphing is used to prevent popping. The method
does not continuously update the geometry but rather updates the connectivity as neces-
sary. Hence, much less data is sent to the GPU.

Livny et al. (2009) describe a LOD scheme that uses GPU to construct the meshes of
terrain patches and uses cached textures to assign elevations to the vertices. Since the
adjacent patches agree on the resolutions of the common edges, no cracks occur, and the
transitions between different levels of detail are seamless.

Losasso and Hoppe (2004) propose geometry clipmaps, targeting an efficient LOD
scheme for modern GPUs. This approach is based on texture clipmaps (Tanner et al.
1998) but operates on the terrain geometry. It uses a regular grid representation for the
terrain, dividing it into grids of different LODs, where the LOD of a grid is determined by
its distance. The approach makes use of vertex buffers for rendering. The entire data is
loaded in a compressed format to the main memory and when a grid is to be updated, the
relevant part of the data is decompressed, and the vertex buffers are updated. Transition
regions are defined to prevent visual artifacts caused by different LODs. Each vertex is
also morphed geometrically between different LODs to prevent popping. The geometry is
updated in the CPU and sent to the GPU for rendering. Asirvatham and Hoppe (2005)
extend this approach such that almost all computation is done on the GPU.

2.1.3. Terrain generation and editing

Hnaidi et al. (2010) describe a method for terrain generation from a set of parameterized
curves that represent the terrain features. Their approach uses a multigrid diffusion
algorithm that can be implemented on GPU. However, this approach allows to represent
only terrain surface features, such as cliffs, ridge lines, and riverbeds. Treib et al. (2012)
describe an efficient approach for editing of large terrains and use GPU ray-casting for

1824 Ç. Koca and U. Güdükbay



rendering to avoid height-field triangulation. However, it does not provide functionality to
create volumetric features, only allowing to edit the terrain surface.

McAnlis (2009) uses a regular grid heightmap that allows individual vertices to be
displaced by a full vector-field displacement along three axes rather than only along one
axis. This makes it possible to add simple overhangs and vertical faces; however, the
terrain resolution must be increased significantly to make up for vertex displacements.
Similarly, McRoberts (2011) uses geometry images to store the displacement of regular
grid vertices along three axes. Gamito et al. (2001) describe a procedural technique that
applies nonlinear deformations to an initial height field surface to generate overhangs.
Zhou et al. (2007) describe an example-based system for terrain synthesis from digital
elevation models. They utilize a user-sketched feature map that describes terrain features
on the resulting terrain and use patches from the example data that matches the specified
features to generate the terrain. Bruneton and Neyret (2008) present a method that uses a
view-dependent quadtree refinement scheme to edit large terrains with features such as
roads, rivers, lakes, and fields. These approaches are restricted to edit terrain surface, not
allowing volumetric features.

There are some hybrid terrain representations combining the grid representations and
TIN networks that allow adaptive tessellation of the grid cells in the neighborhood of the
TIN structure so that the discontinuities are removed (Bóo et al. 2007, Amor and Bóo
2008, Bóo and Amor 2009, Paredes et al. 2012). These representations only model the
terrain surface, not allowing volumetric features. Their usage of the term ‘hybrid’ refers to
the use of the grid and TIN representations together, whereas we use the term ‘hybrid’ to
refer to the combination of volumetric and surface representations.

2.1.4. Terrain rendering

Mantler and Jeschke (2006) perform ray-casting in the fragment shader to render terrains.
The data is stored as a texture representing the elevations. Ray marching is used to
determine the point at which a pixel ray intersects the model. Ray-casting is optimized
by an empty-space skipping method. The performance depends on the number of pixels;
however, terrain size is limited by the largest texture size the GPU supports, unless the
CPU is used to continuously update the elevation texture. This method cannot render
volumetric representations because only the elevation data is available.

Dick et al. (2009) define a ray-casting-based surface rendering technique to overcome
the limitations of mesh-based renderers for rendering large terrains. They achieve real-
time frame rates for very large terrains; however, their method is also restricted to
rendering terrain surfaces and cannot be used to render volumetric terrain features.

Tessellated surfaces use subdivision techniques to obtain high-quality curved surfaces.
Displacement mapping can be applied to them to render highly detailed models (Lee et al.
2004, Bunnell 2005). Niessner et al. (2012) propose a GPU-based rendering technique for
Catmull–Clark subdivision, which uses displacement mapping. These techniques can only
be applied on the surface of a terrain and cannot model volumetric features.

There are some studies for terrain rendering that allows editing and deformation on the
terrain surface. Bhattacharjee et al. (2008) describe a GPU-based system to store, render,
and manipulate the terrains using a regular-grid representation. De Carpentier and Bidarra
(2009) propose procedural brushes that combine local and global approaches for editing
terrain surfaces used for game applications. Atlan and Garland (2006) describe a system
for online multiresolution edits to a large terrain represented as a wavelet quadtree

International Journal of Geographical Information Science 1825



hierarchy. Brandstetter III et al. (2011) describe out-of-core rendering of deformable large
terrains where the deformation is limited to terrain surface.

2.2. Volumetric representations

2.2.1. Surface extraction from volumetric data

Most volumetric representations are based on voxels, making fine tuning possible. Ray
tracing volumetric terrains with high resolutions is not very practical for interactive
applications. The internal voxel representation is usually converted to a form that can
be used for hardware-accelerated rendering. Almost all approaches use marching cubes
(Lorensen and Cline 1987) or a variant for this purpose.

Geiss’ (2007) approach can use a procedural density function or a discrete represen-
tation stored as a 3D texture. If a density function is chosen, the values returned are
stored in a 3D texture and used in a second pass to do the actual rendering. This method
uses a geometry shader to generate a polygonal surface and can render terrains with
volumetric features, but generating density functions to obtain a desired terrain model is
difficult. Our representation allows terrain editing at two levels: editing the coarse
volumetric representation to outline the volumetric features and editing the terrain surface
to apply fine details at an increased resolution over the coarse model by modifying
heightmaps.

Forstmann and Ohya (2005) propose a similar approach, based on the interactive
view-dependent isosurface rendering proposed by Gregorski et al. (2002) and inspired by
geometry clipmaps (Losasso and Hoppe 2004). It uses clipboxes in 3D instead of
clipmaps in 2D and is very efficient, but the resolution of the rendered sample models
is too low, and further details must be added to the extracted surface by applying noise.
This method shares most of the downsides of Geiss’ (2007) method: it is difficult to
represent a detailed terrain model with isosurfaces and to fine tune it.

To remedy the problems of marching cubes such as high memory requirements and
aliasing artifacts, alternative isosurface extraction and rendering algorithms are proposed.
Kloetzli et al. (2008) describe a volume representation format, called Bézier Tetrahedra
(BT), and describe a raytracing-based isosurface rendering technique utilizing GPU.
Marinc et al. (2011) use ray-casting on the GPU to render quadratic C1 splines extracted
from the volumetric data represented as uniform tetrahedral partitions. Steinberger and
Grabner (2010) describe an interactive multiresolution rendering method for isosurfaces of
a voxel grid based on spline wavelet hierarchy.

Dual contouring is a scheme that extracts isosurfaces from adaptive octrees using
triangulation (Ju et al. 2002). In our approach, we are not merely interested in extracting
polygons that correspond to the given voxels. The polygons are not the output of the
proposed framework, but rather the output of the surface extraction step. We then cluster
triangles for surface generation for the purposes of applying the LOD scheme and terrain
editing and deformation. Thus using marching cubes and its variants, dual contouring, or
any similar surface extraction algorithm does not completely fulfill the requirements of the
surface generation step of our approach.

