
MAY/JUNE 2001 1094-7167/01/$10.00 © 2001 IEEE 33

W e a r a b l e  A I

Vision-Based Single-
Stroke Character
Recognition for
Wearable Computing
Ömer Faruk Özer, Bilkent University
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P articularly when compared to traditional tools such as a keyboard or mouse,

wearable computing data entry tools offer increased mobility and flexibility.

Such tools include touch screens, hand gesture and facial expression recognition,

speech recognition, and key systems.

However, making data entry easy poses a chal-
lenge. New approaches (see the sidebar, “Useful
URLs”) such as one-handed chording keyboards
help us understand the problems and complexities.
Using the character recognition systems developed
in document analysis, computer vision-based man–
machine communication systems are possible.1,2 For
example, personal digital assistants let users write
rather than type on a small keyboard, thanks to the
success of unistroke, isolated character recognition
systems.3,4 In most of the new data entry approaches,
the rate of data entry is lower than that of the tradi-
tional keyboard- or mouse-based entry. On the other
hand, fast data entry systems require a learning phase
most people would rather avoid.

In this article, we describe a new approach for rec-
ognizing characters drawn by hand gestures or by a
pointer on a user’s forearm captured by a digital cam-
era. We draw each character as a single, isolated
stroke using a Graffiti-like alphabet. Our algorithm
enables effective and quick character recognition. The
resulting character recognition system has potential
for application in mobile communication and com-
puting devices such as phones, laptop computers,
handheld computers, and personal data assistants.

The recognition system and our
algorithm

Consider this scenario: A user draws unistroke,
isolated characters with a laser pointer or a stylus on
their forearm or a table. A camera on their forehead
records the drawn characters and captures each char-
acter in sequence. The image sequence starts when
the user turns the pointer on and ends when they turn
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it off. Thus, discontinuous pointer move-
ments separate each character.

In our approach, a chain code describes the
unistroke characters drawn. A chain code is a
sequence of numbers between 0 and 7
obtained from the quantized angle of the laser
point’s beam in an equally timed manner. We

extract chain code from the beam’s relative
motion between consecutive images of the
video. The chain code is the input for the
recognition system.

The recognition system consists of finite state
machines corresponding to individual charac-
ters. The FSMs generating the minimum error

identify the recognized character. However,
certain characters such as Q and G might be
confused in a feature set comprising only the
chain code. Therefore, the system also con-
siders the beginning and end strokes. The
weighted sum of the error from a finite state
machine and the beginning and end point error
determines the final error for a character in the
recognition process.

Our algorithm for character recognition
consists of four steps, described in the fol-
lowing paragraphs.

Step 1, extraction of chain code. The 
system

• finds the position of the red mark the laser
pointer produces in each frame,

• generates a chain code according to the
angle between two consecutive mark posi-
tions, and

• determines beginning and end point coor-
dinates together with the coordinate of a
rectangle enclosing the character.

Step 2, analysis using finite state
machines. The system

• applies the chain code as input to each
state machine,

• determines state changes (additionally, the
system increases an error counter by one
if a change is not possible according to the
current FSM),

• eliminates the corresponding character if
a chain code does not terminate in the final
state, and

• adds up errors in each state to find the final
error for each character.

Step 3, accounting for errors due to begin-
ning and end points. The system

• normalizes beginning and end points of 
a stroke with respect to the enclosing 
rectangle,

• determines if the width or the height is
larger than a given threshold (if so, it isn’t
considered a feature), and then

• calculates an error value from the com-
parison of the normalized beginning and
end points of the input character and the
candidate character stroke.

Step 4, determining characters. The 
system

• weights and adds state machine error and
position error, and
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Figure 1. (a) Chain code values for the angles; (b) a sample chain-coded representation
of the character M = 32222207777111176666.
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Figure 2. Finite state machines for the characters (a) M and (b) N.



• recognizes the character with the mini-
mum error.

Figures 1 through 3 illustrate our algorithm.
About 20 consecutive images are merged to
obtain the M image shown in Figure 1b and
3d; the corresponding chain code representa-
tion is 32222207777111176666. The FSM for
the character M is shown in Figure 2a. Con-
sider the laser beam traces of four characters
shown in Figure 3.

