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Abstract 

We study an even-dimensional manifold with a pseudo-Riemannian metric 

with arbitrary signature and arbitrary dimensions. We consider the Ricci flat 

equations and present a procedure to construct solutions to some higher(even-

) dimensional Ricci flat field equations from the four-dimensional Ricci flat 

metrics. When the four-dimensional Ricci flat geometry corresponds to a 

colliding gravitational vacuum spacetime our approach provides an exact 

solution to the vacuum Einstein field equations for colliding gravitational 

plane waves in an (arbitrary) even-dimensional spacetime. We give explicitly 

higherdimensional Szekeres metrics and study their singularity behaviour. 

PACS numbers: 0450, 0420J, 0430 

1. Introduction 

In the general theory of relativity there exist several solution-generating techniques for the 

vacuum and electrovacuum Einstein field equations [1,2]. These techniques basically allow 

us to construct metrics from the known metrics. Recently [3,4], we have given a direct 

construction of the metrics of the 2N-dimensional Ricci flat geometries from the 

twodimensional minimal surfaces in a pseudo-Euclidean 3-geometry. In this work we present 

a procedure to obtain solutions to some higher-dimensional Ricci flat field equations from 

some four-dimensional Ricci flat metrics. We show that starting from a Ricci flat metric of a 

four-dimensionalgeometryadmittingtwoKillingvectorfieldsitispossibletogenerateawhole 

class 2N-dimensional Ricci flat metrics. Here, in general, both the four-dimensional and 

2Ndimensional geometries have arbitrary signatures. Among these there are some geometries 

which have physical importance in the general theory of relativity and also in the low-energy 

limit of string theory. For example, if the four-dimensional geometry describes the colliding 

gravitationalplane-wavegeometrythenthe2N-dimensionalgeometry,forallN > 2,describes 

colliding vacuum gravitational plane waves in the higher-dimensional Einstein theory. We 
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give a direct construction of the 2N-dimensional metrics from the four-dimensional Ricci flat 

metrics. As an explicit example we give a higher-dimensional extension of the Szekeres [5] 

colliding vacuum gravitational plane-wave metrics. 
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The singularity structure of these higher-dimensional solutions is examined by using the 

curvature invariant. It is shown that the singularity becomes weaker or stronger depending 

upontheparametersofthesolution. Hencethesingularitycharacterofthesolutionmaychange with 

increasing numbers of dimensions. 

Let M be a (2N = 2 + 2n)-dimensional manifold with a metric ds2 = 

gαβ dxα dxβ 

 = gab(xc)dxa dxb + HAB(xc)dyA dyB, (1) 

where xα = (xa,yA), xa denote the local coordinates on a two-dimensional manifold and yA denote 

the local coordinates on a 2n-dimensional manifold and a,b = 1,2, A,B = 1,2,...,2n. The 

Christoffel symbols of the metric gαβ are given by 

 , ,

 (2) 

(3) 

where the are the Christoffel symbols of the two-dimensional metric gab. 

The components of the Riemann tensor are given by 

 . (4) 

The components of the Ricci tensor are 

(5) 

(6) 

(7) 

where Rab is the Ricci tensor of the two-dimensional metric gab. 

2. Ricci flat geometries 

The Ricci flat conditions or the vacuum Einstein field equations are given by 

 , (8) 

 , (9) 

where H is a 2n×2n matrix of HAB and H−1 is its inverse and  is the covariant differentiation with 

respect to the connection  (or with respect to metric gab). We may rewrite the 

twodimensional metric as 
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 gab = e−Mηab, (10) 

where η is the metric of flat 2-geometry with arbitrary signature (0 or ±2) and the function M 

depends on the local coordinates xa. The corresponding Ricci tensor and the Christoffel 

symbol are 

(11) 

. 

Now let H be a block-diagonal matrix of HAB and each block is a 2 × 2 matrix 

 

with det hi = 1 and i = ±1 for all i = 1,2,...,n. Then 

 n n 

 tr  (12) 
 i=1 i=1 

and 

 det H = e2U,  (13) 

With the above ansatz we can write the higher-dimensional vacuum field equations as 

0 (14) 

and 

 ∂a[ηabeU∂bui] = 0, (15) 

∂a[ηabeUh−i 1∂bhi] = 0, (16) where there is no sum over i (for all i = 

1,2,...,n). 