Rendering voxel-based large volumetric terrains in real time has not been popular until
recently due to GPU and memory limitations and problems related to the algorithms used
to extract polygonal surfaces of voxel representations. One such problem is the difficulty
of LOD management in surface extraction. Marching cubes and other similar algorithms
do not work well when the resolution of the sampling grid is not constant. LOD

1826 Ç. Koca and U. Güdükbay



approaches, however, require sampling grid resolutions to vary among different LODs,
which causes artifacts, such as cracks, at the LOD boundaries. Lengyel (2010) proposes
the Transvoxel algorithm, which eliminates visual artifacts of marching cubes and thus
allows LOD management in real time. However, popping artifacts occur because there is
no morphing between different LODs, and the method is CPU intensive because it
frequently updates the geometry by recomputing parts of the terrain surface as the view-
point changes; CPU-to-GPU geometry updates are frequent for the same reason.

2.2.2. Ray-casting-based volume rendering

Ray-casting-based volume rendering (Gobbetti et al. 2008) requires a very high resolution
to obtain a detailed terrain rendering, and their suitability for interactive exploration of very
large terrain models is questionable because of memory requirements and compression/
decompression of the volumetric data.

Laine and Karras (2011) define a data structure for storing voxels and an algorithm for
ray-casting highly detailed volumetric models using this structure. Their work is similar to
our hybrid representation in that they augment the voxel data with contour information to
increase geometric resolution, allowing smooth surfaces over the volume data. Their
approach does not provide editing functionality to create volumetric features.

Hybrid sample-based surface rendering (Reichl et al. 2012) is proposed as an alter-
native to mesh-based rendering to improve the rendering performance. This technique
uses rasterization and ray-casting in every frame simultaneously to determine eye-ray
intersections. It selects the most optimal technique at run time for each part.

Gigavoxels and its extensions (Crassin et al. 2009, 2010) provide an elegant approach
for efficient and detailed rendering of general volumetric models, not restricted to terrains.
However, these approaches do not provide functionality of editing volumetric data to
create volumetric features or deforming the existing model.

2.3. Hybrid (layered) terrain representations

Peytavie et al. (2009) propose a framework for modeling complex terrains with volu-
metric features. Similar to ours, their approach uses a hybrid terrain model combining
volumetric and implicit surface representations. They use a layered volumetric representa-
tion where a terrain is defined as a 2D grid of material stacks; the layers are air, water,
sand, bedrock, and rocks. They construct volumetric features such as overhangs, arches,
and caves by inserting an air layer between two bedrock layers. They generate the surface
of different material layers using implicit surfaces. The convolution surfaces they use for
this purpose smooth the surfaces of different material layers. The difference of our
approach from theirs is in the formation of the hybrid terrain representation; we use an
adaptive octree structure for the coarse level volumetric representation whereas they use a
layered 2D grid of material stacks. We generate the surface of the terrain using biquadratic
Bézier surface patches whereas they use implicit surfaces. We also apply a LOD scheme
for efficient visualization and rendering of complex large-scale terrains. Both approaches
allow editing and realistic rendering of terrains with textures and shadows. They use a
physically based simulation to automatically stabilize layers of sand and rocks, which
removes the burden of finely editing details. The extension by Löffler et al. (2011)
supports terrain rendering with different levels of granularity.

Loeffler et al. (2012) propose a method to extract bicubic patches from volume
data.

International Journal of Geographical Information Science 1827



3. The proposed approach

The proposed approach has the following properties:

● It can model anything a heightmap approach can; in addition, it can model volu-
metric features such as caves, overhangs, cliffs, and arches.

● It supports interactive frame rates with the exploitation of hardware-accelerated
rasterized graphics. Hence, it is suitable for rendering using a modern GPU.

● It represents the terrain surface in terms of smaller logical parts (chunks), which
makes the algorithms more efficient because they can work at a level higher than
that of primitives such as vertices and triangles.

● It allows editing and deformation dynamically in real time where editing only
causes local changes. The proposed algorithms to update data structures stored in
the CPU and GPU can work in real time. Changes made to data stored in the CPU
are reflected in the data in the GPU’s video memory in real time; thus, the amount
of data sent through the CPU–GPU data bus does not exceed the capabilities of a
modern GPU.

● It can handle fairly large terrains, as long as they can still fit into the main memory.
Paging schemes can be used to render data sets that do not fit.

● It is suitable for applying basic 3D rendering elements such as lighting, texturing,
and shadowing.

● Rendering large terrains in real time without proper LOD support is not easy; thus,
we define an LOD management scheme for the proposed terrain representation.

● Visual artifacts do not occur while extracting the terrain surface, rendering, or at the
LOD boundaries where the terrain resolution is changed abruptly to accommodate
for difference in surface proximity.

3.1. Terrain representation

The internal representation used to store terrain data should be efficiently convertible to a
polygonal mesh. Modern GPUs are designed to accelerate rasterization-based polygon
rendering. Voxel representations of large and detailed 3D models are not suitable for real-
time applications because of intensive memory usage. To achieve a 1 m resolution at each
axis in a 1 km3 working space, it is necessary to store one billion voxels. Even if a single
byte of data is used to store each voxel, this representation would require about 1 GB of
memory just for the terrain. Approaches based on heightmap and voxel representations alone
do not suffice to achieve the defined goals. The proposed hybrid approach combines the
expressive power of voxel-based approaches, and the simplicity and efficiency of height-
map-based approaches. In our approach, the terrain geometry is generated in two steps:

(1) First, a relatively low-resolution voxel representation is used to coarsely define
the terrain geometry. The surface geometry is extracted using a novel technique
such that it consists of regular patches.

(2) Next, each terrain patch is assigned a heightmap, which is used to displace the
vertices of that patch. This increases the resolution of the terrain surface.

Our approach uses an octree to store the volumetric representation to develop a compact
representation by exploiting large groups of occupied and empty voxels. The resolution of
the initial coarse volumetric representation is a performance/quality trade-off issue. If we

1828 Ç. Koca and U. Güdükbay



choose a high resolution, the editing and deformation of the volumetric representation will
be computationally intensive, but the volumetric features, such as caves, overhangs, and
arches, could be represented well, whereas when we choose a low resolution, the editing
and deformation will be easier, but the quality of the volumetric features will be low. It
should also be noted that it is possible to adaptively increase the resolution of the
volumetric representation at detailed parts of the terrain.

Patches are used to generate the surface geometry represented by voxels. Each patch is
then subdivided into a number of triangles for rendering. Thus, the primitive type of the
representation is patches, while the primitive type used at the rendering stage is triangles.
Any type of terrain data obtained from different sources can be transformed to a form that
fits into our representation. For example, height fields could be used to deform the surface
of the terrain. This could be done by simplifying a 2.5D terrain model using polygonal
simplification techniques to match the resolution of the surface of the volumetric repre-
sentation (the surface grid) and using the height field data as the control points for the
biquadric Bézier surfaces to generate the terrain surface.

