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1 Introduction

In this article we calculate the genus of a projective complete intersection
of any dimension and the genus of an affine complete intersection curve of
superelliptic type. The arithmetic genus of a projective complete intersection
depends on the degrees of the hypersurfaces cutting it. A formula for its genus
using only the degrees of these hypersurfaces is given by Hirzebruch in [3] as
an application of his Riemann-Roch theorem. Miranda has communicated
us the following algorithm [5]:

One has to compute the cohomology H i(OX(k)) for every complete inter-
section X ⊂ P n, for every twist k, and for every cohomology group H i. Start
with X = P n itself, where all is known. Assume you know everything when Y
is a complete intersection with degrees (d1, d2, ..., dr) and let X be a complete
intersection with degrees (d1, d2, ..., dr, dr+1). Hence X is the intersection of
Y with a hypersurface of degree dr+1. Then use the exact sequence

0 −→ OY (k − dr+1) −→ OY (k) −→ OX(k) −→ 0.

Knowing the cohomology on the left and the middle will tell you the coho-
mology on the right. Applying this recursive algorithm with X a curve gives
the genus computation as g = h1(OX).

We calculate the Hilbert polynomial of a projective complete intersection
by using the Koszul resolution. The arithmetic genus is then obtained from
the constant term of Hilbert polynomial.



In the affine case the usual procedure for finding the genus of a curve is
to find the genus of a resolution of its projective closure. This is intractable
in general. We restrict our attention to the types of curves which are used in
coding theory. These are superelliptic curves which we describe in equation
(5). Stepanov and Özbudak has calculated the genus of some elliptic type
curves in [9] using the “counting the differentials” method (for an account
of this, see [7]). Stepanov also calculates the genus of an important class
of curves in [8], see Remark 1 after Theorem (4) at the end of this arti-
cle. Özbudak has also calculated the genera of fibre product of superelliptic
curves using the “counting the differentials” and the Riemann-Hurwitz genus
formula [6].

Khovanskii has given a formula for the arithmetic genus of an algebraic
variety X defined in (C − 0)n by a nondegenerate system of polynomial
equations f1 = ... = fk = 0 with polyhedra ∆1, ...,∆k. His method depends
on choosing a toral nonsingular compactification Mn of (C − 0)n and using
an exact sequence of sheaves and cohomology groups of Mn [4].

Our method involves describing the projective closure. After describing
the ramification indices contributed by resolving the singular points at in-
finity, a direct application of the Riemann-Hurwitz formula yields the genus
as a function of the degrees of the hypersurfaces cutting the curve. We also
show how to count the regular differential on the curve.

Our main results are Theorem (1) and Corollary (2) for the projective
case and Theorem (4) and Corollary (5) for the affine cases.

We thank R. Miranda, A. Klyachko and S. Stepanov for several discus-
sions during the preparation of this work. The first author also would like
to thank W. Vasconcelos, TÜBİTAK and Rutgers University Department of
Mathematics for their generous support and hospitality during his visit.

2 Projective Case

Let S denote the homogeneous coordinate ring, k[x0, ..., xn], of Pnk , where
k is an algebraically closed field, usually C. We assume that there are
hypersurfaces H1, ..., Hr of Pnk of degrees d1, ..., dr respectively such that
Xr = H1 ∩ · · · ∩ Hr. The hypersurfaces H1, ..., Hr correspond to homoge-
neous polynomials f1, ..., fr ∈ S of degrees d1, ..., dr respectively.
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2.1 The Hilbert Polynomial of Xr

Theorem 1 The Hilbert polynomial Hr(z) of Xr is given by the following
formula

Hr(z) = ϕ(z) +
r∑

m=1

(−1)m
∑

1≤i1<···<im≤r
ϕ(z − di1 − · · · − dim) (1)

where

ϕ(z) =
1

n!
(z + 1)(z + 2) · · · (z + n) =

(
z + n
n

)
.

