
Solving the Hub Location Problem in a Star–Star Network

Martine Labbé
Université Libre de Bruxelles, Département d’Informatique, Boulevard du Triomphe CP 210/01, 1050 Brussels,
Belgium.

Hande Yaman
Bilkent University, Department of Industrial Engineering, Bilkent 06800 Ankara, Turkey.

We consider the problem of locating hubs and assign-
ing terminals to hubs for a telecommunication network.
The hubs are directly connected to a central node and
each terminal node is directly connected to a hub node.
The aim is to minimize the cost of locating hubs, assign-
ing terminals and routing the traffic between hubs and
the central node. We present two formulations and show
that the constraints are facet-defining inequalities in both
cases. We test the formulations on a set of instances.
Finally, we present a heuristic based on Lagrangian relax-
ation. © 2007 Wiley Periodicals, Inc. NETWORKS, Vol. 51(1),
19–33 2008

Keywords: hub location; star–star network; polyhedral analysis;
branch and cut; Lagrangian relaxation

1. INTRODUCTION

We consider the problem of locating hubs in a telecom-
munication network. We are given a set I of terminal nodes
and a central node 0. Let |I| = n. We assume that n ≥ 3. We
choose a subset of the terminal nodes at which to locate hubs.
Each hub node is connected to the central node by a direct
link. So the network that links the hubs and the central node
is a star. Each terminal node that is not designated a hub is
connected directly to a hub node. Hence the network linking
a hub and the terminals assigned to it is also a star. The whole
network is called a star–star network (see Fig. 1).

Any pair of terminal nodes would like to communicate
with each other. Their traffic is routed by hubs. The amount
of traffic which must be sent from node i ∈ I to node m ∈ I
is tim.

Received October 2004; accepted December 2005
Correspondence to: H. Yaman; e-mail: hyaman@bilkent.edu.tr
Contract grant sponsor: France Telecom R&D; Contract grant number:
99 1B 774
DOI 10.1002/net.20193
Published online 28 November 2007 in Wiley InterScience (www.
interscience.wiley.com).
© 2007 Wiley Periodicals, Inc.

There is a cost associated with locating a hub at a given
node and a cost associated with assigning a terminal node to
a hub node. There is also a cost for routing the traffic on the
links between the hubs and the central node. We denote by
Cjj the cost of locating a hub at node j ∈ I and by Cij the
cost of connecting node i ∈ I to node j ∈ I \ {i}. The cost of
routing a unit of traffic between nodes j and 0 is denoted by
Bj. We assume that Bj ≥ 0 for all j ∈ I .

If two nodes i and m are assigned to the same hub, say j,
the traffic from node i to node m follows the path i → j → m.
So this traffic does not travel on the links between the hubs
and the central node. However, if node i is assigned to node j
and node m is assigned to node l �= j (in which case both j and
l must be hubs), then the traffic from node i to node m follows
the path i → j → 0 → l → m, where node 0 stands for the
central node. In Figure 2, we see a network with 10 nodes
where nodes 1, 2, 5, and 7 received hubs. The traffic from
node 3 to node 10 follows the path 3 → 2 → 0 → 7 → 10
since node 3 is assigned to node 2 and node 10 is assigned
to node 7. The traffic from node 1 to node 6 follows the path
1 → 0 → 5 → 6 and the traffic from node 8 to node 9
follows the path 8 → 7 → 9.

So, the total traffic on the link between node j and node 0
is the sum of the traffic between all nodes that are assigned
to j and all nodes that are not assigned to j.

The problem is to locate the hubs and to assign the remain-
ing nodes to the hubs in order to minimize the cost of location,
assignment and routing. This problem is called the Unca-
pacitated Hub Location Problem in a Star–Star Network
(UHLP-S).

The UHLP-S is encountered in designing a telecommu-
nication network where the backbone network, which is the
network that connects the hubs is a star and access networks,
which are the networks that connect terminals to hubs are
also stars. Different from the network design problems where
there is a cost for installation of links on the edges of the net-
work, in UHLP-S, there is a cost for routing the traffic on the
links. Hence, UHLP-S is a relaxation of the network design
problem. Moreover, it is an approximation for that problem

NETWORKS—2008—DOI 10.1002/net

FIG. 1. A star–star network.

where the link installation cost is approximated by the routing
cost.

The UHLP-S also appears in the design of a two-level
access network. The central node is connected to some back-
bone network and the terminal nodes are connected to the
central node through a two-level access network where both
levels are stars. The square nodes are the backbone hubs and
they are connected by two rings that share an edge (Fig. 3).
Each backbone hub has a two level access network.

Applications of the UHLP-S also arise in transportation.
For instance, it arises when one wants to send cargo among
cities (terminals). Some of the cities are chosen to be hubs.
Each remaining city is served by one hub. The traffic orig-
inating at this city is sent to the hub. At the hub, the cargo
arriving from different origins are collected and sorted. If the
destination is served by the same hub, then the cargo is routed
to its destination. The remaining cargo is carried to a central
node where it is further routed to the hub of its destination
and then to its destination. The lines between hubs and the
central node are served by higher capacity trucks. In UHLP-
S, we are interested in minimizing the cost of installing hub
nodes and the cost of routing the cargo in the network.

Traditionally, problems like UHLP-S are approximated
by pure facility location problems. The study of the location
problems for telecommunication network design dates back
to the 1960s when Hakimi [22, 23] introduced the 1-median
and p-median problems to locate switching centers in com-
munication networks. Since then, there has been a lot of work
on the facility location problems (see e.g. Refs. [14, 28, 29]
for the Uncapacitated Facility Location Problem (UFLP) and
Refs. [15, 41] for the Capacitated Facility Location Prob-
lem (CFLP)). These problems are used to design networks
with star backbone and star access networks. The aim is to
minimize the cost of installing hubs, connecting hubs to the
central node, and the cost of assigning terminals to hubs (see
e.g. Refs. [33, 35]).

Gourdin et al. [20] gave a survey on location problems
which have applications in telecommunications. For earlier
surveys, one can refer to Boffey [9] and Klincewicz [27].
Yuan [45] gives an annotated bibliography of network design
problems.

Because of economic considerations in network design,
star-type networks as backbone or access networks are often
studied in the literature. Here, we summarize the work on
networks with star components. We focus on problems that
are not pure facility location problems.

Chung et al. [13] develops a model for designing a network
where the backbone is fully connected and the access net-
works are stars. They minimize a cost function that includes
the cost of installing hubs, cost of assigning terminals to hubs,
and the cost of interconnecting hubs. The authors present
a dual-based solution procedure and computational results.
A similar problem is considered by Hardin et al. [24]. The
authors present polyhedral results and develop a method
based on these results.

Pirkul and Nagarajan [36] design a network where the
backbone is a tree and the access networks are stars using a
two-phase algorithm. The first phase uses a sweep algorithm
to divide the set of nodes into regions. The second phase, for
each region, determines a path from the furthest node of the
region to the central node.

Lee et al. [32] also consider the same topology. They
present a formulation to determine a network that minimizes
the cost of installing hubs, the cost of assigning terminals to

FIG. 2. Routing the traffic.

20 NETWORKS—2008—DOI 10.1002/net

FIG. 3. Star–star two-level access network.

these hubs, and the cost of establishing the links of the span-
ning tree. The authors apply Lagrangian Relaxation to this
model.

Gavish [19] formulates a problem where the terminals are
connected to the hubs via multidrop links that are capacitated,
and hubs are connected to a central unit through a star net-
work. The objective function involves the cost of establishing
the links and installing the hubs. There are different types of
links with different costs and capacities.

Chardaire et al. [12] consider the design of a network
with two levels of hubs, i.e., each terminal is connected
to a first-level hub which is connected to a second-level
hub. All second-level hubs are connected to a central unit.
They present two integer programming formulations and a
simulated annealing algorithm.

A very similar problem to the UHLP-S has been consid-
ered by Helme and Magnanti [25] for satellite communication
networks. The authors propose a quadratic formulation and
a linearization that does not increase the order of number of
variables. Their formulation can be adapted to the UHLP-S
for the special case where the routing cost is the same for all
links between the hubs and the central node. Here we consider
the general case.

Although the amount of traffic to be routed between
origin–destination pairs is a crucial information, it is mostly
ignored in location models. The routing of traffic between
origin–destination pairs depends on the locations of hubs and
on the way the terminals are assigned (connected) to the hubs.
In a star–star network, when the hubs are located and the
terminals are assigned, between any origin–destination pair,
there is a single simple path. In UHLP-S, there is a cost term
for routing the traffic in the network. Because of this addi-
tional cost, the UHLP-S is a quadratic problem unlike the
classical facility location problems and is closely related to

the Uncapacitated Single Allocation Hub Location Problem
(UHLP) (see Ref. [11] for a survey on hub location problems).
The difference is that in UHLP, hubs are connected to each
other by a complete network. Consider a UHLP for which B′

jl
represents the cost per unit of traffic routed from node j to
node l, in the case that both nodes are hubs. If it is possible to
find values Bj for each node j such that B′

jl = Bj + Bl for all
pairs of nodes j and l, then UHLP is a UHLP-S with the cost
of routing traffic from a hub at j to the central node given by
Bj. So UHLP-S is a special case of UHLP.

Different formulations of UHLP and of its version
where the number of hubs is fixed can be found in
Refs. [10, 16, 17, 31, 34, 38]. These formulations differ in
the way they linearize the quadratic terms in the problem.
The strongest formulations use four-index variables. It is pos-
sible to decrease the number of variables by O(n) by viewing
the problem as a multicommodity problem and aggregating
the commodities by origin or destination. Finally, there are
formulations using O(n2) variables, but such formulations
turn out to be much weaker.