When the chain code is applied as an input
to this machine, the first element, 3, gener-
ates an error and the error counter is set to 1.
The second element of the chain, 2, is a cor-
rect value at the FSM’s starting state so the
error counter remains at 1 after processing
the input 2. The FSM remains in the first state
with the other 2s and also with the subse-
quent 0, as 0, 1, and 2 are the inputs of the
machine’s first state for M. Input 7 makes the
FSM go to the next state, and the subsequent
three 7s let the machine remain there. When-
ever the input becomes 1, the FSM moves to
the third state. The machine stays in this state
until the single 7 input, and this makes FSM
go to the final state. The rest of the input data,
6, makes the machine stay in the final state,
and when the input is finished, the FSM ter-
minates. For this input sequence, 1 is the
machine’s error for character M. In practice,
this sample chain code determines all other
characters using FSMs. However, the other
FSMs generate either greater or infinite error
values. You can easily see this on the char-
acter N’s FSM (see Figure 2b). If M’s chain
code string is an input to this machine, it will
never reach the final state and the error will
be set to infinity.

Both the time and space complexity of the
recognition algorithm are O(n), where n is the
number of elements in the chain code. The
FSM recognition algorithm is robust as long
as the user does not move his arm or the cam-
era while writing a letter. Small changes due
to hand trembling while writing can be cor-
rected automatically by look-ahead tokens to
improve the recognition rate. The look-ahead
tokens act as a smoothing filter on the chain
code. Instead of using deterministic FSMs,
characters can also be modeled by hidden
Markov models (stochastic FSMs) to further
increase the system’s robustness, but this also
increases computational cost.

Video processing
To extract chain code from the video,

marker positions for the images correspond-

ing to a character are processed. If the marker
is in the initial frame, you can track it in the
consecutive images. In our experiments, we
used a red laser pointer to write the charac-
ters. Then, we decomposed the images into
red, green, and blue components. Thresh-
olding—a simple image-processing opera-
tion—followed by a connected component
analysis identifies the red mark. If you use
hand gestures, you might need a skin filter.
We can similarly extract and trace other
pointers (for example, a pen tip).

A laser pointer is the most robust text entry
device in changing lighting and background
conditions. As discussed earlier, in an image
sequence corresponding to a word, discon-
tinuous pointer movements separate charac-
ters. For a laser pointer, at the end of each
character the user turns off the light. This
marks the end of each character. For each
character, we segment the video based on the
jumps of the laser pointer’s red mark. While
the user is writing a character, the transition
of the pointer positions in consecutive images
should be smooth because the user writes
only unistroke characters. The subsequent
character will start at a relatively different
position because the characters are written
one at a time. Therefore, using a laser pointer
naturally creates a deliberate discontinuity
between two characters.

Two problems mainly arise during image
capture and processing: distortion due to per-
spective projection and marker occlusion.

Character distortion occurs when the user
draws the hand gestures in a nonorthographic
manner. Perspective distortion up to about
45 degrees of difference defined by the laser
pointer (or regular pointer) between the cam-
era and the forearm’s tangent plane does not
affect character recognition. The system fails
after 45 degrees because the chain code used
in character representation has a quantiza-
tion level of 45 degrees (the unit circle is rep-
resented by eight directions). You can over-
come this problem by either increasing the
quantization levels and modifying the FSM
models accordingly or by using Steve
Mann’s projective geometry methods5–7 to
provide an efficient solution with the help of
feedback from a viewfinder. We don’t con-
sider occlusion in this system, because we
assume the camera captures the images in
front of the marker.

Experimental results 
We used a red laser pointer, black back-

ground fabric, and a Web camera (an ordi-
nary Philips PC Camera with a Tekram
VideoCap C210 capturing card) in our exper-
iment. The Web camera produces 160 × 120
pixel color images at 13.3 frames per second.
We used an Intel Celeron 600 processor with
64 Mbytes of memory for all processing. 

We have not yet implemented our system
on a wearable computer; however, we believe
our experimental setup and algorithm illustrate
the results we would find with wearable com-
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Figure 3. Laser beam traces generated by image sequences corresponding to (a)
lambda (A in Graffiti), (b) R, (c) O, and (d) M.
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puting applications. The processor we used
performs similarly to the processors mentioned
in current wearable computers. Furthermore,
the Web camera used in our experiments has
very similar characteristics with the head-
mounted cameras used in wearable computers
or the EyeTap (http://eyetap.org).