3. Four-dimensional geometries 

We first consider the four-dimensional case (n = 1). We distinguish the metric functions of 

the four-dimensional case from the higher-dimensional (n> 1) metric functions by letting 

 M = M, U = U, h = h0. (17) 

Since there are infinitely many possible solutions of the vacuum four-dimensional Ricci flat 

equations we shall denote Mi,h0i, i = 1,2,...,m to distinguish this difference. We label all these 

different solutions by using a subscript i = 1,2,...,m. Any two different solutions either have 

different analytic forms or have the same analytic forms but with different integration 
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constants. We assume that all of these different solutions have the same metric function U. By 

this choice we lose no generality because it is a matter of choosing a proper coordinate system. 

The field equations are 

 (18) 

and  

∂a[ηabeU∂bU] = 0, 

∂a[ηabeUh−0i1∂bh0i] = 0. 

For each i = 1,2,...,m where m is an arbitrary integer, each triple 

(19) 

(20) 

(Mi,h0i,U) 

forms a solution to the four-dimensional vacuum field equations and we assume that the 

function U, for all of these different solutions, is the same. 

4. Higher-dimensional Ricci flat geometries 

We start with the assumptions that U = U where the function U is defined in (13), hi = hoi and 

m = n and using (18) into (14) we obtain 

(21) 

where . Define M −M˜ = M¯ , the above equation can be written as 

 (22) 

We assume that U,h0i for i = 1,2,...,n are given functions of xa. Hence given U we can solve 

(15) for ui with i = 1,2,...,n, or 

 2 ab 

 ∇ηui + η U,aui,b = 0. (23) 

Then inserting U,ui and hoi in (22) we solve the function M¯ . Then we have the following 

theorem. 

Theorem. 
If 

U,hoi 
and 

Mi, for each i = 1,2,...,n, form a solution to the four-dimensional 

Ricci flat field equations for the metric 

ds2 = e−Mi ηab dxa dxb + eU(h0i)ab dya dyb, i = 1,2,...,n, (24) where Mi = Mi(xa), U = 

U(xa) and h0i = h0i(xa), then the metric of the (2n + 2)- 
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dimensional geometry is defined below 

n 

 d , (25) 
i=1 

solves the Ricci flat equations, where solves (22) 

and ui solve (23). Here the local coordinates of the (2n + 2)-dimensional geometry are given 

by . 

We shall now consider some examples which will be obtained by the application of the 

theorem. We shall consider the case which has a physical importance as far as Einstein’s 

theory of general relativity is concerned. We let i = 1 for all i = 1,2,...,n and 

 

then the equations in (22) become 

 ,

 (26) 

(27) 

where the (uv) component of (22) is satisfied identically by virtue of equations (26), (27), (23) 

and (19). The above equations remind us of the construction of the solutions of the Einstein– 

Maxwell-massless scalar field equations from the metrics of the Einstein–Maxwell 

spacetimes [8]. Equation (23) becomes 

 2ui,uv + U,uui,v + U,vui,u = 0. (28) 

Hence for all n > 1 to find a solution of higher-dimensional colliding gravitational vacuum 

plane waves we have to solve the above equations (26)–(28) for M¯ and ui,i = 1,2,...,n. We 

shall now make a further assumption which solves (28) identically. Let ui = miU where mi (i = 

1,2,...,n) are real constants satisfying only the condition 

 , (29) 

otherwise they are arbitrary. Then the solution of (26) and (27) can be found as  

e−M¯ = (fugv)−n+1(f + g)(m2+n−2)/2. 

Here we took 

(30) 

eU = f(u) + g(v), (31) 

whichisthegeneralsolutionof(19)wheref(u)andg(v)arearbitrary(differentiable)functions of u 

and v, respectively, and 

 . (32) 
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Hence according to our theorem given above this completes the construction of the metric of 

the corresponding vacuum spacetimes of dimension 2n + 2. Given any four-dimensional 

metric of colliding vacuum gravitational plane-wave geometry (see [6] for details) we have 

their extensions to higher dimensions for arbitrary n without solving any further differential 

equations. Sometimes to avoid some undesired singularities on the whole (2n+2)-dimensional 

geometry it may be necessary to keep all the integration constants of the original 

fourdimensional metric variables (Mi,U,h0i). The boundary conditions discussed in [5] and in 

[6,chapter 7, pp 46–7] of the four-dimensional metrics should be used for the functions Mi to 

make them continuous across the boundaries u = 0,v = 0. Rather we have to use them to make 

the (2n + 2)-dimensional metric function M continuous across these boundaries. 