Sohn and Park [39] formulate the allocation problem in the
case of two hubs as a linear programming problem. It is shown
in Sohn and Park [40] that the allocation problem is NP-hard
when the number of hubs is more than two and a formulation
for the allocation problem with three nodes is given. Ernst and
Krishnamoorthy [17] present a branch and bound algorithm
that uses the upper bound obtained by simulated annealing,
and Ernst and Krishnamoorthy [18] present an exact method
based on shortest paths for the case where the number of hubs
is fixed.

A Lagrangian Relaxation heuristic is given in Pirkul and
Schilling [37]. This heuristic is based on the four-index
formulation of UHLP. The authors relax the assignment con-
straints and the two sets of constraints used for linearization.

NETWORKS—2008—DOI 10.1002/net 21

They add a relaxed version of the latter constraints. The result-
ing problem separates into a series of trivial problems. They
obtained an average gap of 0.048% over 84 problems.

We observe that problems like UHLP-S are often solved
either through MIP formulations or with heuristics. Not much
is known about polyhedral properties of these problems.
Polyhedral properties have been studied and exact methods
based on these results have been developed for pure facility
location problems (see e.g. Refs. [1, 2]), but they are rare for
location problems that have additional features (like routing
cost or delay cost).

Studies have been made recently on the polyhedral prop-
erties of hub location problems. Hamacher et al. [21] study
the polyhedral properties of the Uncapacitated Multiple Allo-
cation Hub Location Problem, i.e., the case where a terminal
can be served by several hubs. Sohn and Park [40] consider
the polyhedral properties of the allocation problem where the
number of hubs is three. Labbé et al. [31] study the polyhedral
properties of UHLP and present a branch and cut algorithm
based on these results.

In this paper, we present and compare exact and heuris-
tic methods for the UHLP-S. We first prove that UHLP-S is
an NP-hard problem. Then we present two formulations. We
study the properties of the corresponding polyhedra. We show
that the constraints are facet-defining inequalities in both for-
mulations. This suggests that these are strong formulations.
Our computational experience also supports this claim.

Motivated by the successful implementation of Pirkul
and Schilling [37], we also develop a heuristic based on
Lagrangian Relaxation. Unlike in the work of these authors,
we use a quadratic formulation of the problem where we
relax only the assignment constraints. The Lagrangian sub-
problem decomposes into a series of mincut problems. The
Lagrangian dual gives the same bound as the linear program-
ming relaxations of the two formulations. The heuristic solves
the Lagrangian dual with the subgradient algorithm and gen-
erates feasible solutions by transforming the solutions of the
relaxations. The computational results show that the heuristic
is able to find an optimal solution and prove its optimality for
most of the instances.

The paper is organized as follows. In Section 2, we
prove that UHLP-S is NP-hard and present two formula-
tions. Section 3 is devoted to the polyhedral analysis. In
Section 4, we compare the two formulations from the compu-
tational side. Finally, in Section 5, we present the Lagrangian
Relaxation heuristic.

2. FORMULATIONS

Define A = {(i, j) : i ∈ I , j ∈ I \ {i}}. Let K and K ′ be the
sets of all directed and undirected pairs of nodes respectively,
i.e., K = {(i, j) : i, j ∈ I} and K ′ = {{i, j} : i ∈ I , j ∈ I \ {i}}.
Recall that tim denotes the amount of traffic which must be
sent from node i ∈ I to node m ∈ I . The values tii are defined
to be 0. We can compute the total amount of traffic between
nodes i and m as T{i,m} = tim + tmi. We assume that for each
i ∈ I , there exists m ∈ I \ {i} such that T{i,m} > 0.

Define the assignment variable xij to be 1 if node i ∈ I is
assigned to node j ∈ I and 0 otherwise. If node j receives a
hub then it is assigned to itself, so xjj = 1. If Bj = 0 for all
j ∈ I , then the problem can be formulated as follows:

min
∑
i∈I

∑
j∈I

Cijxij

s.t.
∑
j∈I

xij = 1 ∀i ∈ I (1)

xij ≤ xjj ∀i, j ∈ I , i �= j (2)

xij ∈ {0, 1} ∀i, j ∈ I . (3)

Constraints (1), (2), and (3) imply that each node either
receives a hub or it is assigned to exactly one other node
which received a hub.

This version of the problem is called the Uncapacitated
Concentrator Location Problem (UCLP). In the sequel, we
prove that it is NP-hard.

The UCLP is very close to the UFLP. The UFLP is defined
as follows: given a set of clients N and a set of possible
locations for facilities M, locate facilities on a subset of M
and assign each client in N to a facility in order to minimize
the cost of facility location and assignment. Let Fj denote the
cost of locating a facility at node j ∈ N and let Dij denote the
cost of assigning client i to the facility at node j. Define yj to
be 1 if a facility is located at node j and 0 otherwise and xij

to be 1 if client i is assigned to the facility at node j and 0
otherwise. Then the UFLP can be formulated as follows:

min
∑
j∈M

Fjyj +
∑
i∈N

∑
j∈M

Dijxij

s.t.
∑
j∈M

xij = 1 ∀i ∈ N

xij ≤ yj ∀i ∈ N , j ∈ M

xij, yj ∈ {0, 1} ∀i ∈ N , j ∈ M.

The UFLP is an NP-hard problem (see Ref. [14]).
The UCLP is a special case of UFLP; it is UFLP with the

set of possible locations identical to the set of clients, and
with the cost of assigning a client to a facility at the same
location no more than that of assigning it to a facility located
at a different node. The latter ensures that Cjj embeds both the
fixed cost of opening a facility at j and the cost of assigning
client j to that facility, and there is always an optimal solution
in which nodes with facilities are assigned to these facilities.

We prove that UCLP is NP-hard by reduction from UFLP.
The proof is given in Appendix A.

Theorem 1. The UCLP is NP-hard.

As UCLP is a special case of UHLP-S, UHLP-S is also
NP-hard.

We present two formulations for the UHLP-S. Note that it
is possible to use the formulations for UHLP to solve UHLP-
S. But we obtain smaller size formulations using the special

22 NETWORKS—2008—DOI 10.1002/net

structure of UHLP-S. Our second formulation uses similar
ideas as the formulation for a capacitated version of UHLP
given in Labbé et al. [31].

In the first formulation, we use the following variables. We
define uj

{i,m} to be 1 if only one of nodes i and m is assigned
to node j ∈ I and 0 otherwise for {i, m} ∈ K ′. In other words,
uj

{i,m} is 1 if the traffic between nodes i and m travels on the
link between node j and the central node and 0 otherwise.
For a given assignment vector x, we can compute uj

{i,m} =
xij(1 − xmj) + xmj(1 − xij) = |xij − xmj| for {i, m} ∈ K ′ and
j ∈ I . We can formulate the UHLP-S as follows:

UHLP-S1

min
∑
i∈I

∑
j∈I

Cijxij +
∑
j∈I

Bj

∑
{i,m}∈K ′

T{i,m}uj
{i,m} (4)

s.t. (1), (2), and (3)

uj
{i,m} ≥ xij − xmj ∀{i, m} ∈ K ′, j ∈ I (5)

uj
{i,m} ≥ xmj − xij ∀{i, m} ∈ K ′, j ∈ I . (6)

Constraints (5) and (6) compute the vector u in terms
of the vector x. For i, m, j ∈ I such that T{i,m} > 0 and

Bj > 0, uj
{i,m} takes the minimum value implied, i.e., uj

{i,m} =
max{xij − xmj, xmj − xij} = |xij − xmj|. We do not need to

impose integrality on uj
{i,m} as its integrality is implied by the

integrality of the vector x. The objective function (4) is the
sum of the cost of assignment and location and the cost of
routing the traffic on the links between hubs and the central
node.

Formulation UHLP-S1 has O(n3) variables and O(n3)

constraints.
Next, we give a second formulation of the UHLP-S. We

define the traffic variable wj as the total traffic between node
j ∈ I and the central node.

UHLP-S2

min
∑
i∈I

∑
j∈I

Cijxij +
∑
j∈I

Bjwj (7)

s.t. (1), (2), and (3)

wj ≥
∑

(i,m)∈S

T{i,m}(xij − xmj) ∀S ⊆ K , j ∈ I . (8)

Suppose we are given an assignment vector x. The traffic
on the link between node j and the central node is wj =∑

{i,m}∈K ′ T{i,m}|xij − xmj|. For j ∈ I such that Bj > 0, con-
straints (8) imply that wj = maxS⊆K

∑
(i,m)∈S T{i,m}(xij−xmj).

A maximizing set is S∗ = {(i, m) ∈ K : xij = 1, xmj = 0}.
Then

∑
{i,m}∈K ′ T{i,m}|xij − xmj| = ∑

(i,m)∈S∗ T{i,m}(xij − xmj).
So the constraint (8) defined by S∗ computes the real value
of wj while the other constraints (8) are redundant.

Formulation UHLP-S2 has O(n2) variables, but an expo-
nential number of constraints.

To conclude this section, we compare the strength of LP
relaxations of the two formulations. Let LP1 and LP2 be the

optimal values of the linear programming (LP) relaxations of
formulations UHLP-S1 and UHLP-S2, respectively.

Proposition 1. LP1 = LP2.

