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Abstract. We studied the effects of nonmagnetic impurities on high-temperature superconductors by solv-
ing the Bogoliubov-de Gennes equations on a two-dimensional lattice via exact diagonalization technique
in a fully self-consistent way. We found that s-wave order parameter is almost unaffected by impurities
at low concentrations while dx2−y2-wave order parameter exhibits a strong linear decrease with impurity
concentration. We evaluated the critical impurity concentration nc

i at which superconductivity ceases to
be 0.1 which is in good agreement with experimental values. We also investigated how the orthorhombic
nature of the crystal structure affects the suppression of superconductivity and found that anisotropy
induces an additional s-wave component. Our results support dx2−y2-wave symmetry for tetragonal and
s+ dx2−y2-wave symmetry for orthorhombic structure.

PACS. 74.72.-h High-Tc compounds – 74.62.Dh Effects of crystal defects, doping and substitution –
74.20.-z Theories and models of superconducting state

The symmetry of the order parameter (OP) in high Tc

cuprates is important both for understanding the mech-
anism of superconductivity and also for technological ap-
plications [1]. For example, d-wave symmetric OP effec-
tively refutes phonon mechanism and for a device made
of a d-wave superconductor having no gap in energy spec-
trum, no refinement would get rid of the dissipation at low
frequencies, even at low temperatures. 3d metal (Zn, Ni,
Al, Ga, Fe, ...) atom substitution for Cu atoms in high-Tc

cuprates may identify the symmetry of the OP [2]. It is
a well known fact that for conventional superconductors
having isotropic order parameter, nonmagnetic impurities
with small concentrations have no effect on critical tem-
perature [3–6] while magnetic impurities act as strong pair
breakers, and as a result of this superconductivity is sup-
pressed very rapidly [7–9]. On the other hand, nonmag-
netic impurities are very effective in anisotropic supercon-
ductors [10–12]. For a pure superconductor, anisotropy
leads to increase in Tc [10,13,14] and the critical tem-
perature suppression rate with increasing impurity con-
centration is proportional to the strength of anisotropy
[10–12]. Unlike the conventional superconductors, in hole-
doped [15] high-Tc cuprates both magnetic (Ni) and non-
magnetic (Zn) impurities suppress Tc very effectively.

Dependence of the superconducting properties (criti-
cal temperature, order parameter, density of states, ...) on
impurity or point defect concentration is a subject of on-
going research. So far, most of the experiments have been
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performed to investigate effects of Zn and Ni substitution
in YBa2Cu3O7−δ compounds [16–39]. Alternatively, dis-
order can also be introduced by creating defects with ion
irradiation [40–44], but in this case affected region is often
uncontrollable.

In spite of the complexity of the high-Tc cuprates
(boundaries, defects, ...), insufficient control of the actual
impurity or point defect concentration, solubility, and ho-
mogeneity of the distribution of the dopants which may
lead to contradictory data, we can summarize some of the
experimental results as follows:

– For YBa2(Cu1−xZnx)3O7−δ compounds, at small con-
centrations, x < 0.04, Zn ions occupy preferably Cu-
sites in the CuO2 planes, however for x > 0.04 the
substituent starts to occupy Cu-sites in the chain
[16,19,45–47]. Since this compound has two planes and
one chain in a unit cell, for x < 0.04 the actual (ef-
fective) impurity concentration ni, i.e. the number of
impurities per unit cell per CuO2 plane, becomes 3x/2.

– The critical temperature decreases linearly with in-
creasing impurity concentration in substitution [16,29]
(for x > 0.04 the drop rate decreases due to partial
occupancy of Zn at chain sites) and point defect con-
centration in irradiation [44] experiments.

– Due to orthorhombicity of YBCO material, CuO2

planes exhibit an anisotropic behavior and admixture
of d- and s-wave is possible [35,48–50].

– Zn substitution does not alter the carrier concentration
in CuO2 planes [32].
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On the theoretical side, the existing pair-breaking
models overestimate the suppression of critical temper-
ature and predict an increasing slope with increasing im-
purity concentration [51–54] which contradicts the ob-
served linear dependence of Tc on ni. The effects of
neither magnetic (Ni) nor nonmagnetic (Zn) impurities on
the superconducting properties of the cuprates have been
explained clearly. The main reason for the discrepancy
between theory and experiment is that the conventional
Abrikosov-Gor’kov (AG)-type pair-breaking models ig-
nore the position dependence of the order parameter near
impurity sites. Recently, Franz and his coworkers [55], and
Zhitomirsky and Walker [56] argued that spatial variation
of the order parameter must be taken into account for
short coherence length superconductors.

In the present paper, we investigate effects of nonmag-
netic impurities on high-Tc cuprates for both tetragonal
and orthorhombic phases by solving the Bogoliubov-de
Gennes (BdG) equations [57,58] in a fully self-consistent
way. In particular, we address the possibility of extracting
the OP symmetry by examining the effects of nonmagnetic
impurities. Our results support dx2−y2-wave pairing sym-
metry for tetragonal and s+dx2−y2-wave for orthorhombic
structure. The possibility of admixture of s- and d-wave
symmetries have already been proposed in various exper-
imental [49,50] and theoretical works [59–61,51].