3.2. Surface extraction

Surface extraction is the process of computing the coarse terrain surface from the 3D
voxel model. This is not the ultimate form of the terrain surface but only an intermediate
representation that will be used for terrain surface generation. Marching cubes and its
derivatives are popular in extracting the surface of a volumetric representation. In our
approach, however, we cannot use such an algorithm because its output is just a bunch of
triangles, i.e., a triangle soup. Our approach generates the surface as regular patches on
which heightmaps can be applied to achieve a higher resolution. The generated patches
must have the following properties:

● Connected and continuous to prevent rendering artifacts; there must be no holes,
overlapping or colliding patches.

● Rectangular so that vertices can be mapped to planar (u, v)-coordinates and values
in the heightmap can be used to displace the patch vertices.

● Smooth on the interior; terrains usually lack sharp corners and edges. The combi-
nation of patches must also not introduce sharp edges, corners, or dramatic slope
changes (continuity on the boundaries of patches); it is possible to add such details
by displacing the vertices using heightmaps.

● Each edge exactly aligned with only one edge of only one other patch. This
requirement simplifies the surface structure so that LOD algorithms can work
more efficiently and produce better results.

● Vertices generated in a controlled manner such that the overlapping edges of two
patches coincide, which makes it easier to seamlessly combine them.

We choose Bézier surfaces as the underlying patch representation (and use the term Bézier
surface and terrain patch (or just patch) interchangeably).

3.2.1. Two-dimensional case

Our approach obviously needs surface extraction to work in 3D. A 2D version of the
extraction process (curve extraction) is similar to the 3D case and easier to comprehend
visually. We explain the 2D version first and build the 3D version on top of it.

International Journal of Geographical Information Science 1829



The extraction algorithm works on each vertex at the intersection of four quadtree cells.
For each such vertex, the algorithm generates a curve inside the intersection zone. This zone
is rectangular, centered at the intersection vertex and is equal to the size of a cell. Since an
intersection zone overlaps four cells, and each cell can be either empty or occupied, there are
24 = 16 possible configurations. Several possible configurations are shown in Figure 1.
Before the extraction process, the configurations must be normalized, where all occupied
cells share an edge with another occupied cell in the same configuration. The configurations
in Figure 1a, b, and c are normalized, while the one in Figure 1d is not.

In the normalization process, each cell is first put in a normalized group. Then the
algorithm combines any two groups where the cells in the groups share an edge. This step
is repeated until no more normalized groups can be combined (see Figure 2).
Normalization is useful for decreasing the complexity of the extraction algorithm; a
curve can be extracted for each normalized group, and these curves can be combined if
there is more than one normalized group. Each intersection zone in a normalized cell
group has three control points for curve generation (see Figure 1). The proposed approach
uses quadratic Bézier curves because of their simplicity.

In Figures 1 and 2, the control points are depicted as solid circles, and the generated
curves are drawn in red. The curves extracted for some configurations are simply flat
lines. The algorithm does not generate a curve if all or none of the cells are/is occupied.
The curve extraction algorithm performs the following steps for each intersection zone in
the cell space:

(1) If all cells in the zone are occupied or are all empty, skip the zone without
generating any curve.

(2) Split cells into normalized cell groups.
(3) Determine the control points for the curve of each cell group, depending on

occupied cells.
(4) Generate curves for each normalized cell group.

Figure 1. Several quadtree cell configurations in the 2D case. The green rectangles show the
intersection zones.

Figure 2. Configurations may be split during normalization.

1830 Ç. Koca and U. Güdükbay



Figure 3 illustrates 2D curve extraction. The blue rectangles are occupied cells, the white
rectangles are empty cells, and the solid circles are control points of the curves of each
intersection zone, which are shown as green rectangles. The control points of adjacent
intersection zones are placed in such a way that one control point is shared between them,
which ensures the continuity of the generated curve. The algorithm may generate many
unconnected curves if the data represents such an area.

3.2.2. Three-dimensional case

The surface extraction algorithm also works on intersection vertices in the 3D case, where
the intersection zone is a volume centered at the intersection vertex. The size of the
intersection volume is equal to the size of a voxel and it overlaps eight voxels. The
intersection volume is defined by whether each of these eight voxels is occupied; thus
there are 28 = 256 possible configurations.

In the 3D case, biquadratic Bézier surfaces are used to generate the surface for each
intersection volume (see Figure 4a). The algorithm does not generate a surface if all
voxels in an intersection volume are occupied or all are empty. For all other cases, there
must be at least one Bézier surface for the volume. When there are more than four edges
to be included in the surface, up to three Bezier surfaces may be required. For example,
Figure 4b shows a configuration with five edges to be patched: (A, B, C), (C, D, E), (E, F,
G), (G, H, J), and (J, K, A). Two Bézier surfaces patch two external edges and one internal
edge, while one surface patches one external edge and two internal edges. External edges
are shared between surfaces of different intersection volumes. Edges shared between
surfaces in the same intersection volume are called internal edges, and are introduced

Figure 3. The curves extracted by the proposed algorithm.

Figure 4. (a) A normalized intersection configuration with six occupied voxels and the generated
surface. (b) An intersection configuration where three Bézier surfaces are required to generate a
connected surface.

International Journal of Geographical Information Science 1831



when there are multiple surfaces in an intersection volume. The control points of these
three surfaces are:

● Surface 1: {A, B, C}, {A, L, D}, {A, L, E};
● Surface 2: {J, H, G}, {J, L, F}, {J, L, E}; and
● Surface 3: {A, L, E}, {K, L, E}, {J, L, E}.

Internal edges {A, L, E} and {J, L, E} are shared between surfaces, which ensures
connectivity. For some configurations it is necessary to collapse one edge of the Bézier
surface to obtain a surface with three edges. In Figure 4b, all three surfaces are generated
in this way. The three control points of Surface 1, for instance, are A, where one edge has
been collapsed into a single point.

It is possible to compute a bit string of eight that represents the intersection volume
configuration, with each bit representing whether the corresponding voxel is occupied or
not. This bit string can then be used as a pointer to a lookup table to retrieve the
precomputed control points for the surface of that volume configuration. There can be
9, 18, or 27 precomputed control points for each volume configuration, depending on the
number of surfaces defined for that case. For the connectivity and continuity of the terrain
surface, it is essential that the control points of the adjacent volumes coincide.
Furthermore, if a configuration contains multiple Bézier surfaces, the control points of
each edge must either be shared with another surface defined for the same configuration
or shared with a surface defined for an adjacent volume configuration (see Figure 4b).

For 3D surface extraction, intersection configurations must be normalized before the
surface extraction process is applied to the intersection volume, as in the 2D case. In the
3D case, however, each occupied voxel in a normalized intersection volume must share a
face with another occupied voxel in the same normalized intersection volume rather than
an edge. Voxel index fields can be used to determine what is shared among two voxels in
the same intersection volume. They share

● a face if two of the index fields are the same;
● an edge if one of the index fields is the same;
● a vertex if no index fields are the same.

Although there are 256 possible configurations, most are related to a base configuration in
one of the following two ways:

● symmetric about the xy-, xz-, or yz-planes or
● rotated by 90°, 180°, or 270° around x-, y-, or z-axis.

Surfaces for such configurations can be obtained by applying affine transformations to the
Bézier surface control points of the corresponding base configuration. Of the 256 config-
urations, there are only 12 unique ones, excluding the cases where no surface is generated.
These unique configurations, the control points for the surfaces, and the surfaces gener-
ated are shown in Figure 5.