Proof. Let F1 and F2 be the feasible sets of the LP
relaxations of formulations UHLP-S1 and UHLP-S2, respec-
tively. Define F to be the set of triples (x, u, w) which satisfy
inequalities (1), (2), (5), (6) and

wj ≥
∑

{i,m}∈K ′
T{i,m}uj

{i,m} ∀j ∈ I

0 ≤ xij ≤ 1 ∀(i, j) ∈ A.

We can easily show that F1 = Projx,u(F) and F2 =
Projx,w(F). So, minimizing (4) on F yields LP1 and mini-
mizing (7) on F yields LP2. As Bj ≥ 0 for all j ∈ I , we have
LP1 = LP2. ■

Proposition 1 says that both formulations UHLP-S1 and
UHLP-S2 give the same LP bound. Now, the important ques-
tion is whether this LP bound is a strong bound. The answer
is given in the next two sections through polyhedral analysis
and computational experiments.

3. POLYHEDRAL ANALYSIS

Note that as xmj ≤ xjj for all m ∈ I \ {j}, uj
{j,m} =

|xjj − xmj| = xjj − xmj. So we can remove the variables uj
{i,m}

where i = j or m = j from the formulation by modifying the
objective function. Define U = {(i, m, j) : i ∈ I , m ∈ I , j ∈
I , i < m, i �= j, m �= j}.

We can also project out the variables xjj’s, i.e., we substi-
tute xjj = 1 − ∑

k∈I\{j} xjk for all j ∈ I (see Ref. [2]). Then
the formulation UHLP-S1 becomes

min
∑
j∈I

Cjj


1 −

∑
i∈I\{j}

xji


 +

∑
(i,j)∈A

Cijxij

+
∑
j∈I

Bj

∑
m∈I\{j}

T{j,m}


1 −

∑
i∈I\{j}

xji − xmj




+
∑

(i,m,j)∈U

BjT{i,m}uj
{i,m}

s.t. xij +
∑

m∈I\{j}
xjm ≤ 1 ∀(i, j) ∈ A (9)

uj
{i,m} ≥ xij − xmj ∀(i, m, j) ∈ U (10)

uj
{i,m} ≥ xmj − xij ∀(i, m, j) ∈ U (11)

xij ∈ {0, 1} ∀(i, j) ∈ A. (12)

Let F1 = {(x, u) ∈ {0, 1}n(n−1) × R
n(n−1)(n−2)/2 : (x, u)

satisfies (9)–(11)} and P1 = conv(F1).
Define Kj = {(i, m) ∈ K , i �= j, m �= j} for j ∈ I .

We redefine wj to be the amount of traffic of commodities

NETWORKS—2008—DOI 10.1002/net 23

whose origins and destinations are different from j and which
travel between node j and the central node. Then formulation
UHLP-S2 can be rewritten as

min
∑
j∈I

Cjj


1 −

∑
i∈I\{j}

xji


 +

∑
(i,j)∈A

Cijxij

+
∑
j∈I

Bj

∑
m∈I\{j}

T{j,m}


1 −

∑
i∈I\{j}

xji − xmj


 +

∑
j∈I

Bjwj

s.t. (9) and (12)

wj ≥
∑

(i,m)∈S

T{i,m}(xij − xmj) ∀S ⊆ Kj, j ∈ I .

(13)

Let F2 = {(x, w) ∈ {0, 1}n(n−1) × R
n : (x, w) satisfies (9)

and (13)} and P2 = conv(F2).
Let ei be the ith unit vector in R

r for each i = 1, . . . , r. We
will use the notation ei to represent unit vectors of different
dimensions r. Similarly, we will use 0 to represent a vector of
all zeros, of varying dimensions. In all cases, the dimension
intended will be clear from the context. In what follows, we
will make particular use of vectors of the form (eij, 0) and
(0, eimj) of the same dimensions as vectors in P1 and (eij, 0)

and (0, ej) of the same dimension as vectors in P2.
In the remaining part of this section, we study the prop-

erties of the polyhedra P1 and P2. Most of the results of this
section are corollaries to the results in Appendix B.

We project the sets F1, F2, P1, and P2 on the x space. The
result below is a corollary to Proposition 3 of Appendix B.

Corollary 1. Projx(F1) = Projx(F2) = F0 = {x ∈
{0, 1}n(n−1) : xij + ∑

m∈I\{j} xjm ≤ 1 ∀(i, j) ∈ A} and
Projx(P1) = Projx(P2) = P0 = conv(F0).

The polytope P0 is a special stable set polytope. It is
full dimensional, i.e., dim(P0) = n(n − 1). Its polyhedral
properties are studied in Labbé and Yaman [30].

We can derive the dimensions of P1 and P2 as a corollary
to Theorem 6 of Appendix B.

Corollary 2. The polyhedra P1 and P2 are full dimensional.

Next, we give a characterization of the inequalities which
involve only the assignment variables and which define facets
of the polyhedra P1 and P2 as a corollary to Theorem 7 of
Appendix B.

Corollary 3. The inequality πx ≤ π0 defines a facet of P1

and of P2 if and only if it defines a facet of P0.

This corollary implies that the polyhedra P1 and P2 share
some facet-defining inequalities and these are exactly the
inequalities that define facets of the polytope P0.

Labbé and Yaman [30] prove that the nonnegativity con-
straints xij ≥ 0 and inequalities (9) define facets of P0. Two
immediate corollaries of these results and Corollary 3 are
given below:

Corollary 4. For (i, j) ∈ A, inequality xij ≥ 0 defines a
facet of P1 and P2.

Corollary 5. For (i, j) ∈ A, inequality (9) defines a facet of
P1 and P2.

Now we characterize facet-defining inequalities of P1

which involve only the variables uj
{i,m}’s.

Theorem 2. No inequality of the form βu ≥ β0 defines a
facet of P1.

Proof. Since (0, 0) ∈ P1, by Theorem 8, if inequality
βu ≥ β0 is facet defining for P1, then it is equivalent to
uj

{i,m} ≥ 0 for some (i, m, j) ∈ U. But any (x, u) ∈ P1 such that

uj
{i,m} = 0 also satisfies xij = xmj. Thus inequality uj

{i,m} ≥ 0
cannot be facet-defining. ■

We have a similar result for P2.

Theorem 3. No inequality of the form βw ≥ β0 defines a
facet of P2.

Proof. Similar to the proof of Theorem 2. ■

Theorem 2 (resp., Theorem 3) implies that a facet-defining
inequality of P1 (resp., P2) either defines a facet of P0 or it
involves both variables x and u (resp., w). Below, we inves-
tigate facet-defining inequalities which involve both types of
variables.

Theorem 4. Inequalities (10) and (11) define facets of P1

for (i, m, j) ∈ U.

Proof. Define Pf = {(x, u) ∈ P1 : uj
{i,m} = xij − xmj}.

Assume that all (x, u) ∈ Pf also satisfy βu + αx = γ .
As (0, 0) ∈ Pf , γ = 0. Consider (x, u) ∈ Pf and
(s, t, l) ∈ U \ {(i, m, j)}. As (x, u) + (0, estl) is also in Pf ,
we have β l{s,t} = 0. For (t, s) ∈ A such that (t, s) �= (i, j)
and (t, s) �= (m, j), as both (ets,

∑
(l,k,v)∈U\{(i,m,j)} elkv) and

(0,
∑

(l,k,v)∈U\{(i,m,j)} elkv) are in Pf , we have αts = 0.
Since p = (0,

∑
(l,k,v)∈U\{(i,m,j)} elkv) and p + (eij, eimj)

are in Pf , αij = −β
j
{i,m}. Finally, p + (eij + emj, 0) is in Pf

yielding αmj = −αij = β
j
{i,m}. So βu + αx = γ is a multiple

of uj
{i,m} = xij − xmj.

The proof for inequality (11) can be done in a similar
way. ■

We now show that inequalities (13) define facets of P2

under some conditions. For a given j ∈ I and S ⊆ Kj, inequal-
ity (13) is called an ordering inequality if there exists an

24 NETWORKS—2008—DOI 10.1002/net

ordering σ on the nodes of I \ {j} such that S = {(i, m) ∈
Kj, σ(i) < σ(m)}.

Theorem 5. For a given j ∈ I and S ⊆ Kj, inequality (13)

defines a facet of P2 if and only if it is an ordering inequality.

Proof. Assume that for a given j ∈ I and S ⊆ Kj,
inequality (13) is an ordering inequality with ordering σ . Let
N be a very large number. Below are n2 affinely independent
points in P2 that satisfy inequality (13) at equality:

1. (0,
∑

m∈I\{j} Nem).
2. For i ∈ I \ {j}, (0,

∑
m∈I\{j} Nem + ei).

3. For i ∈ I \ {j}, (eji,
∑

m∈I\{j} Nem).
4. For i ∈ I \ {j}, (

∑
m∈I:σ(m)≤σ(i) emj ,

∑
m∈I\{j} Nem +∑

m∈I\{j}:σ(m)≤σ(i)

∑
l∈I\{j}:σ(l)>σ(i) Tmlej).

5. For (l, i) ∈ A such that l �= j and i �= j, (eji +
eli,

∑
m∈I\{j} Nem).

So inequality (13) defines a facet of P2.
Now we show that an inequality (13) does not define a

facet of P2 if it is not an ordering inequality. To do so, we
show that separating the ordering inequalities is the same as
separating inequalities (13).

We can separate inequalities (13) for a given j ∈ I by
taking S = {(i, m) ∈ Kj, xij − xmj ≥ 0}. If the corre-
sponding inequality is violated, then it is one of the most
violated inequalities (13) for j. Otherwise, there is no violated
inequality (13) for j.