Proof: From [1, Theorem 2], the Koszul complexK(f1, ..., fr) (which is the
Koszul complex of the homomorphism ϕ : Sr = ⊕ri=1Sei → S = k[x0, ..., xn]
such that ϕ(ei) = fi for 1 ≤ i ≤ r) is a free resolution of S/(f1, ..., fr).
Namely, we have the following exact sequence

0→ ∧r(Sr)→ ...→ ∧2(Sr)→ Sr → S → S/(f1, ..., fr)→ 0. (2)

In [2], in order to grade

∧m(Sr) =
⊕

1≤i1<...<im≤r
Sei1 ∧ ... ∧ eim (1 ≤ m ≤ r), (3)

a degree di1 + ...+ dim is assigned to a basis element ei1 ∧ ...∧ eim , so that (2)
is an exact sequence with maps homogeneous of degree zero. Now imposing
the additive property of Hilbert polynomials on the exact sequence (2), the
formula given in (1) is obtained. 2

Corollary 2 The arithmetic genus, ga(Xr), of Xr is given by the formula

ga(Xr) =
r∑

m=1

(−1)m+n−r ∑
1≤i1<···<im≤r

ϕ(−di1 − · · · − dim). (4)
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3 Affine Case

In this section, we compute the genus of a complete intersection curve C in
A
n+1
C

given by,

yd1
1 = (x− a11)...(x− a1m)

yd2
2 = (x− a21)...(x− a2m)
...

...
ydnn = (x− an1)...(x− anm)

(5)

where 2 ≤ d1 ≤ · · · ≤ dn ≤ m− 1 and all aij’s are distinct, with aij ∈ C.
This is a smooth affine curve and its projective closure C in Pn+1

C
is

singular. Let C̃ be a resolution of C. The genus of C is then defined as the
genus of C̃. In the following subsections we will in turn describe the projective
closure of C, describe a finite map from C̃ to P1, count the ramification indices
of the points of C̃ under this map and finally apply the Riemann-Hurwitz
formula to this map to calculate the genus.

3.1 A Finite Morphism to P
1

In order to compute the genus of a nonsingular model C̃ of the projective
closure C of C we first define a finite morphism from C̃ to P1.

There exists a finite morphism

ϕ : C → C

(x, y1, ..., yn) 7→ x

C is embedded into Pn+1 the same way C embeds into P1. The morphism ϕ
extends to C algebraically by defining

ϕ : C → P
1

[x : y1 : · · · : yn : 1] 7→ [x : 1]

[0 : y1 : · · · : yn : 0] 7→ [1 : 0]

See also the parametrization (8) for a justification of this definition. If C̃ is a
resolution of C, then C and C̃ are isomorphic everywhere except at finitely
many points which correspond to the points at infinity and ϕ extends over
to C̃ by sending all the points at infinity to [1 : 0] as above.
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Thus we have a map

ϕ : C̃ → P
1

which is a morphism of degree d1d2...dn.

3.2 Ramifications of ϕ

We first examine the n = 2 case with d = d1 = d2. Consider the curve C1

given by the equations

yd1 = xm + a1x
m−1 + ...+ am−1x+ am =: F1(x)

yd2 = xm + b1x
m−1 + ...+ bm−1x+ bm =: F2(x)

(6)

with 2 ≤ d ≤ m − 1. For the points in the affine plane we can take x as a
local parameter. When x is not equal to any of the aij’s then the ramification
of ϕ at x is 1. When x = aij, then the ramification of ϕ at x is d. (For the

general case of equation (5) the ramification at aij is d1 · · · d̂i · · · dn, where d̂i
denotes that the term should be omitted.)

To examine the points at infinity choose a local parameter t with x = 1/t.
Then we have

yd1 = xm + a1x
m−1 + · · ·+ am−1x+ am

= (1/t)m + a1(1/t)m−1 + · · ·+ am−1(1/t) + am

= (1 + a1t+ · · ·+ am−1t
m−1 + amt

m)/tm.

Let

d = ac

m = bc, (a, b) = 1, c ≥ 1. (7)

Define a new local parameter T such that

T a = t.