The BdG equations on two-dimensional lattice have
the following form [58,62]∑

j

(
Hij ∆ij

∆?
ij −H

?
ij

)(
un(j)
vn(j)

)
= En

(
un(i)
vn(i)

)
, (1)

where un(i) and vn(i) are quasiparticle amplitudes at site
i with eigenvalue En, and ∆ij is the pairing potential. The
normal-state part of the Hamiltonian can be written as

Hij = (tij + Uijnij/2)(1− δij)

+(V imp
i − µ+ Uiinii/2)δij , (2)

where tij is the hopping amplitude, µ is the chemical po-
tential, Uijnij/2 and Uiinii/2 are the Hartree-Fock poten-
tials with on-site interaction Uii and off-site interaction
Uij , respectively. Finally V imp

i is the impurity potential.
The pairing potentials are defined by

∆ij = −UijFij . (3)

The charge density nij in the Hartree-Fock potentials and
the anomalous density Fij in the pairing potential are de-
termined from

nij =
∑
σ

〈Ψ†σ(i)Ψσ(j)〉, (4)

Fij = 〈Ψ↑(i)Ψ↓(j)〉, (5)

where σ is spin index, and Ψ†σ(i) and Ψσ(i) are related
to the quasiparticle creation (γ†nσ) and annihilation (γnσ)
operators[

Ψ↑(i)

Ψ†↓ (i)

]
=
∑
n

[
γn↑

(
un(i)
vn(i)

)
+ γ†n↓

(
−v?n(i)
u?n(i)

)]
, (6)

where γ and γ† satisfy the Fermi commutation relations.
The self-consistency conditions can be written in terms of
un, vn, and En

nij = 2
∑
n

u?n(i)un(j)f(En)+vn(i)v?n(j)[1− f(En)], (7)

Fij =
∑
n

un(i)v?n(j)[1− f(En)]−v?n(i)un(j)f(En), (8)

where f(En) = 1/[exp (En/kBT ) − 1] is the Fermi distri-
bution function.

We solve the BdG equations on a 20×20 square lattice
(hence, we diagonalize a 1600 × 1600 matrix) with peri-
odic boundary conditions by exact diagonalization tech-
nique using IMSL subroutines. After choosing a suitable
initial guess for OP, we solve equation (1). Next, we cal-
culate the new charge density nij and anomalous density
Fij via equations (7, 8) and iterate this procedure un-
til a reasonable convergence is achieved. The BdG equa-
tions are solved self-consistently. Self-consistency condi-
tions (Eqs. (7, 8)) lead to 10 separate equations. The
first five (obtained from Eq. (7)) renormalize on-site en-
ergies and hopping matrix elements while the last five
(obtained from Eq. (8)) affect the on-site and nearest-
neighbor interaction terms. Although, the first five of these
self-consistency conditions can be neglected for conven-
tional superconductors where U/t� 1, for strong interac-
tion case we should keep them, since they play important
role especially in the presence of impurities. The impu-
rity potential V imp

i is treated in the unitary limit, i.e.

V imp
i � t, and taken nonzero for randomly chosen lattice

sites.
We first solve the BdG equations for tetragonal case

tx = ty = t where tx and ty are nearest-neighbor hopping
amplitudes along x and y directions, respectively. For s-
wave OP symmetry we assume that on-site (attractive) in-
teraction is Uii = −1.7t and there is no nearest-neighbor
interaction. In the case of d-wave OP symmetry on-site
(repulsive) interaction is Uii = 1.4t and nearest-neighbor
(attractive) interaction is Uij = −1.4t. With this choice
of parameters we fix the chemical potential µ so that the
band filling factor is 〈n〉 ' 0.8 and the zero temperature
coherence length is ξ0 ' 4a. These values are in good
agreement with the commonly accepted experimental
values.

Figure 1 shows that, at low impurity concentrations
s-wave OP symmetry is almost unaffected by the impu-
rities or point defects. Although we use several on-site
interaction values by keeping the band filling factor and
zero temperature coherence length constant, we do not
get any qualitative change. This result is consistent with
Anderson theorem [5] and AG theory [8]. However, exper-
imental data for high-Tc cuprates exhibit a much stronger
suppression of superconductivity with increasing disorder.

On the other hand, our d-wave calculations give re-
sults similar to the behavior observed in experiments.
For d-wave symmetry we find that on-site pairing poten-
tial is negligibly small. In Figure 1, ∆d is amplitude of
the nearest-neighbor pairing potential. We obtain a linear
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Table 1. The critical temperature Tc0 and the initial drop χ =
[(Tc0 − Tc(x))/Tc0]/x in various Zn doped YBCO compounds.
In constructing the table, we used Tc(x) values at x < 0.04 for
which χ is almost x independent.