For a given j ∈ I , the order σ obtained by ordering the
nodes in I \ {j} in decreasing order of xij (ties are broken
arbitrarily) leads to the set S = {(i, m) ∈ Kj, xij ≥ xmj} which
gives a most violated inequality (13). This implies that if
there exists a violated inequality (13), then there exists also
a violated ordering inequality. So the remaining inequalities
(13) are not necessary to describe the polyhedron P2 and they
cannot be facet defining. ■

The procedure to separate inequalities (13) given in the
proof of Theorem 5 suggests the following:

Corollary 6. Ordering inequalities can be separated in
O(n3) time.

The results of this section show that the constraints in both
formulations are facet-defining inequalities. So we expect
these formulations to be strong.

4. EXACT METHODS

In this section, we compare the two formulations from a
computational point of view.

As formulation UHLP-S2 has an exponential number of
constraints, we develop a branch and cut algorithm to solve it.
This algorithm is implemented in C++ using ABACUS 2.3
(see Ref. [26]) and uses the LP solver CPLEX 7.0. When

we start the branch-and-cut algorithm, we do not include
inequalities (8) in the formulation. We add these inequali-
ties whenever we find them violated. The separation is done
exactly as described in the proof of Theorem 5. When we
cannot find any violated inequality (8), then we branch on
the assignment constraints (1). Let (x∗, w∗) be the current
fractional solution. We find the first node i for which we can
find a subset J ⊂ I such that

∑
j∈J x∗

ij is close to 0.5. Then in
one branch we fix

∑
j∈J xij to 1, and in the other branch we

fix
∑

j∈I\J xij to 1. We explore the branch and cut tree using
best-first search.

We use the MIP Solver of CPLEX 8.1.0 to solve formula-
tion UHLP-S1. We do not use ABACUS since we do not have
cuts for UHLP-S1. We use the default values of CPLEX for
parameters concerning optimality and feasibility tolerances,
since initial tests showed that these do not influence signif-
icantly the computation times. We let the solver of CPLEX
generate cuts.

The instances are generated using the AP data set of hub
location problems from the OR Library (see Refs. [6, 17]).
This dataset is often used to test solution methods for hub
location problems (see e.g. Refs. [8, 16, 18]). It includes the
coordinates of 200 districts and the amount of traffic to be
routed between origin destination pairs.

We generated problems with 50–150 nodes. For each size,
we consider different cost parameters. We define two param-
eters φ and γ which take values in {1, 3/4, 1/2, 1/4} such
that φ ≤ γ . We multiply Cjj by φ and Bj by γ for all j ∈ I .
As φ and γ decrease, more hubs are located. For each n, we
have 10 problems with different φ and γ values. This lets us
see which types of problems are harder to solve.

For the 150 node problem, values of T{i,m} differ in the
range from 0.01 to 49.6844.

The runs are taken on an Intel Pentium III, 1 GHz, 1
GB RAM running under Suse 7.2. We compare the dual-
ity gap at the root node (i.e., gap = 100 opt−db

opt where opt is
the optimal value and db is the lower bound before branch-
ing) and the CPU time in seconds for the two formulations.
Note that despite Proposition 1, the two formulations can
lead to different duality gaps as we let CPLEX generate
cuts. We set the time limit to four hours. If a problem is
not solved to optimality in four hours, we write time in the
column CPU. We also report the total number of inequali-
ties (8) added during the branch and cut algorithm in column
ineq.

In Table 1, we report the results for problems with 50–100
nodes. For formulation UHLP-S1, if a problem is not solved
in 4 h, we do not solve the problems with larger sizes for the
same φ and γ values.

We observe that the duality gap is zero for all prob-
lems except one. This shows that both formulations are
strong formulations. For the CPU time, the branch and cut
algorithm for formulation UHLP-S2 is much faster than
CPLEX for UHLP-S1. Another disadvantage of formula-
tion UHLP-S1 is that, for unsolved problems CPLEX stops
before solving the LP relaxation and does not report any
bound.

NETWORKS—2008—DOI 10.1002/net 25

TABLE 1. Comparison of formulations.

Problem UHLP-S1 UHLP-S2 Problem UHLP-S1 UHLP-S2

φ,γ n gap CPU Gap CPU Ineq φ,γ n Gap CPU Gap CPU ineq

1, 1 50 0.00 5,523 0.00 42 273 1/2, 1/2 50 0.00 2,198 0.00 28 441
1, 1 60 Time 0.00 112 370 1/2, 1/2 60 0.00 9,613 0.00 106 910
1, 1 70 0.00 309 660 1/2, 1/2 70 Time 0.00 229 1,196
1, 1 80 0.00 805 920 1/2, 1/2 80 0.00 409 1,218
1, 1 90 0.00 1,867 1,295 1/2, 1/2 90 0.00 763 1,461
1, 1 100 0.00 2,960 1,495 1/2, 1/2 100 0.00 989 1,444
3/4, 1 50 0.00 5,447 0.00 53 344 1/4, 1 50 0.00 5,286 0.00 97 707
3/4, 1 60 Time 0.00 137 506 1/4, 1 60 Time 0.00 303 1,143
3/4, 1 70 0.00 357 763 1/4, 1 70 0.00 721 1,516
3/4, 1 80 0.00 899 1,015 1/4, 1 80 0.00 2,020 2,167
3/4, 1 90 0.00 2,512 1,668 1/4, 1 90 0.00 4,191 2,660
3/4, 1 100 0.00 3,745 1,882 1/4, 1 100 0.00 10,786 4,606
3/4, 3/4 50 0.02 5,360 0.03 60 451 1/4, 3/4 50 0.00 3,352 0.00 50 576
3/4, 3/4 60 Time 0.00 156 708 1/4, 3/4 60 Time 0.00 185 992
3/4, 3/4 70 0.00 251 703 1/4, 3/4 70 0.00 676 1,881
3/4, 3/4 80 0.00 725 1,082 1/4, 3/4 80 0.00 1,446 2,173
3/4, 3/4 90 0.00 1,652 1,539 1/4, 3/4 90 0.00 2,030 2,074
3/4, 3/4 100 0.00 3,035 2,052 1/4, 3/4 100 0.00 3,533 2,642
1/2, 1 50 0.00 6,037 0.00 64 426 1/4, 1/2 50 0.00 1,147 0.00 29 580
1/2, 1 60 Time 0.00 191 704 1/4, 1/2 60 0.00 6,051 0.00 137 1,284
1/2, 1 70 0.00 532 1,009 1/4, 1/2 70 Time 0.00 203 1,176
1/2, 1 80 0.00 1,136 1,355 1/4, 1/2 80 0.00 577 1,932
1/2, 1 90 0.00 3,971 2,560 1/4, 1/2 90 0.00 826 1,787
1/2, 1 100 0.00 6,502 2,985 1/4, 1/2 100 0.00 1,145 1,821
1/2, 3/4 50 0.00 3,761 0.00 52 480 1/4, 1/4 50 0.00 83 0.00 9 307
1/2, 3/4 60 Time 0.00 164 823 1/4, 1/4 60 0.00 347 0.00 22 325
1/2, 3/4 70 0.00 317 981 1/4, 1/4 70 0.00 633 0.00 39 345
1/2, 3/4 80 0.00 860 1,412 1/4, 1/4 80 0.00 3,175 0.00 80 517
1/2, 3/4 90 0.00 1,874 1,741 1/4, 1/4 90 0.00 8,705 0.00 144 702
1/2, 3/4 100 0.00 2,969 1,993 1/4, 1/4 100 0.00 13,142 0.00 218 749

Note that formulation UHLP-S1 has n3 constraints. For
n = 50, this makes 125 thousand constraints. Formulation
UHLP-S2 has n2 constraints other than constraints (8). For 50
node problems, the largest number of inequalities (8) added
during branch and cut is 707. So the LP relaxation with the
largest number of constraints has 3207 constraints. For these
problems, the LP relaxations solved during branch and cut
have less number of variables and constraints compared to
the LP relaxation of UHLP-S1.

In Table 2, we report the results for problems with 110–
150 nodes using formulation UHLP-S2. The branch and cut
algorithm solved 30 problems out of 50. For all problems,
the algorithm stopped at the root node either at optimality or
because of the time limit. In the latter case, it reported a lower
bound. We use the upper bound given by the Lagrangian
Relaxation heuristic (which is presented in the following
section) to compute the final gap (100 ub−lb

ub where lb is the
final lower bound reported by the branch and cut algorithm
and ub is the best upper bound given by the heuristic.)

We observe that for a fixed φ, problems with high γ values
are harder to solve. For example, for φ = 1/4 and n ≥ 110,
none of the problems with γ = 1 is solved to optimality in
4 h, while the problems with γ = 1/4 are all solved in less
than 40 min. Similarly, for fixed γ , problems with small φ

values are harder to solve.

5. LAGRANGIAN RELAXATION HEURISTIC

The computational results show that for most problems
the LP relaxation has an integer solution. So it is important
to compute efficiently the lower bound of the LP relaxation.
In this section, we present a Lagrangian relaxation which is
as strong as the LP relaxations of formulations UHLP-S1 and
UHLP-S2 and a heuristic method.

Lagrangian Relaxation is used often to solve location
and design problems. For instance, Beasley [7] devel-
ops Lagrangian heuristics for location problems. Pirkul
and Schilling [37] present a successful implementation of
Lagrangian Relaxation for UHLP. Lee et al. [32] apply
Lagrangian Relaxation to the problem of designing a network
with a tree backbone and star access networks.