In our experiments, the user draws a Graf-
fiti-like character using the red pointer on
dark background material. In other unistroke
recognition systems, you can achieve very
high recognition rates.4 In our system, in
spite of perspective distortion, you can attain
a recognition rate of 97 percent at a writing
speed of about 10 words per minute. We also
noted that the recognition process is writer-
independent and writers required little train-
ing. We used the Graffiti-like alphabet
because it resembles the Latin alphabet, and
most people can use it without extra effort.
Users can also define other single-stroke
characters to use as bookmarks or pointers
to databases, for example. Although it might
be easy to learn other text entry systems,
some people are reluctant to take the time to
learn unconventional text entry systems.
Computationally efficient, low power con-
suming algorithms exist for the recognition
of unistroke characters. We can implement
these algorithms in real time with very high
recognition accuracy. After a user studies the
Graffiti-like alphabet for a few minutes,
about 86-percent accuracy is possible. After
some practice, accuracy improves to about
97 percent. Almost 100-percent accuracy
seems possible.8

To estimate the above recognition rate, we
used at least 50 samples for each character and
a total of 1,354 characters. The system
requires an average of 18 image frames per
character. Typically, a user draws these in less
than 1.5 seconds. This means a data entry rate
of more than 40 characters per minute on
average. Users can improve writing speed if
they spend time learning better ways to write
certain characters. For example, the charac-
ters I and T can be drawn and recognized with
almost 100-percent accuracy using only three
to four frames. In contrast, the character B
needs at least 50 frames (or more than 3.35
seconds) for reasonable recognition rate accu-
racy. Perspective distortion also plays a minor
role in the system because everything is two-
dimensional. In our experiments, we observed
that degradation in recognition is, at most, 10
percent around a 45-degree difference between
the writing plane and the camera.

We also conducted several tests under dif-

ferent lighting conditions. In daylight, the
background’s pixel value is about 50 whereas
the pixel value of the laser pointer’s beam is
about 240. In incandescent light, the back-
ground’s pixel value is about 180 whereas
the beam’s pixel value is about 250. In fluo-
rescent light, the background’s pixel value is
about 100 whereas the beam’s pixel value is
about 240. In all cases, we can easily iden-
tify the laser pointer’s beam against the dark
background because enough contrast exists,
especially if the user also wears a dark, solid
color. If the user writes characters with her
finger, we expect a slightly lower recogni-
tion rate. Writing with a finger is much more
convenient than writing with a laser pointer;
however, detecting the laser pointer’s beam
is simpler for image analysis.

Our current system’s overall writing speed
is below the 20-wpm composition rate
reported for Graffiti on a PDA.8 This is
because a wearable camera’s frame rate is
much smaller than a PDA touchscreen’s sam-
pling rate. However, a PDA requires much
slower writing movements when compared
to our approach. Our recognition algorithm
is also more complex and robust than the sim-
ple recognition algorithms used in PDAs.

Our system’s writing speed is also lower
than the 35- to 40-wpm transcription speeds
of the septambic keyer and the Twiddler.
However, regardless of the keyboard, com-
position writing speed is below 20-wpm for
most people. We believe that in a wearable
computing environment the composition
speed rather than the transcription speed is
important. Furthermore, we can achieve the
20 wpm writing speed with very high accu-
racy in our system (or in today’s wearable
computing technology) if we use an opti-
mized unistroke alphabet4 instead of a Graf-
fiti-like alphabet. In such a case, the user
would have to learn an alphabet consisting
of even more simple strokes.

While our approach hasn’t been
implemented in wearable comput-

ing yet, several interesting applications are
possible. For example, our current system
is well suited for taking notes while watch-
ing a presentation if the camera has a
viewfinder.9–11 The viewfinder provides a
feedback loop so the user can review and cor-
rect any errors in pointer-written characters
as they occur. 

We are working on generalizing the sys-

tem to recognize continuous writing with a
finger or stylus. We are also studying an alter-
native way to recognize characters using a
wearable keyboard image and a laser light.
You enter characters by shining light onto the
character’s location on the keyboard image.
A finger or stylus can be used to mask the
key locations to enter text. If you use an opti-
mized keyboard image (such as the Pen-
dragon Project’s Cirrin or IBM’s Metropo-
lis), text entry speed can exceed the ordinary
keyboard.
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