3.2.2.1. Handling voxels at different levels. The surface patch generation method pre-
sented here assumes that the sizes of all voxels in an intersection volume are equal; i.e.,
they are at the same level. In practice, this may not be true; the octree allows neighbor
voxels to be at different levels. To handle these cases, the surface extraction algorithm

1832 Ç. Koca and U. Güdükbay



computes the maximum level of voxels in the intersection volume and generates several
new smaller volumes on the surface of the voxels that are on a lower level than the
maximum level (see Figure 6). The surface patches for these smaller volumes are
generated instead of the larger one, and only for the three faces of the larger voxels that
overlap the actual volume. The inner volumes of these larger voxels are not processed
because no surface is generated inside a voxel.

In actuality, larger voxels are not split into smaller voxels; the octree representation
does not change in memory. Smaller intersection volumes are generated and processed on

Figure 5. Unique intersection volume configurations. (a) One, two, three, and seven voxels are
occupied, respectively. (b) Four voxels are occupied. (c) Five voxels are occupied. (d) Six voxels are
occupied (the last two in (c) and (d) are the same configurations from different views).

International Journal of Geographical Information Science 1833



the fly, and queries for smaller virtual sub-voxels are answered considering the larger
voxel they belong to. If the larger voxel is occupied, then all its smaller virtual sub-voxels
are also occupied, and vice versa. After we find out the occupied virtual sub-voxels by
also handling voxel level transitions, the surface extraction algorithm generates surface
patches for each virtual sub-voxel. The result of the surface extraction for a sample voxel
configuration is shown in Figure 7.

3.3. Terrain surface generation

The 3D voxel model defines coarse terrain; surface patches must be generated from this
representation to render the terrain using hardware acceleration. We do this with para-
metric equations and apply heightmaps to each patch to obtain the final surface.

3.3.1. Generating vertices

The first step of terrain surface generation is to generate a number of vertices for each
Bézier surface. The minimum number of vertices to approximate each patch is nine, in
which case each vertex coincides with a surface control point. The actual number of
vertices per patch is determined by the desired LOD and is constrained by the memory
available for storing these vertices.

At this stage of surface generation, only the original vertex positions are computed
(rather than the displaced positions); the heightmaps will be applied at a later stage.

Figure 6. The division of the actual intersection volume (green rectangle) into smaller intersection
volumes (red squares with yellow X’s inside).

Figure 7. The result of surface extraction from two different views (patches are rendered in
different colors).

1834 Ç. Koca and U. Güdükbay



Computing vertex positions is straightforward, using the parametric surface equation of
the biquadratic Bézier surfaces. In the proposed surface generation method, the numbers
of vertices at each surface edge are equal, meaning that surface parameters u and v are
uniformly sampled. The total number of vertices on a surface patch is N2, where the
number of vertices per edge is N. It is possible to use different frequencies for u and v.
This usage, however, results in vertex alignment problems in neighbor surface patches. It
must be ensured, therefore, that vertices on the edges of neighbor surface patches align
correctly (this constraint is later relaxed for LOD purposes). Each vertex can be categor-
ized as an internal or a border vertex (see Figure 8).

Border vertices are shared vertices, meaning that multiple vertices spatially coincide
and are located at exactly the same coordinates in 3D. The vertices can be shared
externally or internally, relative to the surface patch for which the vertex is generated.
External and internal sharing occur on the edges and corners of patches, i.e., for border
vertices. Internal vertices are never shared.

Internal sharing of a vertex means that multiple vertices that belong to the same patch
are located at the same coordinates, which occurs when one edge is collapsed into a point
so that there are three edges instead of four.

External sharing of a vertex means that multiple vertices that belong to different patches
are located at the same coordinates, which occurs on the common edges and corners of
neighboring patches. Vertices strictly on patch edges (i.e., not on corners) are shared by
exactly two patches because each edge of a patch can coincide with an edge of only one other
patch. Corner vertices, however, are shared among at least four patches. In some configura-
tions, the number of patches sharing a corner vertex can be more than four. To determine the
externally shared instances of a vertex that belongs to patch P, it suffices to examine the patch
vertices of the voxel that includes patch P and its neighbor voxels. To improve the perfor-
mance, first the bounding boxes of the patch pairs are compared to check for overlap.

3.3.1.1. Storing vertices. There are a total of N2 vertices in a patch, where a single edge
is approximated by N vertices. Of those N2 vertices, 4 × (N – 1) are shared (i.e., border)
vertices. The attributes of shared vertices should not be stored separately because:

Figure 8. Vertices that approximate a patch where N = 5. Red boxes are border vertices, green
boxes are internal vertices, and blue circles are control points.

International Journal of Geographical Information Science 1835



● this is redundant and causes the application to unnecessarily use more memory space,
● different heightmaps are applied to different patches, and thus displaced vertex

positions may cause gaps in the terrain surface, and
● this causes normals to be computed incorrectly.

For efficiency and correct operation of the surface generation algorithm, shared vertices
must be stored in a common data structure. The number of patches that share a border
vertex is not constant; it depends on the voxel intersection volume configurations around
the vertex. A linked list is a good choice for storing shared vertex data, where each node
of the list represents an instance of the shared vertex, and each node is stored by a patch
that shares the vertex.

Each shared vertex list node stores a pointer to the first and next node in the list, a
pointer to a patch that shares the vertex, and a pointer to the actual vertex where the vertex
attributes are stored. The number of shared vertex list nodes for a shared vertex is always
equal to the number of patches that share the vertex. Initially, i.e., at the vertex generation
stage, a separate node is generated for each border vertex. Once all vertices are generated
for all patches, the algorithm searches for externally shared vertices by comparing the
locations of border vertices of neighbor patches. If two vertices are in the same location,
their shared vertex lists are merged (cf. Figure 9).

It is essential to maintain the mapping between patch vertices and the 2D parameter
space. Vertices must be quickly accessible with a 2D vertex index in the format (i, j), as
this provides a mapping between the vertices and the (u, v)-coordinates. The range of both
i and j is [0, N – 1], where N is the number of vertices per edge.

To allow fast access to vertices through the 2D vertex indices, a 1D array of vertex
pointers of size N2 is created to store pointers to the vertex attributes. Different elements
of the array can store pointers to the same vertices where the vertices are shared. The
attributes of shared vertices are stored only once in the main memory.

3.3.2. Generating faces

The vertices generated for each patch are connected to form triangles that approximate the
surface with no holes or cracks. Figure 10 shows different connection patterns. Although the
pattern shown on the left is simpler, the pattern on the right yields better results with LOD. The
minimum number of vertices per edge required by this connection pattern (N) is three. The
connection pattern of size 3 × 3 can then be tiled along the u-and v-axes for N�1

2 times. This
places a constraint on the number of vertices per edge in a patch, such thatN = 2 × k + 1, where

Figure 9. (a) Two distinct shared vertex lists, each having one node and pointing to different
vertices. (b) The shared vertex lists are merged into a single shared vertex list, and the remaining
vertices (Vertex 2 in this case) are deleted.

1836 Ç. Koca and U. Güdükbay



k is a positive integer. The primitive pattern is then tiled k times along the u- and v-axes. The
total number of triangles generated for a patch is 8 × k2, which is equal to 2 × (N – 1)2.

3.3.3. Vertex normals

The presented approach requires vertex normals because most operations are performed
per vertex. Each vertex has two kinds of normals:

(1) The displacement normal merely defines the direction through which the vertex is
displaced according to the applied heightmap values. This normal depends only
on the voxel definition of the terrain surface and does not change when the
vertices are displaced by a heightmap.