The UHLP-S can also be formulated as a quadratic mixed
integer programming problem. We call this third formulation
UHLP-S3.

UHLP-S3

min F(x) =
∑
i∈I

∑
j∈I

Cijxij

+
∑
j∈I

Bj

∑
i∈I

∑
m∈I

T{i,m}xij(1 − xmj)

s.t. (1), (2), and (3).

26 NETWORKS—2008—DOI 10.1002/net

TABLE 2. Larger instances with branch-and-cut.

Problem Problem

φ, γ n No. of LP’s No. of ineq.’s (8) CPU Final gap φ, γ n No. of LP’s No. of ineq.’s (8) CPU Final gap

1, 1 110 105 1,643 4,395 0.00 1/2, 1/2 110 82 1,647 1,506 0.00
1, 1 120 108 1,937 7,195 0.00 1/2, 1/2 120 92 2,013 2,645 0.00
1, 1 130 122 2,429 13,579 0.00 1/2, 1/2 130 126 2,791 5,099 0.00
1, 1 140 84 2,141 Time 0.52 1/2, 1/2 140 123 3,102 7,461 0.00
1, 1 150 65 1,800 Time 1.78 1/2, 1/2 150 123 3,368 10,878 0.00
3/4, 1 110 116 2,085 5,589 0.00 1/4, 1 110 272 4,919 Time 0.01
3/4, 1 120 139 2,473 12,730 0.00 1/4, 1 120 159 3,811 Time 0.31
3/4, 1 130 119 2,639 Time 0.10 1/4, 1 130 99 2,974 Time 1.47
3/4, 1 140 80 2,118 Time 1.17 1/4, 1 140 72 2,442 Time 3.00
3/4, 1 150 65 1,880 Time 2.55 1/4, 1 150 58 2,180 Time 5.03
3/4, 3/4 110 131 2,441 4,526 0.00 1/4, 3/4 110 115 2,760 4,932 0.00
3/4, 3/4 120 131 2,550 6,583 0.00 1/4, 3/4 120 116 2,926 7,613 0.00
3/4, 3/4 130 131 2,822 11,068 0.00 1/4, 3/4 130 133 3,649 13,155 0.00
3/4, 3/4 140 103 2,816 Time 0.35 1/4, 3/4 140 94 3,222 Time 0.53
3/4, 3/4 150 74 2,288 Time 1.84 1/4, 3/4 150 71 2,789 Time 2.24
1/2, 1 110 183 3,172 8,573 0.00 1/4, 1/2 110 83 2,008 1,634 0.00
1/2, 1 120 210 3,835 Time 0.00 1/4, 1/2 120 95 2,478 2,954 0.00
1/2, 1 130 111 2,728 Time 0.72 1/4, 1/2 130 105 2,972 5,231 0.00
1/2, 1 140 76 2,202 Time 1.95 1/4, 1/2 140 124 3,569 8,682 0.00
1/2, 1 150 61 1,971 Time 3.58 1/4, 1/2 150 137 4,276 13,763 0.00
1/2, 3/4 110 110 2,224 4,247 0.00 1/4, 1/4 110 49 856 323 0.00
1/2, 3/4 120 116 2,493 6,795 0.00 1/4, 1/4 120 45 958 493 0.00
1/2, 3/4 130 120 2,937 11,239 0.00 1/4, 1/4 130 51 1,189 891 0.00
1/2, 3/4 140 101 2,937 Time 0.31 1/4, 1/4 140 68 1,563 1,380 0.00
1/2, 3/4 150 75 2,550 Time 1.72 1/4, 1/4 150 76 1,731 2,228 0.00

If we dualize constraints (1), we obtain:

LR(λ) = min F(x) +
∑
i∈I

λi


1 −

∑
j∈I

xij




s.t. (2) and (3).

Let LD = maxλ LR(λ).

Proposition 2. LD = LP1 = LP2.

Proof. We first present a linearization of LR(λ):

LR(λ) = min
∑
i∈I

∑
j∈I

(
Cij + Bj

∑
m∈I

T{i,m}

)
xij

−
∑
j∈I

Bj

∑
(i,m)∈K

T{i,m}vj
im +

∑
i∈I

λi


1 −

∑
j∈I

xij




s.t. (2) and (3)

vj
im ≤ xij ∀(i, m) ∈ K , j ∈ I (14)

vj
im ≤ xmj ∀(i, m) ∈ K , j ∈ I (15)

vj
im ∈ {0, 1} ∀(i, m) ∈ K , j ∈ I . (16)

Let X denote the set of of feasible solutions of the above
linearization and D be the constraint matrix. The matrix D is

totally unimodular as each row has two entries that sum to 0.
It is known that (see e.g. Ref. [43])

LD = min
∑
i∈I

∑
j∈I

(
Cij + Bj

∑
m∈I

T{i,m}

)
xij

−
∑
j∈I

Bj

∑
(i,m)∈K

T{i,m}vj
im

s.t. (1) and (x, v) ∈ conv(X).

As D is totally unimodular,

LD = min
∑
i∈I

∑
j∈I

(
Cij + Bj

∑
m∈I

T{i,m}

)
xij

−
∑
j∈I

Bj

∑
(i,m)∈K

T{i,m}vj
im

s.t. (1), (2), (14), (15)

0 ≤ xij ≤ 1 ∀i ∈ I , j ∈ I (17)

0 ≤ vj
im ≤ 1 ∀(i, m) ∈ K , j ∈ I . (18)

For a given x which satisfies (1), (2), and (17), there is an
optimal v which satisfies vj

im = min{xij, xmj} for all (i, m) ∈ K

NETWORKS—2008—DOI 10.1002/net 27

and j ∈ I . For this (x, v), the objective value is

∑
i∈I

∑
j∈I

(
Cij + Bj

∑
m∈I

T{i,m}

)
xij

−
∑
j∈I

Bj

∑
(i,m)∈K

T{i,m} min{xij, xmj}

=
∑
i∈I

∑
j∈I

Cijxij +
∑
j∈I

Bj

∑
(i,m)∈K

T{i,m}(xij − min{xij, xmj})

=
∑
i∈I

∑
j∈I

Cijxij +
∑
j∈I

Bj

∑
(i,m)∈K

T{i,m}(xij − xmj)
+

=
∑
i∈I

∑
j∈I

Cijxij +
∑
j∈I

Bj

∑
(i,m)∈K ′

T{i,m}|xij − xmj|

=
∑
i∈I

∑
j∈I

Cijxij +
∑
j∈I

Bj

∑
(i,m)∈K ′

T{i,m}uj
{i,m}.

So LD = LP1. ■

In the remaining part of this section, we present a heuristic
based on this Lagrangian Relaxation. First we discuss how
to compute LD. For a given λ, LR(λ) can be computed by
solving n independent problems, i.e.,

LR(λ) =
∑
i∈I

λi

+
∑
j∈I

min


Cjj +

∑
m∈I\{j}

BjT{j,m} − λj + LRj(λ), 0




where

LRj(λ) = min
∑

i∈I\{j}
(Cij − BjT{i,j} − λi)xij

+
∑

i∈I\{j}

∑
m∈I\{j}

BjT{i,m}xij(1 − xmj)

s.t. xij ∈ {0, 1} ∀i ∈ I \ {j}.

Notice that if i ∈ I \{j} is the only node assigned to node j, its
contribution to the objective function is Cij − BjT{i,j} − λi +∑

m∈I\{j} BjT{i,m}. Assigning more nodes to j cannot increase
this contribution. So if this value is not positive, then there is
an optimal solution where xij = 1.

If node i ∈ I \ {j} is the only node not assigned to node j,
then assigning it to j will cause an increase of Cij − BjT{i,j} −
λi −∑

m∈I\{j} BjT{i,m} in the objective function. Changing the
assignment of other nodes cannot decrease the value of this
term. So if Cij − BjT{i,j} − λi − ∑

m∈I\{j} BjT{i,m} ≥ 0, then
there exists an optimal solution where xij = 0.

Let U1
j and U0

j be the sets of variables xij’s that are fixed

to 1 and 0 respectively. Define Ij = I \ (U1
j ∪ U0

j ∪{j}). Then

the objective function becomes:

=
∑
i∈U1

j

(Cij − BjT{i,j} − λi) +
∑
i∈Ij

(Cij − BjT{i,j} − λi)xij

+
∑
i∈U1

j

∑
m∈U0

j

BjT{i,m} +
∑
i∈Ij


 ∑

m∈U1
j

BjT{i,m}(1 − xij)

+
∑

m∈U0
j

BjT{i,m}xij


 +

∑
i∈Ij

∑
m∈Ij

BjT{i,m}xij(1 − xmj)

=
∑
i∈U1

j


Cij − BjT{i,j} − λi +

∑
m∈I\(U1

j ∪{j})
BjT{i,m}




+
∑
i∈Ij


Cij − BjT{i,j} − λi −

∑
m∈U1

j

BjT{i,m} +
∑

m∈U0
j

BjT{i,m}


 xij

+
∑
i∈Ij

∑
m∈Ij

BjT{i,m}xij(1 − xmj).