Then the above parametrization of yd1 becomes

yac1 = (1 + a1T
a + · · ·+ amT

abc)/T abc.
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Similarly we have

yac2 = (1 + b1T
a + · · ·+ bmT

abc)/T abc.

Let H1(T ) and H2(T ) be power series such that yac1 = Hac
1 (T a)/T abc and

yac2 = Hac
2 (T a)/T abc. Then the points around infinity are parametrized as

P (α1, α2, T ) =

[
T b

α1T aH1(T a)
: 1 :

α2

α1

H2(T a)

H1(T a)
:

T b

α1H1(T a)

]
, (8)

where α1 and α2 are d-th roots of unity. Note that H1(0) = H2(0) = 1 and
thus the points at infinity are of the form [0 : 1 : α2/α1 : 0]. In the T -plane
let T1 and T2 be two points such that T2 = λT1 where λ is an a-th root of
unity. We have T a1 = T a2 but T b1 6= T b2 since (a, b) = 1. Hence P (α1, α2, T1) 6=
P (α1, α2, T2). As T ranges in the T -plane P (α1, α2, T ) describes a branch of
the curve at infinity. There are then d2/a = dc branches at infinity. Since
there are d points at infinity, around each such point there are then c branches
making the total of dc branches. Each branch corresponds to a different point
on the resolution so there are dc points on the resolution corresponding to the
points at infinity, i.e. the cardinality of the set ϕ−1([1 : 0]) ⊂ C̃ is dc. Total
ramification index for the preimage of any point under ϕ, i.e. the degree of
ϕ, is d2. This gives a ramification index of a for each point in the resolution
corresponding to the point at infinity.

In the general case when d = d1 = · · · = dn, the total ramification index
of ϕ is dn, there are dn−1c branches at infinity each having ramification index
a. This is the case for the curve define with the equations (9).

In the most general case, see equations (5), when d = d1 = · · · = ds <
· · · < dn there are ds−1c branches at infinity each with ramification index
ads+1 · · · dn. In this case the cardinality of ϕ−1([aij : 1]) is d1 · · · d̂i · · · dn and
the ramification index of each such point is di − 1. The total degree of ϕ is
dsds+1 · · · dn.

Before we apply the Riemann-Hurwitz formula to find the genus we sum-
marize our observations about the points at infinity of the curve C of equation
(5) in the following corollary.

Corollary 3 Let C be the curve in An+1 defined by (5), with d1 ≤ d2 ≤
. . . ≤ dn. Assume that for some s the first s di’s are equal, i.e. d = d1 =
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d2 = ... = ds < ds+1 < ... < dn. Then the projective closure C of the curve C
in Pn+1 is the union of C and the points of the form,

[x : y1 : · · · : ys : ys+1 : · · · : yn : z] = [0 : 1 : α2 : · · · : αs : 0 : · · · : 0]

where αd2 = ... = αds = 1.

2

3.3 The Genus Calculation

The Riemann-Hurwitz formula for the map ϕ takes the form

gC = 1− degϕ+
1

2

∑
x∈C

(ex − 1)

= 1− degϕ+
1

2

∑
x∈ϕ−1([∗:1])

(ex − 1) +
1

2

∑
x∈ϕ−1([1:0])

(ex − 1),

where ex denotes the ramification index.

Theorem 4 Let C be the complete intersection curve given by,

yd1 = (x− a11)...(x− a1m)
yd2 = (x− a21)...(x− a2m)

: :
ydn = (x− an1)...(x− anm)

(9)

where d + 1 ≤ m, and all aij’s are distinct. The genus of C is given by the
formula

gC = 1− 1

2
(d−mnd+mn+ c) dn−1 (10)

where c = (d,m).

Proof: The degree of ϕ is dn. The ramification index at smooth finite
points is 1 and for each point x ∈ C for which ϕ(x) = aij the ramification
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index is d. There are dn−1 points in ϕ(x) = aij and the number of aij’s is
mn. This gives 1

2
mndn−1(d− 1) for the first summation in (10).