5. Higher-dimensional Szekeres solution 

For illustration let us take the Szekeres solutions [5,6] (which contains the Khan–Penrose [7] 

solution as a special case) as the four-dimensional vacuum solutions. They are given by 

 ds2 = 2e−Mi dudv + eU−Vi dx2 + eU+Vi dy2, i = 1,2,...,n (33) 

where 

 
where ki, ,i and ci are constants for all i = 1,2,...,n, and 

 . (36) 

Here 2, and 2 are also arbitrary constants. To avoid the discontinuity of the 

function e−Mi along the boundaries u = 0 and v = 0 some relations among ki,,i and n1,n2 are 

needed. We shall not set these relations, because in our case the continuity of the function e−M 

is important. For this purpose we give similar relations among these constants. Let us 

first define 

 ,

 (37) 

and let 

(38) 

where n1  2. We observe that the constants k and , are restricted to the range satisfying 

 , . 

It is now easy to calculate M which is continuous across the boundaries u = 0 and v = 0 (by 

virtue of the conditions (38)). It reads 
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 e . (39) 

We also set . Hence the metric of the (2n + 2)-dimensional spacetime 

becomes 
n 

 d ), (40) 
i=1 

where mi,i = 1,2,...,n are constants with the condition given in (29) and Vi are given in (34). 

Here x1 = x,y1 = y. When n = 1 we have m1 = 1, m = 1, s = k, which corresponds to the four-

dimensional case. 

6. Curvature singularities 

Next, wecalculatethecurvatureinvariantofthemetric(1). ThecomponentsoftheRiemannian 

tensor are 

, 

The curvature invariant is defined by 

 I = RµναβRµναβ. (41) 

This can be written as 

 I = RabcdRabcd + RABDERABDE + 2RABabRABab + 4RaAbBRaAbB, (42) 

where 

, 

We may, in general, discuss the singularity structure of colliding gravitational plane waves in 

2n + 2 dimensions, but the higher-dimensional Szekeres vacuum solutions give a similar 

feature of this problem. First of all the solutions have delta function curvature singularities 

across the boundaries  and  when n1 = n2 = 2. For other values of 

n1 > 2 and n2 > 2 the curvature has a Heaviside step function discontinuity across these 

boundaries. In addition to these discontinuities across the boundaries the spacetime has an 
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essential singularity on the surface f(u)+g(v) = 0. For this purpose we shall find the form of 

the curvature invariant I as f + g → 0, which is the singular surface for the four-dimensional 

case. We find that 

 I ∼ (fugv)2(f + g)−µ, (43) 

where µ = k2 + ,2 + m2 + 2s + 2. For the four-dimensional case (n = 1) let us choose k = k¯1,, = 

,¯1, m1 = 1 and m2 = 1. Hence in this case + 3. We have 

< 2, 1 < 2 and 1 2. 

Hence the constant m plays an important role in the higher-dimensional metrics. On the 

constants mi,i = 1,2,...,n we only have the restriction (29). Hence as f + g → 0 we obtain 

. 

Here we have made use of conditions (38) for k and , and exactly similar conditions on k¯1 

and 

,¯1 which imply that  1/n2). This means that the 

singularity structure in the higher-dimensional spacetimes can be made weaker and stronger 

than the four-dimensional cases by choosing the constants mi,ki and ,i properly. We have 

enough freedom to do this for higher values of n. 

7. Conclusion 

We have studied some Ricci flat geometries with arbitrary signatures. We proved a theorem 

saying that to all Ricci flat metrics of four-dimensional pseudo-Riemannian geometries 

admitting two Killing vector fields there corresponds a class of Ricci flat metrics for some 

(2n + 2)-dimensional pseudo-Riemannian geometries. As an application we presented an 

explicitconstructionof(2n+2)-dimensionalmetricsofcollidinggravitationalwavespacetimes 

from given four-dimensional metrics. We gave a higher-dimensional generalization of the 

Szekeres metrics and discussed the singularity structure of the corresponding spacetimes. 

Further construction of higher-dimensional colliding gravitational plane-wave metrics will be 

communicated elsewhere. A possible extension of our work to the low-energy limit of string 

theory is possible for an arbitrary n. Another application of our approach presented here may 

be to the colliding gravitational plane-wave problem for the Einstein–Maxwell-dilaton field 

equations [9]. 
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