The objective function has a fixed term and then the same
structure as before but with different coefficients for linear
terms. Let FC denote the fixed term of the objective function
and C′

ij be the coefficient of xij for i ∈ Ij in the linear term, i.e.,
FC = ∑

i∈U1
j
(Cij −BjT{i,j}−λi +∑

m∈I\(U1
j ∪{j}) BjT{i,m}) and

C′
ij = Cij − BjT{i,j} − λi − ∑

m∈U1
j

BjT{i,m} + ∑
m∈U0

j
BjT{i,m}

for i ∈ Ij. Then

LRj(λ) = FC + min
∑
i∈Ij

C′
ijxij +

∑
i∈Ij

∑
m∈Ij

BjT{i,m}xij(1 − xmj)

s.t. xij ∈ {0, 1} ∀i ∈ Ij.

The preprocessing algorithm (Algorithm 1) is based on
these observations and it finds sets U1

j and U0
j and computes

FC and C
′
ij for i ∈ Ij.

The value LRj(λ) can then be computed by solving a min-
cut problem on the graph Gj = (Ij ∪{o, d}, Aj) where o and d
are the dummy origin and destination nodes respectively and
Aj = {(o, i), (i, d) : i ∈ Ij} ∪ {(i, m) : i ∈ Ij, m ∈ Ij, i �= m}
(see Ref. [42]) since BjT{i,m} ≥ 0 for all i, m, j ∈ I . Let cim

denote the capacity of arc (i, m) ∈ Aj. The capacities are as
follows:

cim = BjT{i,m} for i ∈ Ij, m ∈ Ij, i �= m

cid = (
C′

ij

)+
for i ∈ Ij

coi = (− C′
ij

)+
for i ∈ Ij.

28 NETWORKS—2008—DOI 10.1002/net

Algorithm 1 Preprocess
for all i ∈ I \ {j} do

C′
ij ← Cij − BjT{i,j} − λi

change ← 1, U1
j ← ∅, U0

j ← ∅, FC ← 0
while change do

change ← 0
for all i ∈ I \ (U1

j ∪ U0
j ∪ {j}) do

if C′
ij + ∑

m∈I\(U1
j ∪U0

j ∪{j}) BjT{i,m} ≤ 0 then

U1
j ← U1

j ∪ {i}
FC ← FC + C′

ij + ∑
m∈I\(U1

j ∪U0
j ∪{j}) BjT{i,m}

C′
mj ← C′

mj − BjT{i,m} for m ∈ I \ (U1
j ∪ U0

j ∪ {j})
change ← 1

else if C′
ij − ∑

m∈I\(U1
j ∪U0

j ∪{j}) BjT{i,m} ≥ 0 then

U0
j ← U0

j ∪ {i}
C′

mj ← C′
mj + BjT{i,m} for m ∈ I \ (U1

j ∪ U0
j ∪ {j})

change ← 1

If the minimum cut separating nodes o and d is (S ∪ {o} :
Ij \ S ∪ {d}), then the capacity of the cut is:

c(S) =
∑
i∈S

(
C′

ij

)+ +
∑

i∈Ij\S

(− C′
ij

)+ +
∑
i∈S

∑
i∈Ij\S

BjT{i,m}

=
∑
i∈S

(
C′

ij

)+ +
∑
i∈Ij

(− C′
ij

)+ −
∑
i∈S

(− C′
ij

)+

+
∑
i∈S

∑
i∈Ij\S

BjT{i,m}

=
∑
i∈Ij

(− C′
ij

)+ +
∑
i∈S

(
C′

ij

) +
∑
i∈S

∑
i∈Ij\S

BjT{i,m}.

So LRj(λ) = FC + c(S) − ∑
i∈Ij

(−C′
ij)

+.
Hence LR(λ) can be computed by solving n mincut

problems. To compute LD we use the subgradient method.
The heuristic is given in Algorithm 2. The algorithm solves

the Lagrangian Relaxations and generates feasible solutions
using the optimal solutions of the relaxations. It stops either
when the gap is no more than 0.0001% or when the lower
bound does not improve.

Here, σ denotes the parameter that multiplies the step-
size, s denotes the stepsize and lb and ub denote the lower
and upper bounds respectively. If at an iteration, the solution

TABLE 3. Lagrangian Relaxation heuristic.

Problem Problem

φ, γ n Final gap No. of iters CPU %Imp. in CPU φ, γ n Final gap No. of iters CPU %Imp. in CPU

1, 1 50 0.00 107 24 42.86 1/2, 1/2 50 0.00 95 1 96.43
1, 1 60 0.00 37 10 91.07 1/2, 1/2 60 0.00 785 21 80.19
1, 1 70 0.00 83 78 74.76 1/2, 1/2 70 0.00 192 8 96.51
1, 1 80 0.00 179 394 51.06 1/2, 1/2 80 0.00 151 10 97.56
1, 1 90 0.00 143 505 72.95 1/2, 1/2 90 0.00 123 14 98.17
1, 1 100 0.00 117 616 79.19 1/2, 1/2 100 0.00 272 41 95.85
3/4, 1 50 0.00 74 13 75.47 1/4, 1 50 0.00 67 10 89.69
3/4, 1 60 0.00 48 20 85.40 1/4, 1 60 0.00 135 56 81.52
3/4, 1 70 0.00 138 124 65.27 1/4, 1 70 0.00 131 113 84.33
3/4, 1 80 0.00 109 194 78.42 1/4, 1 80 0.00 214 418 79.31
3/4, 1 90 0.00 161 717 71.46 1/4, 1 90 0.00 134 442 89.45
3/4, 1 100 0.00 159 967 74.18 1/4, 1 100 0.01 331 1,646 84.74
3/4, 3/4 50 0.03 302 31 48.33 1/4, 3/4 50 0.00 35 1 98.00
3/4, 3/4 60 0.00 515 102 34.62 1/4, 3/4 60 0.00 104 13 92.97
3/4, 3/4 70 0.00 70 13 94.82 1/4, 3/4 70 0.00 151 35 94.82
3/4, 3/4 80 0.00 119 84 88.41 1/4, 3/4 80 0.00 125 56 96.13
3/4, 3/4 90 0.00 72 63 96.19 1/4, 3/4 90 0.00 75 45 97.78
3/4, 3/4 100 0.00 264 516 83.00 1/4, 3/4 100 0.00 97 83 97.65
1/2, 1 50 0.00 66 12 81.25 1/4, 1/2 50 0.00 94 1 96.55
1/2, 1 60 0.00 105 47 75.39 1/4, 1/2 60 0.00 159 3 97.81
1/2, 1 70 0.00 231 226 57.52 1/4, 1/2 70 0.00 173 6 97.04
1/2, 1 80 0.00 150 296 73.94 1/4, 1/2 80 0.00 167 10 98.27
1/2, 1 90 0.00 246 898 77.39 1/4, 1/2 90 0.00 162 14 98.31
1/2, 1 100 0.00 147 849 86.94 1/4, 1/2 100 0.00 104 10 99.13
1/2, 3/4 50 0.00 50 3 94.23 1/4, 1/4 50 0.00 170 1 88.89
1/2, 3/4 60 0.00 203 26 84.15 1/4, 1/4 60 0.00 193 2 90.91
1/2, 3/4 70 0.00 105 31 90.22 1/4, 1/4 70 0.00 133 3 92.31
1/2, 3/4 80 0.00 110 58 93.26 1/4, 1/4 80 0.00 95 3 96.25
1/2, 3/4 90 0.00 65 55 97.07 1/4, 1/4 90 0.00 165 7 95.14
1/2, 3/4 100 0.00 111 134 95.49 1/4, 1/4 100 0.00 524 29 86.70

NETWORKS—2008—DOI 10.1002/net 29

Algorithm 2 Lagrangian Relaxation Heuristic
σ ← 2, λ ← 0, noimp ← 0
lb ← 0 and ub ← N where N is a large number
while 100 ub−lb

ub > 10−4 and σ > 10−4 do
Compute LR(λ) and let x be the optimal solution
if x is feasible, i.e. satisfies (1) then

STOP, optimal!
else

if LR(λ) > lb then
lb ← LR(λ)

noimp ← 0
else

increment noimp
if

∑
i∈I xii ≥ 1 then

ImproveSolution(x)
if noimp > 15 then

noimp ← 0
σ ← σ/2

s ← σ
ub−LR(λ)∑

i∈I (1−∑
j∈I xij)2

λi ← λi − s(1 − ∑
j∈I xij)

is feasible for UHLP-S3, then the solution is optimal. Other-
wise, we try to find a feasible solution using Algorithm 3. We
update the Lagrange multipliers as λi = λi − s(1 − ∑

j∈I xij)

where s = σ
ub−LR(λ)∑

i∈I (1−∑
j∈I xij)2 . The value noimp is the num-

ber of consecutive iterations where the lower bound does

Algorithm 3 ImproveSolution(x)
y ← 0
for all i ∈ I such that xii = 1 do

yii ← 1
for all i ∈ I such that yii = 0 do

I(i) ← {j ∈ I : yjj = 1, xij = 1}
if I(i) = ∅ then

I(i) ← {j ∈ I : yjj = 1}
j′ ← argminj∈I(i)Cij

yij′ ← 1
Compute the cost of y and update the upper bound and the
best solution if necessary

not improve. If noimp is more than 15, then we halve the
parameter σ .

The function ImproveSolution(x) constructs a feasible
solution y using the actual solution of the Lagrangian Relax-
ation x if there is at least one hub open, i.e., if

∑
i∈I xii ≥ 1.

It keeps all open hubs of x. If node i is assigned to a single
node j in x, then this assignment is also kept. Otherwise, if
i is assigned to several nodes, then the algorithm picks the
cheapest one in terms of costs Cij. If node i is not assigned at
all in x, then it is assigned to the hub with the cheapest Cij.