(2) The vertex normal is used for rendering, i.e., lighting and texturing. This normal
changes when the displaced position of that vertex or one of the connected
vertices is modified. The vertex normals must be recomputed in such cases.

3.3.4. Displacement of terrain surface vertices

This is the last step in terrain surface generation. It is performed using the original vertex
positions and the displacement normals. The displaced positions can be computed by
Equation (1), where P

!
is the original position, N

!
is the displacement normal, and ~D is the

displaced position. The 2D h(u, v) function is the heightmap function, returning a scalar
value for planar (u, v)-coordinates, where the range for u and v is [0, 1].

D
!¼ P

!þ N
!� hðu; vÞ (1)

3.3.5. Terrain deformation

The terrain should be editable and deformable in real time.How to deform the terrain, e.g., by
erosion or by other objects, is beyond the scope of this study, we do try to define a framework
for deforming the terrain in real time. The limitation of our approach, however, is that terrain
deformation can only be performed at the heightmap level in real time; it is not possible to
smoothly modify the voxel model in real time because that would trigger surface extraction.

Editing heightmaps causes the displaced positions of affected vertices to change.
Modifying a displaced vertex position invalidates the face normals of all triangles sharing

Figure 10. Two patterns for connecting vertices (N = 5).

International Journal of Geographical Information Science 1837



that vertex, which invalidates the normals of the vertices that constitute these triangles.
Modifying the heightmap of one patch affects the vertices of neighbor patches. For
example, in Figure 11, if the displaced position of Vertex V is modified, the face normals
of the orange triangles are invalidated. This then invalidates the vertex normals of A, B,
C, and D and recomputing them requires access to the orange and green triangles.
Although the displaced position of a patch’s internal vertex has been modified, face
normals of affected triangles must be recomputed because face normals are not stored.

A straightforward solution to this problem could simply be to recompute the vertex
normals of the entire terrain. However, even for only moderately large terrains, it may not
be possible to do this in real time. In the proposed approach, the granularity of vertex
normal recomputations is defined as patches, which means that whenever a patch’s
heightmap changes, the vertex normals of that patch are marked as invalid. These vertex
normals are updated as follows:

(1) Invalidate all vertices of the modified patch.
(2) Invalidate all triangles of the modified patch and its neighbors if at least one

vertex is invalidated.
(3) Invalidate all vertices of invalidated triangles.
(4) Recompute vertex normals of invalidated vertices.

4. Performance evaluation

The properties of the test environment are depicted in Table 1. Statistics of the sample
terrain generated for performance evaluation are given in Table 2. (The number of
nontrivial voxel intersection volumes are those for which one or more patches is gener-
ated.) Static surface culling eliminates patches will never be seen in practice. The statistics
of the terrain surface generated with different parameters are given in Table 3. Figure 12
shows still frames of the visualization of a terrain with volumetric features.

Figure 11. Modifying the displaced position of Vertex V causes the vertex normals of A, B, C, and
D to be recomputed using the face normals of the colored triangles.

Table 1. Test environment.

Operating system CPU Windows 7 Professional x64, SP1 Intel Core i7–2600K 3.4 GHz
#CPU cores 4 + 4 (Hyper-threading)
Main memory 8 GB DDR3
GPU nVidia GeForce GTX260
CPU-GPU data bus PCI Express x8 Gen2

1838 Ç. Koca and U. Güdükbay



Table 2. Coarse terrain model statistics of the test scene.

# Occupied voxels 24,239
# Nontrivial voxel intersection volumes 2544
# Patches (without static surface culling) 7481
# Patches (with static surface culling) 3560

Table 3. Terrain surface statistics of the test scene.

Max. LOD # Patch vertices # Patch triangles # Total vertices # Total triangles

1 3 × 3 8 32 K 28 K
2 5 × 5 32 89 K 114 K
3 9 × 9 128 288 K 456 K
4 17 × 17 512 1 M 1.8 M
5 33 × 33 2048 3.9 M 7.3 M
6 65 × 65 8192 15 M 29.2 M

Figure 12. Still frames from the visualization of a terrain with volumetric features.

International Journal of Geographical Information Science 1839



We use an artifact-free LOD management scheme to render large terrains in real time.
The LOD scheme maintains temporal continuity while the view parameters are changing
by using geometry morphing to support smooth transitions. The LOD scheme is based on
the idea that the areas of all displayed triangles on the terrain surface should be more or
less equal. As the observer moves farther away from a patch, the patch LOD becomes
lower and the number of triangles on the same surface area decreases, and consequently,
the area covered by a single triangle increases. The LOD indices of each patch can
dynamically change at run time. A constant maximum LOD is determined when the
terrain is created. All vertices at the highest LOD are then computed and stored with each
patch. Once a maximum LOD is set, no patch can be rendered at a higher LOD than the
maximum. When it is desired to render a patch at a low LOD, a subset of the vertices is
selected accordingly.

4.1. Memory usage

Most of the main and video memory space is used to store vertex attribute data (see
Tables 4 and 5), which requires 52 bytes each of the main memory and the video
memory. It is necessary to store the vertex attributes on the main memory so that when
the terrain is deformed they can be updated, but they can be discarded if real-time
terrain deformations are not needed. The main memory usage for the test scene is shown
in Table 6. Memory space required to store the vertex attributes and the triangle vertex
indices is the most significant. Vertex attributes stored in the main memory and the
video memory differ because some attributes stored in the former are not used in GPUs,
and the video memory is usually considerably smaller than the main memory.

Table 4. Vertex attributes stored in the main memory.

Vertex attribute Data type Size

Original position float [3] 12 bytes
Displacement normal float [3] 12 bytes
Actual normal float [3] 12 bytes
Displacement float 4 bytes
Lower LOD neighbor pointer [2] 8 bytes
LOD index unsigned int 3 bits
Re-compute normals unsigned int 1 bit
Vertex buffer index unsigned int 28 bits

Table 5. Vertex attributes stored in the video memory.

Vertex attribute Data type Size (bytes)

Position float [3] 12
Normal float [3] 12
Geomorph transition threshold float 4
Geomorph transition position float [3] 12
Geomorph normal float [3] 12

1840 Ç. Koca and U. Güdükbay



The video memory usage of the test scene is shown in Table 7; the video memory
space required to store shadow maps is not included because that depends on the number
of cascaded shadow maps used. We use four cascaded shadow maps of resolution
2048 × 2048 with 24-bit depth; hence the video memory required is 48 MB.

4.2. Performance

4.2.1. Terrain surface generation

The performance of the terrain surface generation is depicted in Table 8. The columns
represent the time required to extract the surface of the coarse voxel model, approximate
the patches by creating vertices, find shared vertices between patches, compute displace-
ment and vertex normals, and compute triangle vertex indices for each patch and different
LODs. The surface extraction step does not depend on the maximum LOD because it is
not affected by the number of vertices approximating a patch. These steps are performed
only once, at the terrain creation or loading step.

Table 6. Main memory usage of the test scene.

Max. LOD Vertex attributes (MB) Shared vertices (MB) Index data Heightmaps (MB)

1 0.3 0.67 512 KB 0.1
2 1.6 1.5 1.7 MB 0.4
3 9 3.2 7.3 MB 1.2
4 40 6.5 29 MB 4.1
5 175 13.3 117 MB 15.5

Table 7. Video memory usage of the test scene.