There are dn−1c points on the resolution of the projective closure of C
corresponding to points at infinity. Each such point has ramification index
a. This then gives 1

2
dn−1c(a− 1) for the second summation in (10). Putting

these in and simplifying gives the seeked formula. 2

Remark 1: Putting in d = 2, c = 1 we recover Stepanov’s formula
1 + (mn− 3)2n−2, see [8, p370, Lemma 1]. Stepanov arrives at this formula
by constructing an explicit basis for the differential forms of the curve. He
works over a finite field Fq of characteristic p > 2.

We finally give the formula for the most general case.

Corollary 5 Let C be the complete intersection curve given by (5), with
d1 ≤ d2 ≤ . . . ≤ dn and with the first s di’s equal to d. The genus of C is
given by the formula

gC = 1− 1

2
(d−mnd+ms) ds−1ds+1 · · · dn −

1

2
ds−1c

−md
s

2

n∑
i=s+1

ds+1 · · · d̂i · · · dn, (11)

where c = (d,m).

2

Remark 2: This corollary can be proved in the same way as Theorem
(4). The ramification values required for the formula are given at the end of
section (3.2).

Remark 3: Note that when we put s = n in the above formula (11) we
recover the formula (10) of Theorem (4). However this is only an algebraic
phenomena since geometrically the two formulas are derived from different
configurations at infinity.

8



3.4 Counting the Differentials

It is of interest to summarize the method of counting the regular differentials
for the curve C of equation (9). See also the equations (7) for the conventions
in use. For any point in the affine space let x be a local parameter and
consider the regular 1-form

ω
(j1,...,jσ)
i1,...,iσ =

dx

yj1i1 · · · y
jσ
iσ

where 1 ≤ σ ≤ n, 1 ≤ i1 < · · · < iσ ≤ n and 1 ≤ j1, ..., jσ ≤ d − 1. By
checking the order of vanishings of x and yi’s it can be shown that the form
ω

(j1,...,jσ)
i1,...,iσ is regular at any point in the affine space. Let x∞ be any point at

infinity on the projective closure of C. Let ν∞ denote the order of vanishing
of a function at x∞. Choosing t = 1/x as a local parameter around x∞ we
observe that

ν∞(x) = −a
ν∞(yi) = −b.

Let ω̄
(j1,...,jσ)
i1,...,iσ denote the expression for ω

(j1,...,jσ)
i1,...,iσ around x∞. We then have

ν∞(ω̄
(j1,...,jσ)
i1,...,iσ ) = (j1 + · · ·+ jσ)b− a− 1

and if P (x) is a polynomial then P (x)ω
(j1,...,jσ)
i1,...,iσ is regular at x∞ if and only

if degP (x) ≤ ((j1 + · · · + jσ)b − a − 1)/a. We can then give a basis for the
regular differential 1-forms;

{xrω(j1,...,jσ)
i1,...,iσ | σ = 1, ..., n, 1 ≤ i1 < · · · < iσ ≤ n,

1 ≤ j1, ..., jσ ≤ d− 1,

0 ≤ r ≤ ((j1 + · · ·+ jσ)b− a− 1)/a }.

The cardinality of this set then gives the genus of the curve C. It turns out
that the required formula is

g(C) =
n∑
σ=1

∑
1≤i1<···<iσ≤n

d−1∑
j1=1

· · ·
d−1∑
jσ=1

|| (j1+···+jσ)b−1
a

||, (12)
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where || || denotes the greatest integer function. Note that this formula now
works on any algebraically closed field of any characteristic, when a 6= 0.

Stepanov has calculated this sum for d = 2 and c = 1 over a field of
characteristic p > 2, [8, p372], (in that case d = a = 2 and m = b is odd).

The sceptic reader can check the validity of equation (12) using a com-
puter; as equation (10) suggests the genus grows exponentially as n increases
so we suggest an example with a small n, for example n = 3. Let d = 66,
m = 385. Then a = 6, b = 35 and c = 11. Putting these in equations (10)
and (12) both gives the genus as 163 345 645.
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