In Table 3, we present the computational results for prob-
lems with 50–100 nodes. For each problem, we report the
final gap (100 ub−lb

ub where lb and ub are the final lower and
bounds given by the heuristic, respectively), the number of

TABLE 4. Larger instances with Lagrangian relaxation heuristic.

Problem Problem

φ, γ n Final gap No. of iters CPU %Imp. in CPU φ, γ n Final gap No. of iters CPU %Imp. in CPU

1, 1 110 0.00 148 1,202 72.65 1/2, 1/2 110 0.00 304 59 96.08
1, 1 120 0.00 272 3,603 49.92 1/2, 1/2 120 0.00 248 57 97.84
1, 1 130 0.00 179 4,122 69.64 1/2, 1/2 130 0.00 155 44 99.14
1, 1 140 0.00 251 9,133 – 1/2, 1/2 140 0.00 350 140 98.12
1, 1 150 0.00 99 5,408 – 1/2, 1/2 150 0.00 304 171 98.43
3/4, 1 110 0.00 122 1,054 81.14 1/4, 1 110 0.01 404 3,136 –
3/4, 1 120 0.00 126 1,256 90.13 1/4, 1 120 0.01 376 4,104 –
3/4, 1 130 0.00 122 2,512 – 1/4, 1 130 0.01 728 14,577 –
3/4, 1 140 0.00 187 8,237 – 1/4, 1 140 0.00 383 12,976 –
3/4, 1 150 0.00 223 14,425 – 1/4, 1 150 0.00 182 7,161 –
3/4, 3/4 110 0.00 150 323 92.86 1/4, 3/4 110 0.00 174 190 96.15
3/4, 3/4 120 0.00 232 764 88.39 1/4, 3/4 120 0.00 96 164 97.85
3/4, 3/4 130 0.00 163 794 92.83 1/4, 3/4 130 0.00 119 297 97.74
3/4, 3/4 140 0.01 453 3,818 – 1/4, 3/4 140 0.00 90 310 –
3/4, 3/4 150 0.00 201 2,801 – 1/4, 3/4 150 0.00 112 763 –
1/2, 1 110 0.00 207 1,857 78.34 1/4, 1/2 110 0.00 144 20 98.78
1/2, 1 120 0.00 162 2,116 – 1/4, 1/2 120 0.00 142 25 99.15
1/2, 1 130 0.00 167 3,609 – 1/4, 1/2 130 0.00 174 41 99.22
1/2, 1 140 0.00 338 11,017 – 1/4, 1/2 140 0.00 212 66 99.24
1/2, 1 150 0.00 232 13,368 – 1/4, 1/2 150 0.00 207 82 99.40
1/2, 3/4 110 0.00 95 171 95.97 1/4, 1/4 110 0.00 270 19 94.12
1/2, 3/4 120 0.00 96 231 96.60 1/4, 1/4 120 0.00 239 22 95.54
1/2, 3/4 130 0.00 142 631 94.39 1/4, 1/4 130 0.00 330 39 95.62
1/2, 3/4 140 0.00 107 527 – 1/4, 1/4 140 0.00 295 43 96.88
1/2, 3/4 150 0.00 124 1,062 – 1/4, 1/4 150 0.00 217 39 98.25

30 NETWORKS—2008—DOI 10.1002/net

iterations (the number of executions of the “while” loop in
Algorithm 2), the CPU time in seconds and the percentage
improvement in the CPU time compared to the branch and
cut algorithm.

For two problems, the final gap is nonzero. For problem
with φ = 3/4, γ = 3/4, and n = 50, the final gap is 0.03%
which is same as the gap of the LP relaxation of UHLP-
S2. The heuristic finds an optimal solution but cannot prove
it. For the problem with φ = 1/4, γ = 1, and n = 100, the
lower bound is the same as the optimal value but the heuristic
cannot find an optimal solution and so the gap is between the
optimal value and the upper bound.

For the remaining problems, the heuristic algorithm
finds an optimal solution and proves optimality. It is very
advantageous in terms of the CPU time compared to the
branch-and-cut algorithm.

The results for problems with 110–150 nodes are given in
Table 4. For four problems, the final gap is 0.01%. For the
remaining problems, the algorithm proves optimality. There
are two problems for which the heuristic took more than 4 h,
still the max time is less than 4 h and 3 min.

In conclusion, the branch and cut algorithm for formula-
tion UHLP-S1 is able to solve problems of 100 nodes in a
reasonable amount of time. For larger sizes, it can solve easy
instances.

The Lagrangian Relaxation heuristic is rather efficient and
gives very good solutions for instances up to 150 nodes. In
110 problems tested, the algorithm found an optimal solution
and proved its optimality for 104 instances.

Acknowledgments

The authors thank anonymous referees for their valuable
comments.

APPENDIX A: PROOF OF THEOREM 1

We show that the decision version of the UCLP is NP-
complete by a reduction from the decision version of the
UFLP. The decision version of the UFLP (DUFLP) is as fol-
lows: given sets M and N , vector F, matrix D, and a constant
b, does there exist a solution (x, y) to UFLP with cost less than
or equal to b? Similarly, the decision version of the UCLP
(DUCLP) is: given set I , cost matrix C, and a constant b, does
there exist a solution x to UCLP with cost less than or equal
to b? The problem DUCLP is in NP since given a solution x
we can verify in polynomial time that it has cost less than or
equal to b.

Given an instance of the DUFLP, define b = b + 1 and
I = N ∪M ∪{o} where node o is a dummy node. Let Coj = b
for all j ∈ N ∪ M and Coo = 0. Set Cjo = 0 for each node j
in M and set Cio = b for each node i ∈ N . Define Cjj = Fj

for all j ∈ M and Cjl = b for all j ∈ M and l ∈ N ∪ M such
that j �= l. Set Cil = b if i ∈ N and l ∈ N and set Cij = Dij if
i ∈ N and j ∈ M. In Figure A1, we show this instance of the
DUCLP (we removed the arcs with cost equal to b).

FIG. A1. Reduction from DUFLP to DUCLP.

Assume that the DUCLP has a solution x with cost less
than or equal to b. Clearly, this solution does not use any arc
with cost b. So in x, node o is assigned to itself and each
node in set M is either assigned to itself or it is assigned to
node o. Moreover, each node in N is assigned to a node in M.
Now define (x, y) as follows: Let yj = 1 if xjj = 1 for j ∈ M
and 0 otherwise and xij = 1 if xij = 1 for i ∈ N and j ∈ M
and 0 otherwise. The cost of such a solution is

∑
j∈M Fjyj +∑

i∈N

∑
j∈M Dijxij = ∑

i∈N∪M∪{o}
∑

j∈N∪M∪{o} Cijxij and is
therefore less than or equal to b.

Equivalently, any solution (x, y) of the DUFLP can be
transformed to a solution of DUCLP as follows: Set xoo =
1, xjj = 1 if yj = 1 and xjo = 1 otherwise for each j ∈
M and set xij = 1 if xij = 1 for each i ∈ N and j ∈ M
and xij = 0 otherwise. It can be shown easily that the two
solutions have the same cost. So we can conclude that there
exists a solution (x, y) to DUFLP if and only if there exists
a solution x to DUCLP of the same cost. Hence, DUCLP is
NP-complete. ■

APPENDIX B: PROJECTION RESULTS

Projection has been a tool widely used in polyhedral anal-
ysis. One of the main concerns in this area has been the
relationship between the dimension and facets of a polyhe-
dron and the ones of its projection onto a subspace. Balas
and Oosten [5] give necessary and sufficient conditions for a
face of a polyhedron to project into a face of the projection
of the polyhedron (see also Refs. [3, 4] for more results on
projection).

Here we are interested in the projection of some specific
family of polyhedra. Namely, we consider polyhedra PC and
PI defined as follows: PC = conv(FC) where

FC = {(x, z) ∈ {0, 1}p × R
q : Ax ≤ a, Gxx + g ≤ Gzz}

and PI = conv(FI) where

FI = {(x, z) ∈ {0, 1}p × Z
q : Ax ≤ a, Gxx + g ≤ Gzz}.

We assume that matrix Gz has nonnegative entries and that
every row and column of Gz has at least one positive entry.
This implies that (x, z) where x = 0, z = ej for some 1 ≤ j ≤
q and ej is the jth unit vector of size q is a ray of PC and PI .

We study the relationship between the polyhedra PC , PI

and P = conv(F) where F = {x ∈ {0, 1}p : Ax ≤ a}. Define

NETWORKS—2008—DOI 10.1002/net 31

Projx(F) to be the projection of the set F onto x space, i.e.,
Projx(F) = {x ∈ {0, 1}p : ∃ (x, z) ∈ F}. We can easily show
that:

Proposition 3. F = Projx(FC) = Projx(FI) and P =
Projx(PC) = Projx(PI).

Next, we investigate how the dimensions of the three
polyhedra are related.

Theorem 6. dim(PC) = dim(PI) = dim(P) + q.

Proof. Assume that all points (x, z) ∈ PC satisfy an
equality αx + βz = γ . Choose 1 ≤ j ≤ q and (x, z) ∈ PC .
Consider (x′, z′) which is the same as (x, z) except that
z′

j = zj + 1. As both (x, z) and (x′, z′) are in PC , we have
αx + βz = γ and αx′ + βz′ = γ . This implies that βj = 0
for all 1 ≤ j ≤ q.

Let A=x ≤ a= be the system of inequalities that are satis-
fied at equality by all points (x, z) in PC . As P = Projx(PC),
they are also satisfied at equality by all points x ∈ P. So
dim(PC) = dim(P) + q.