Max. LOD Vertex attributes (MB) Index data (avg.) Textures (MB)

1 1 60 KB 6
2 3 125 KB 6
3 12 250 KB 6
4 46 1 MB 6
5 188 4 MB 6

Table 8. Performance of the terrain surface generation.

Max.
LOD

Surface extraction
(ms)

Surface approx.
(ms)

Shared vertices
(ms)

Normals
(ms)

Indices
(ms)

1 40 15 55 6 4
2 40 20 70 22 13
3 40 40 110 60 50
4 40 90 230 240 150
5 40 210 660 890 460

International Journal of Geographical Information Science 1841



4.2.2. Terrain surface deformation

When the terrain is deformed in real time, the vertex displacements are computed, vertex
normals are recomputed, and updated vertex attributes in the main memory are copied to
vertex buffers. Table 9 lists the execution time of updating vertex displacements, recom-
puting vertex normals, and updating vertex buffers in the video memory.

4.2.3. Rendering

We render the scene geometry in N + 1 passes, where N is the number of cascaded shadow
maps. The first N passes render each of the N shadow maps, and the final rendering pass
renders the actual terrain surface using the shadow maps and applying various per-pixel
effects, such as lighting and texturing. The performance-related statistics of the rendering
passes for maps of resolution 2048 × 2048 are listed in Table 10. Table 11 shows the
overall rendering performance. The values in Tables 10 and 11 are the averages for the
flythrough over the test scene.

Table 10. Performance of shadow map rendering passes.

Max. LOD # Shadow maps Frustum culling (ms) Index buffer updates (ms) Rendering (ms)

1 0.05 0.04 0.6
4 2 0.1 0.14 1.1

4 0.2 0.3 2.3
1 0.05 0.3 2.1

5 2 0.1 0.6 4.3
4 0.2 1.1 8.5

Table 11. Overall performance of the proposed rendering pipeline (frame rates are given as frames
per second).

Max.
LOD

# Shadow
maps

Frustum culling
(ms)

Index buffer updates
(ms)

Rendering
(ms)

Frame
rate

4 1 0.05 0.15 3.9 235
2 0.1 0.25 4.4 205
4 0.25 0.4 5.4 160

5 1 0.05 0.7 10 91
2 0.1 1 12.1 74
4 0.25 1.5 16 57

Table 9. Performance of real-time terrain surface deformation.

Max.
LOD

Updating vertex
displacements

Recomputing normals
(ms)

Updating vertex buffers
(ms)

1 0.6 μs 6 16
2 2 μs 25 22
3 6 μs 0.1 74
4 24 μs 0.3 0.28
5 0.1 ms 1.2 1.1

1842 Ç. Koca and U. Güdükbay



5. Conclusions and future work

We propose a hybrid terrain representation that combines voxel- and heightmap-based
approaches. Our method models volumetric terrain features such as caves, overhangs,
arches, and vertical cliffs using a coarse voxel-based approach. Terrain surface resolu-
tion is then increased further to add surface detail by applying heightmap displace-
ment. To do this, we extract the terrain surface from the voxel model, where the
extracted surface consists of patches similar to the blocks of a 2D regular grid
heightmap.

The proposed approach provides a useful trade-off between the simplicity and effi-
ciency of heightmap approaches and the expressiveness of volumetric approaches.
Because the terrain surface consists of patches that can easily be mapped to 2D planar
coordinates, we can, with minimal changes, use many of the existing algorithms designed
for regular grid representations.

The proposed approach provides a suitable representation for detailed geographical
information system (GIS) analysis, such as the coverage calculation for the communica-
tion and information systems, military GIS analysis, such as operational planning. The
educators and scientists can explore the navigation and walkthrough functionality to
explore volumetric features such as caves. The proposed framework can be extended to
be used by natural resource managers to plan for pipelines, local governmental institutions
may use it to make more detailed plans for their cities.

Our approach can be exploited in a number of ways:

● Vector field displacement could be used to apply displacement on patches along all
directions rather than just the direction of the displacement normal, as described in
McAnlis (2009).

● Hardware-accelerated tessellation is one of the newest methods supported by
modern GPUs and it could be used to tessellate patches to increase terrain surface
resolution.

● Collision detection algorithms could be developed specifically for the proposed
representation. It is possible to create a voxel representation for the sole purpose
of answering physics queries efficiently. The resolution of this representation
would be determined by the desired level of precision, and because it would
only be used for physics computations, it would not need to store visualization
attributes.

● Terrain synthesis techniques could be developed to convert a high-resolution voxel
representation to the proposed one. This could be done by first lowering the
resolution of the given voxel representation, which could then be used as the coarse
representation in the proposed approach. The actual high-resolution representation
could then be approximated with the displacement of patch vertices.

● A 2.5D terrain model (i.e., height field) could be converted into a volumetric
representation by carving a volumetric block composed of a regular three-dimen-
sional grid of voxels. The 2.5D height field data could be used to turn the voxels on
or off. This requires the resolutions of the height field and the regular volumetric
grid must be identical. To convert this regular volumetric representation to our
coarse volumetric representation, the regular grid structure must be converted to an
adaptive octree structure. We can use algorithms for converting a regular grid
volumetric model to an octree. However, this approach can only model the terrain
surface; volumetric features, such as caves, arches, cannot be modeled. Such

International Journal of Geographical Information Science 1843



features could then be added by using the terrain editing and deformation facilities
provided for the coarse volumetric representation. Please refer to the
‘Supplementary Material’ for the details of terrain editing and deformation
functionalities.

● LIDAR mainly captures the height attribute for terrain data; hence, a height-field
terrain can be easily produced from LIDAR data. This height-field data could be
used as the control points for the biquadric Bézier surfaces to generate the terrain
surface.

Acknowledgments
We thank ASELSAN Inc. for their support during this study. We are grateful to Dr. Türker Yılmaz
for valuable comments and suggestions, Rana Nelson for proofreading and Ateş Akaydın for
narrating the videos.
Note: Terrain editing and walkthrough videos can be viewed from

(1) Terrain Editing: http://www.youtube.com/watch?v=zfg8Qzk8whE
(2) Terrain Walkthrough: http://www.youtube.com/watch?v=1F_yY9uy1-I

References
Amor, M. and Bóo, M., 2008. A new architecture for efficient hybrid representation of terrains.

Journal of Systems Architecture, 54 (1–2), 145–160. doi:10.1016/j.sysarc.2007.04.005.
Asirvatham, A. and Hoppe, H., 2005. Terrain rendering using GPU-based geometry clipmaps.

In: M. Pharr and R. Fernando, eds. GPU Gems 2. Boston, MA: Addison-Wesley, 46–53.
Atlan, S. and Garland, M., 2006. Interactive multiresolution editing and display of large terrains.

Computer Graphics Forum, 25 (2), 211–223. doi:10.1111/j.1467-8659.2006.00936.x.
Bhattacharjee, S., Patidar, S., and Narayanan, P., 2008. Real-time rendering and manipulation of

large terrains. In: Proceedings of the IEEE Sixth Indian Conference on Computer Vision,
Graphics and Image Processing (ICVGIP ’08), 16–19 December 2008 Bhubaneswar.
Piscataway, NJ: IEEE, 551–559.

Bóo, M. and Amor, M., 2009. Dynamic hybrid terrain representation based on convexity limits
identification. International Journal of Geographical Information Science, 23 (4), 417–439.
doi:10.1080/13658810801932039.