Material Tc0 [K] χ Reference

YBa2(Cu1−xZnx)3O7 92 −13 [16]
YBa2(Cu1−xZnx)3O7−δ 90 −12.3 [18]
YBa2(Cu1−xZnx)3O7 90 −10.5 [19]
YBa2(Cu1−xZnx)3O7 92 −12.3 [23]
YBa2(Cu1−xZnx)3O7 92 −15 [25]
YBa2(Cu1−xZnx)3O7 87 −8.7 [29]
YBa2(Cu1−xZnx)3O6.9 93.6 −6.8 [34]
YBa2(Cu1−xZnx)3O6.9 93 −15 [35]
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Fig. 1. Normalized s- and d-wave order parameters, 〈∆d〉/∆d0

and 〈∆s〉/∆s0, versus impurity concentration ni for tetragonal
structure. ∆d0 and ∆s0 are the magnitudes of the order pa-
rameters in the absence of the impurities, and 〈· · · 〉 is taken
over 20 different impurity distributions. Solid lines represent
the best linear fit to the data.

decrease in the mean OP, which is assumed to be propor-
tional to the critical temperature Tc [67], and the slope of
the straight line is in good agreement with the experimen-
tal data summarized in Table 1. The critical impurity or
point defect concentration nc

i at which superconductivity
ceases is also near to experimental value ' 0.1. In compar-
ing our results with experimental data we should keep the
following point in our mind. For x < 0.04, substitutional
impurities go preferentially to CuO2 planes [16,19,45–47]
and hence the actual concentration is 3x/2. However for
higher concentrations some of the Zn atoms occupy the
chain sites, and in this case we cannot relate the in plane
concentration to the actual one. Therefore, we used the
initial points, i.e. x < 0.04, to evaluate the initial drop
in Table 1. To obtain the experimental value for criti-
cal impurity concentration nc

i , we extrapolated the linear
parts of the experimental curves to intersect the impurity
concentration axes.
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Fig. 2. Normalized order parameter versus impurity concen-
tration for orthorhombic structure. ∆dx0 is x component of
the order parameter in the absence of impurities. Solid line
represents the best linear fit to the data.
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Fig. 3. Normalized order parameter versus impurity concen-
tration for orthorhombic structure. ∆dy0 is y component of the
order parameter in the absence of impurities. Solid line repre-
sents the best linear fit to the data.

Similar equations have already been solved by Xiang
and Wheatley [63], however our additional self-consistency
conditions and choice of parameters lead to a correct pre-
diction for the critical impurity concentration. It is im-
portant to note that we can not have a self-consistent
solution of the OP for extended s-wave by using any
physical values for the above model parameters. This fact
was pointed out by Wang and MacDonald [64], and they
found that extended s-wave component is smaller than
d-wave component by about two orders of magnitude.

When we introduce an orthorhombic distortion by tak-
ing ty = 1.5tx, as suggested by experimental data [35,48],
we observe that an s-wave component (of approximately
ten percent of d-wave components) is induced. Figures 2
and 3 show the variation of ∆dx and ∆dy components,



290 The European Physical Journal B

0.00 0.02 0.04 0.06 0.08 0.10
ni

0.0

0.2

0.4

0.6

0.8

1.0

<
∆ s>

/∆
s0

Fig. 4. Normalized s-wave component of the order parame-
ter versus impurity concentration for orthorhombic structure.
∆s0 is the magnitude of the order parameter in the absence of
impurities.

respectively. In the absence of disorder, ∆dy/∆dx ' 1.5
with ∆dx = 0.082t. With increasing disorder, the larger
one, i.e. 〈∆dy〉, is suppressed faster. When we reach the
critical impurity concentration both components vanish
simultaneously. Moreover, d-wave components of the OP
decrease linearly with ni and vanish at ni ' 0.1 as in the
case of pure d-wave symmetry. Here 〈· · · 〉 denotes averag-
ing over 20 different impurity configurations.

As can be seen from Figure 4, s-wave component
also decreases with ni, however while d-wave components
exhibit a linear dependence on impurity concentration
s-wave component shows a downward curvature similar
to prediction of the AG theory.

In conclusion, we investigated the effects of nonmag-
netic impurities and point defects within a BCS mean-
field framework by means of BdG equations. For tetrago-
nal structure, we found out that the observed suppression
of superconductivity, when impurities are substituted or
point defects are introduced, can be explained only if the
OP is dx2−y2-wave symmetric. In case of s-wave symmetry,
superconductivity is almost unaffected by disorder. When
a slight anisotropy is introduced by distorting copper ox-
ide planes from a square to rectangular lattice we observed
that a small amount of s-wave contribution is induced.
For both tetragonal and orthorhombic structures we eval-
uate the critical concentration at which superconductivity
ceases to be very near to experimental value ' 0.1.

This work was supported by the Scientific and Technical
Research Council of Turkey (TUBITAK) under grant
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