The proof for PI can be done similarly. ■

The following theorem characterizes the facet-defining
inequalities that are common to the three polyhedra.

Theorem 7. The inequality αx ≤ α0 defines a facet of P if
and only if it defines a facet of PC and of PI .

Proof. Clearly, the inequality αx ≤ α0 is valid for P if
and only if it is valid for PC and PI .

Let Fα = {x ∈ P : αx = α0} and Fα
C = {(x, z) ∈ PC :

αx = α0}. By Proposition 3, we have Fα = Projx(F
α
C). Let

r = dim(P). Theorem 6 implies that dim(Fα) = r − 1 if and
only if dim(Fα

C) = r − 1 + q.
The proof for PI can be done similarly. ■

This theorem gives a characterization of facet-defining
inequalities of PC and PI which involve only the x variables
in terms of the facet-defining inequalities of P.

Now consider F+
C = {(x, z) ∈ FC : z ≥ 0} and F+

I =
{(x, z) ∈ FI : z ≥ 0}.

Theorem 8. If (x, 0) ∈ F+
C (resp., F+

I) for some x ∈ F and
if βz ≥ β0 defines a facet of conv(F+

C) (resp., conv(F+
I)),

then it is equivalent to zj ≥ 0 for some j ∈ {1, . . . , q}.

Proof. Assume that (x, 0) ∈ F+
C for some x ∈ F and

that βz ≥ β0 defines a facet of conv(F+
C). Let (x, z) ∈ F+

C
such that βz = β0 and j ∈ {1, . . . , q}. Since (x, z′) where
z′

j = zj + 1 and z′
l = zl for l �= j is also in F+

C , βj ≥ 0. As

z ≥ 0 and (x, 0) ∈ F+
C for some x ∈ F, β0 = 0. Then the

inequality βz ≥ β0 should be equivalent to zj ≥ 0 for some
j ∈ {1, . . . , q}.

The proof for conv(F+
I) can be done similarly. ■

REFERENCES

[1] K. Aardal, Capacitated facility location: Separation algo-
rithms and computational experience, Math Program 81
(1988), 149–175.

[2] P. Avella and A. Sassano, On the p-median polytope, Math
Program 89 (2001), 395–411.

[3] E. Balas, Projection with a minimal system of inequalities,
Computat Optim Applic 10 (1998), 189–193.

[4] E. Balas, “Projection and lifting in combinatorial opti-
mization”, Computational Combinatorial Optimization, M.
Jünger and D. Naddef (Editors), Springer, 2001.

[5] E. Balas and M. Oosten, On the dimension of the projected
polyhedra, Discrete Appl Math 87 (1998), 1–9.

[6] E.J. Beasley, OR-Library: Distributing test problems by
electronic mail, J Oper Res Soc 41 (1990), 1069–1072.

[7] E.J. Beasley, Lagrangean heuristics for location problems,
Eur J Oper Res 65 (1993), 383–399.

[8] N. Boland, M. Krishnamoorthy, A.T. Ernst, and J. Ebery,
Preprocessing and cutting for multiple allocation hub location
problems, Eur J Oper Res 155 (2004), 638–653.

[9] T.B. Boffey, Location problems arising in computer net-
works, J Oper Res Soc 40 (1989), 347–354.

[10] J.F. Campbell, Integer programming formulations of
discrete hub location problems, Eur J Oper Res 72 (1994),
387–405.

[11] J.F. Campbell, A.T. Ernst, and M. Krishnamoorthy,
“Hub location problems”, Facility Location: Applications
and Theory, Z. Drezner and H.W. Hamacher (Editors),
Springer, 2002, pp. 373–407.

[12] P. Chardaire, J.L. Lutton, and A. Sutter, Upper and lower
bounds for the two-level simple plant location problem, Ann
Oper Res 86 (1999), 117–140.

[13] S. Chung, Y. Myung, and D. Tcha, Optimal design of a dis-
tributed network with a two-level hierarchical structure, Eur
J Oper Res 62 (1992), 105–115.

[14] G. Cornuéjols, G.L. Nemhauser, and L.A. Wolsey, “The
uncapacitated facility location problem”, Discrete Location
Theory, P.B. Mirchandani and R.L. Francis (Editors), Wiley,
New York, 1990, pp. 119–171.

[15] G. Cornuéjols, R. Sridharan, and J.M. Thizy, A comparison
of heuristics and relaxations for the capacitated plant location
problem, Eur J Oper Res 50 (1991), 280–297.

[16] J. Ebery, Solving large single allocation p-hub problems with
two or three hubs, Eur J Oper Res 128 (2001), 447–458.

[17] A.T. Ernst and M. Krishnamoorthy, Efficient algorithms for
the uncapacitated single allocation p-hub median problem,
Loc Sci 4 (1996), 139–154.

[18] A.T. Ernst and M. Krishnamoorthy, An exact solution
approach based on shortest paths for p-hub median problems,
INFORMS J Comput 10 (1998), 149–162.

[19] B. Gavish, Topological design of centralized computer net-
works: Formulations and algorithms, Networks 12 (1982),
355–377.

[20] E. Gourdin, M. Labbé, and H. Yaman, “Telecommunication
and location”, Facility Location: Applications and Theory,
Z. Drezner and H.W. Hamacher (Editors), Springer, 2002,
pp. 275–305.

32 NETWORKS—2008—DOI 10.1002/net

[21] H.W. Hamacher, M. Labbé, S. Nickel, and T. Sonneborn,
Adapting polyhedral properties from facility to hub loca-
tion problems, Discrete Appl Math 145 (2004), 104–
116.

[22] S.L. Hakimi, Optimum locations of switching centers and the
absolute centers and medians of a graph, Oper Res 12 (1964),
450–459.

[23] S.L. Hakimi, Optimum distribution of switching centers in
a communication network and some related graph theoretic
problems, Oper Res 13 (1965), 462–475.

[24] J. Hardin, J. Lee, and J. Leung, On the Boolean-quadratic
packing uncapacitated facility-location polytope, Ann Oper
Res 83 (1998), 77–94.

[25] M.P. Helme and T.L. Magnanti, Designing satellite com-
munication networks by zero-one quadratic programming,
Networks 19 (1989), 427–450.

[26] M. Jünger and S. Thienel, The ABACUS System for branch-
and-cut-and-price algorithms in integer programming and
combinatorial optimization, Software Pract Exper 30 (2000),
1325–1352.

[27] J.G. Klincewicz, Hub location in backbone/tributary network
design: A review, Loc Sci 6 (1998), 307–335.

[28] J. Krarup and P.M. Pruzan, The simple plant location prob-
lem: Survey and synthesis, Eur J Oper Res 12 (1983),
36–81.

[29] M. Labbé, D. Peeters, and J.F. Thisse, “Location on
networks”, Network Routing, Handbooks in Operations
Research and Management Sciences, M.O. Ball, T.L. Mag-
nanti, C.L. Monma, and G.L. Nemhauser (Editors), Vol. 8,
North-Holland, Amsterdam, 1995, pp. 551–624.

[30] M. Labbé and H. Yaman, Polyhedral analysis for concen-
trator location problems, Computational Optimization and
Applications 34 (2006), 377–407.

[31] M. Labbé, H. Yaman, and E. Gourdin, A branch and cut
algorithm for hub location problems with single assignment,
Math Program 102 (2005), 371–405.

[32] Y. Lee, B.H. Lim, and J.S. Park, A hub location prob-
lem in designing digital data service networks: Lagrangian
relaxation approach, Loc Sci 4 (1996), 185–194.

[33] A. Mirzaian, Lagrangian relaxation for the star–star con-
centrator location problem: Approximation algorithm and
bounds, Networks 15 (1985), 1–20.

[34] M.E. O’Kelly, A quadratic integer program for the location of
interacting hub facilities, Eur J Oper Res 32 (1987), 393–404.

[35] H. Pirkul, Efficient algorithms for the capacitated con-
centrator location problem, Comput Oper Res 14 (1987),
197–208.

[36] H. Pirkul and V. Nagarajan, Locating concentrators in central-
ized computer networks, Ann Oper Res 36 (1992), 247–262.

[37] H. Pirkul and D. Schilling, An efficient procedure for design-
ing single allocation hub and spoke systems, Mgmt Sci 44
(1998), S235–S242.

[38] D. Skorin-Kapov, J. Skorin-Kapov, and M. O’Kelly, Tight
linear programming relaxations of uncapacitated p-hub
median problem, Eur J Oper Res 94 (1996), 582–593.

[39] J. Sohn and S. Park, A linear program for the two hub location
problem, Eur J Oper Res 100 (1997), 617–622.

[40] J. Sohn and S. Park, The single allocation problem in the
interacting three hub network, Networks 35 (2000), 17–25.

[41] R. Sridharan, The capacitated plant location problem, Eur J
Oper Res 87 (1995), 203–213.

[42] J.C. Picard and H.D. Ratliff, Minimum cuts and related
problems, Networks 5 (1975), 357–370.

[43] L.A. Wolsey, Integer Programming, Wiley, New York, 1998.

[44] H. Yaman, Concentrator Location in Telecommunications
Networks, Springer, 2005.

[45] D. Yuan, “An annotated bibliography in communication net-
work design and routing,” Optimization Models and Methods
for Communication Network Design and Routing, Ph.D.,
Thesis, Department of Mathematics, Linköping University,
Sweden, 2001.

NETWORKS—2008—DOI 10.1002/net 33