Bóo, M., Amor, M., and Döllner, J., 2007. Unified hybrid terrain representation based on local
convexifications. GeoInformatica, 11 (3), 331–357. doi:10.1007/s10707-006-0003-y.

Brandstetter III, W.E., et al., 2011. Multi-resolution deformation in out-of-core terrain rendering.
International Journal of Computers and Their Applications (IJCA), 18 (4), 263–272.

Bruneton, E. and Neyret, F., 2008. Real-time rendering and editing of vector-based terrains.
Computer Graphics Forum, 27 (2), 311–320. doi:10.1111/j.1467-8659.2008.01128.x.

Bunnell, M., 2005. Adaptive tessellation of subdivision surfaces with displacement mapping.
In: M. Pharr, ed. GPU Gems 2. Boston, MA: Addison-Wesley, 109–122.

Cignoni, P., et al., 2003a. Planet-sized Batched Dynamic Adaptive Meshes (P-BDAM).
In: Proceedings of the 14th IEEE conference on visualization (VIS’03), 19–24 October 2003.
Washington, DC: IEEE Computer Society, 147–154.

Cignoni, P., et al., 2003b. BDAM – batched dynamic adaptive meshes for high performance terrain
visualization. Computer Graphics Forum (Proceedings of Eurographics 2003), 22 (3),
505–514. doi:10.1111/1467-8659.00698.

Cohen-Or, D. and Levanoni, Y., 1996. Temporal continuity of levels of detail in Delaunay triangu-
lated terrain. In: Proceedings of the 7th IEEE conference on visualization (VIS ‘96), 27
October–1 November 1996. Washington, DC: IEEE Computer Society Press, 37–42.

Crassin, C., et al., 2009. GigaVoxels: Ray-guided streaming for efficient and detailed voxel
rendering. In: Proceedings of the symposium on interactive 3D graphics and games (I3D’09),
Boston, MA. New York: ACM, 15–22.

1844 Ç. Koca and U. Güdükbay

http://www.youtube.com/watch?v=zfg8Qzk8whE
http://www.youtube.com/watch?v=1F_yY9uy1-I
http://dx.doi.org/10.1016/j.sysarc.2007.04.005
http://dx.doi.org/10.1111/j.1467-8659.2006.00936.x
http://dx.doi.org/10.1080/13658810801932039
http://dx.doi.org/10.1007/s10707-006-0003-y
http://dx.doi.org/10.1111/j.1467-8659.2008.01128.x
http://dx.doi.org/10.1111/1467-8659.00698


Crassin, C., et al., 2010. Efficient rendering of highly detailed volumetric scenes with GigaVoxels.
In: W. Engel, ed. GPU Pro. Natick, MA: A. K. Peters, 643–676.

de Boer, W.H., 2000. Fast terrain rendering using geometrical Mipmapping [online]. Available
from: http://www.flipcode.com/archives/article_geomipmaps.pdf [Accessed 11 October 2013].

de Carpentier, G.J.P. and Bidarra, R., 2009. Interactive GPU-based Procedural Height-field Brushes.
In: Proceedings of the 4th international conference on Foundations of Digital Games (FDG
‘09), Orlando, FL. New York: ACM, 55–62.

Dick, C., Krüger, J., and Westermann, R., 2009. GPU ray-casting for scalable terrain rendering. In:
D. Ebert and J. Krüger, eds. Proceedings of Eurographics 2009 – Areas Papers, November.
Geneve, CH: Eurographics, 43–50.

Duchaineau, M., et al., 1997. ROAMing terrain: real-time optimally adapting meshes. In:
Proceedings of the 8th IEEE conference on visualization (VIS 97), October. Washington, DC:
IEEE Computer Society Press, 81–88.

Evans, W., Kirkpatrick, D., and Townsend, G., 2001. Right-triangulated irregular networks.
Algorithmica, 30, 264–286. doi:10.1007/s00453-001-0006-x.

Fan, M., Tang, M., and Dong, J., 2004. A review of real-time terrain rendering techniques. In:
Proceedings of the 8th international conference on computer supported cooperative work in
design, Vol. 1, May. Piscataway, NJ: IEEE, 685–691.

Forstmann, S. and Ohya, J., 2005. Visualization of large ISO-surfaces based on nested clip-boxes.
In: ACM SIGGRAPH 2005 posters, Los Angeles, CA. New York: ACM.

Gamito, M.N., Iscte, E., and Musgrave, F.K., 2001. Procedural landscapes with overhangs. In:
Proceedings of 10th Portuguese computer graphics meeting. Lisboa: ISCTE-IUL, 33–41.

Garland, M. and Heckbert, P.S., 1995. Fast polygonal approximation of terrains and height fields.
Pittsburgh, PA: School of Computer Science, Carnegie Mellon University, Technical Report
CMU-CS-95-181.

Geiss, R., 2007. Generating complex procedural terrains using the GPU. In: GPU Gems 3. Boston,
MA: Addison Wesley, Chap. 1, 7–37.

Gobbetti, E., Marton, F., and Iglesias Guitián, J.A., 2008. A single-pass GPU ray casting framework
for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer, 24
(7–9), 797–806. doi:10.1007/s00371-008-0261-9.

Gregorski, B., et al., 2002. Interactive view-dependent rendering of large isosurfaces. In:
Proceedings of the IEEE conference on visualization (VIS’02), Boston, MA. Washington, DC:
IEEE Computer Society, 475–484.

Gross, M.H., Gatti, R., and Staadt, O., 1995. Fast multiresolution surface meshing. In: Proceedings
of the 6th IEEE conference on visualization (VIS 95), 29 October–3 November. Washington,
DC: IEEE Computer Society Press, 135–142, 446.

Hnaidi, H., et al., 2010. Feature based terrain generation using diffusion equation. Computer
Graphics Forum, 29 (7), 2179–2186. doi:10.1111/j.1467-8659.2010.01806.x.

Hoppe, H., 1997. View-dependent refinement of progressive meshes. In: Proceedings of the ACM
SIGGRAPH conference. New York: ACM, 189–198.

Hoppe, H., 1998. Smooth view-dependent level-of-detail control and its application to terrain
rendering. In: Proceedings of the IEEE conference on visualization (VIS’98), Research
Triangle Park, NC. Washington, DC: IEEE Computer Society Press, 35–42.

Hu, L., Sander, P.V., and Hoppe, H., 2009. Parallel view-dependent refinement of progressive
meshes. In: Proceedings of the symposium on interactive 3D graphics and games (I3D ‘09),
Boston, MA. New York: ACM, 169–176.

Ju, T., et al., 2002. Dual contouring of hermite data. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH ‘02), 21 (3), 339–346.

Kloetzli, J., Olano, M., and Rheingans, P., 2008. Interactive volume isosurface rendering using BT
volumes. In: Proceedings of the symposium on interactive 3D graphics and games (I3D’08),
Redwood City, CA. New York: ACM, 45–52.

Kumler, M.P., 1994. An intensive comparison of triangulated irregular networks (TINs) and digital
elevation models (DEMs). Cartographica: The International Journal for Geographic
Information and Geovisualization, 31, 1–99. doi:10.3138/TM56-74K7-QH1T-8575.

Laine, S. and Karras, T., 2011. Efficient sparse voxel octrees. IEEE Transactions on Visualization
and Computer Graphics, 17 (8), 1048–1059. doi:10.1109/TVCG.2010.240.

Lee, A., Moreton, H., and Hoppe, H., 2004. Displaced subdivision surfaces. ACM Transactions on
Graphics (Proc. ACM SIGGRAPH’04), 26 (3), 85–94.

International Journal of Geographical Information Science 1845

http://www.flipcode.com/archives/article_geomipmaps.pdf
http://dx.doi.org/10.1007/s00453-001-0006-x
http://dx.doi.org/10.1007/s00371-008-0261-9
http://dx.doi.org/10.1111/j.1467-8659.2010.01806.x
http://dx.doi.org/10.3138/TM56-74K7-QH1T-8575
http://dx.doi.org/10.1109/TVCG.2010.240


Lengyel, E., 2010. Voxel-based terrain for real-time virtual simulations. Thesis (PhD). University of
California, Davis.

Levenberg, J., 2002. Fast view-dependent level-of-detail rendering using cached geometry. In:
Proceedings of the IEEE conference on visualization (VIS’02), November. Piscataway, NJ:
IEEE, 259–265.

Lindstrom, P., et al., 1996. Real-time, continuous level of detail rendering of height fields. In:
Proceedings of the ACM SIGGRAPH conference. New York: ACM, 109–118.

Livny, Y., Kogan, Z., and El-Sana, J., 2009. Seamless patches for GPU-based terrain rendering. The
Visual Computer, 25 (3), 197–208. doi:10.1007/s00371-008-0214-3.

Löffler, F., Müller, A., and Schumann, H., 2011. Real-time rendering of stack-based terrains. In:
Proceedings of 16th international workshop on Vision, Modeling, and Visualization (VMV),
Berlin. Geneve, CH: Eurographics, 161–168.

Löffler, F. and Schumann, H., 2012. Generating smooth high-quality isosurfaces for interactive
modeling and visualization of complex terrains. In: Proceedings of 17th international workshop
on Vision, Modeling, and Visualization (VMV), Magdeburg. Geneve, CH: Eurographics, 79–86.

Lorensen, W.E. and Cline, H.E., 1987. Marching cubes: A high resolution 3D surface construction
algorithm. In: Proceedings of the ACM SIGGRAPH conference. New York: ACM, 163–169.

Losasso, F. and Hoppe, H., 2004. Geometry clipmaps: Terrain rendering using nested regular grids.
ACM Transactions on Graphics (TOG) (Proceedings of ACM SIGGRAPH ‘04), 23 (3),
769–776. doi:10.1145/1015706.1015799.

Mantler, S. and Jeschke, S., 2006. Interactive landscape visualization using GPU ray casting. In:
Proceedings of the 4th international conference on computer graphics and interactive techni-
ques in Australasia and Southeast Asia (GRAPHITE ‘06), Kuala Lumpur. New York: ACM,
117–126.

Marinc, A., et al., 2011. Interactive isosurfaces with quadratic C1 splines on truncated octahedral
partitions. In: Proceedings of SPIE-IS &T electronic imaging, Vol. 7868, San Francisco, CA.
Bellingham, WA: SPIE, Article No. 786808, 8p.

McAnlis, C., 2009. Halo wars: the terrain of next gen. In: Game developers conference, March. San
Francisco, CA: IGDA.

McRoberts, D.A.K., 2011. Real-time rendering of synthetic terrain. Master’s thesis. University of
Johannesburg.

Niessner, M., et al., 2012. Feature-adaptive GPU rendering of Catmull–Clark subdivision surfaces.
ACM Transactions on Graphics, 31 (1, Article No. 6), 11p.

Paredes, E., et al., 2012. Extended hybrid meshing algorithm for multiresolution terrain models.
International Journal of Geographical Information Science, 26 (5), 771–793. doi:10.1080/
13658816.2011.615317.

Peucker, T.K., Fowler, R.J., and Little, J.J., 1978. The triangulated irregular network. In:
Proceedings of the ASP Digital Terrain Models (DTM) symposium, October. Falls Church,
VA: ASP.

Peytavie, A., et al., 2009. Arches: a framework for modeling complex terrains. Computer Graphics
Forum (Proceedings of Eurographics’09), 28 (2), 457–467. doi:10.1111/j.1467-
8659.2009.01385.x.

Pomeranz, A.A., 2000. ROAM Using Surface Triangle Clusters (RUSTiC). Master’s thesis.
University of California, Davis.

Reichl, F., et al., 2012. Hybrid sample-based surface rendering. In: Proceedings of 17th interna-
tional workshop on Vision, Modeling and Visualization (VMV), Magdeburg. Geneve, CH:
Eurographics, 47–54.

Röttger, S., Heidrich, W., and Seidel, H.P., 1998. Real-time generation of continuous levels of detail
for height fields. In: V. Skala, ed. Proceedings of the sixth international conference in Central
Europe on Computer Graphics and Visualization (WSCG ‘98). Plzen: Union Agency, 315–322.

Steinberger, M. and Grabner, M., 2010. Wavelet-based multiresolution isosurface rendering. In:
Proceedings of the IEEE/EG international symposium on Volume Graphics (VG ‘10),
Norrköping. Geneve, CH: Eurographics.

Tanner, C.C., Migdal, C.J., and Jones, M.T., 1998. The clipmap: a virtual mipmap. In: Proceedings
of the ACM SIGGRAPH conference. New York: ACM, 151–158.

Treib, M., et al., 2012. Interactive editing of gigasample terrain fields. Computer Graphics Forum,
31 (2pt2), 383–392. doi:10.1111/j.1467-8659.2012.03017.x.

1846 Ç. Koca and U. Güdükbay

http://dx.doi.org/10.1007/s00371-008-0214-3
http://dx.doi.org/10.1145/1015706.1015799
http://dx.doi.org/10.1080/13658816.2011.615317
http://dx.doi.org/10.1080/13658816.2011.615317
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x


Ulrich, T., 2002. Rendering massive terrains using chunked level of detail control. In: Super-size It!
Scaling up to Massive Virtual Worlds, ACM SIGGRAPH ‘02 Course Notes, No. 35. San
Antonio, TX: ACM.

Zhou, H., et al., 2007. Terrain synthesis from digital elevation models. IEEE Transactions on
Visualization and Computer Graphics, 13 (4), 834–848. doi:10.1109/TVCG.2007.1027.

International Journal of Geographical Information Science 1847

http://dx.doi.org/10.1109/TVCG.2007.1027

	Abstract
	1.  Introduction
	1.1.  Overview of the proposed approach

	2.  Related work
	2.1.  Heightmap-based representations
	2.1.1.  Triangulated irregular networks
	2.1.2.  LOD management
	2.1.3.  Terrain generation and editing
	2.1.4.  Terrain rendering

	2.2.  Volumetric representations
	2.2.1.  Surface extraction from volumetric data
	2.2.2.  Ray-casting-based volume rendering

	2.3.  Hybrid (layered) terrain representations

	3.  The proposed approach
	3.1.  Terrain representation
	3.2.  Surface extraction
	3.2.1.  Two-dimensional case
	3.2.2.  Three-dimensional case

	3.3.  Terrain surface generation
	3.3.1.  Generating vertices
	3.3.2.  Generating faces
	3.3.3.  Vertex normals
	3.3.4.  Displacement of terrain surface vertices
	3.3.5.  Terrain deformation


	4.  Performance evaluation
	4.1.  Memory usage
	4.2.  Performance
	4.2.1.  Terrain surface generation
	4.2.2.  Terrain surface deformation
	4.2.3.  Rendering


	5.  Conclusions and future work
	Acknowledgments
	References



