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1. Introduction

Modelling efforts for aerodynamic flows have primarily the goal of developing a good
understanding about the dynamics of the process. One approach for modelling is to
exploit the physics of the problem (Rowley et al., 2001). Individual sub-models are
proposed to represent the shear layer, scattering, cavity acoustics and receptivity in
the form of parameterized transfer functions, which are tuned to match the real
process dynamics (Yuan et al., 2004). Another major research direction focuses on
proper orthogonal decomposition (POD) for modelling of shallow cavity flows (Yuan
et al., 2005), based on modal analysis with numerical observations. A detailed review
of the flow-induced cavity oscillations is presented in Cattafesta et al. (2003), where
these major directions are emphasized.

This paper describes a third alternative for modelling based on input/output
observations read from critical spatial locations. This makes it possible to address the
difficulties stemming from the unavailability of the dynamical models of pre- and
post-filtering devices, actuators, sensors and so on. It is therefore a good alternative to
work with numerical data (measurements) containing the contribution of every
component of the overall flow physics implicitly. This, however, makes it obligatory to
merge the process dynamics and sensing and actuation periphery in a manner in
which the modelling and control goals become achievable. In our earlier studies,
neural networks (NNs) (Efe et al., 2005a) and fuzzy logic (Efe et al., 2005b) are shown
to be useful for flow modelling purposes, whereas the approaches considered in this
paper yield a finely tuned representative dynamic model, which has a significantly
simpler structure than those obtained through the use of techniques mentioned so far.

Research on neural models has been carried out in the past decade to explore the
usefulness of NN techniques in flow control reporting various degrees of success in
each work. Among these are efforts exclusively focused on the numerical simulation of
the flow model and of the corresponding control. Jacobson and Reynolds (1993)
conducted a numerical study on the control of wall shear stress in a boundary layer by
using feedforward NNs as controllers, which showed skin friction reduction by about
8%. Applications of generalized and specialized learning architectures are presented
with the goal of inverting the plant dynamics. The neurocomputing techniques
exploited in Jacobson and Reynolds (1993) have their roots in the pioneering work of
Narendra and Parthasarathy (1990), and relevant applications are seen later on in
Agarwal (1997). The study of active laminar flow control by Fan et al. (1993) showed that
a properly trained NN can establish complex non-linear relationships between multiple
inputs and outputs that are peculiar to an active flow control system. They also used
experimental data but did not validate the control system experimentally. The work
demonstrates the cancellation of wave disturbances in transitional boundary layers by a
pre-trained NN. Sensors measure either wall pressure or wall shear stress. Training
strategies and performance measures are considered, and fault tolerance capability of
NN is emphasized. Faller et al. (1994) obtained an NN model of a pitching aerofoil based
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on experimental data. With limited training data, the model predicts unsteady surface
pressure topologies within 5% of that available in the experimental data. Given the
actuator control signals, the NN anticipates the interactions between the unsteady flow
field and aerofoil. The NN predictor has 47 inputs, 45 outputs and two hidden layers
containing 32 neurons in each, which is very large. The error backpropagation (EBP)
method is used until the sum squared error obtained over the training pairs decreases
below a reasonably small value. Pressure values on the aerofoil are estimated by using
the recordings of angle of attack and its time derivative. The NN controller has six
inputs, a single output and two hidden layers containing 12 neurons in each, and the
aim is a desired lift/drag response being observed. Kawthar-Ali and Acharya (1996)
conducted a similar study but obtained a more marginal performance improvement.
The simulation work presented in Lee et al. (1997) on the use of an adaptive controller
based on NN to reduce drag in a turbulent channel flow predicted 20% drag reduction.
Interestingly, in that study, a control scheme was derived from NN that produced the
same amount of drag reduction with standard inverse control. An extended survey is
presented in Kim (2003). Linear quadratic regulators, linear quadratic Gaussian
controllers and adjoint-based suboptimal controls are considered. The work discusses
the issues on model reduction, cost function, control laws, actuators, numerical issues
and the effects of Reynolds number. In Yuen and Bau (1998), an NN-based approach to
suppress chaotic convection in a thermal convection loop is presented. The NN was
connected in series with the plant and it utilized the EBP algorithm to compute the
weights and biases of the network. An adaptive controller developed later by the same
authors has provided a better performance than this NN (Yuen and Bau, 1999). Finally,
Giraltet al. (2000) used NNs to model the non-linear dynamics of the turbulent flow past
a cylinder. The method was able to capture and identify the coherent and disordered
motions in the flow.

As outlined above, some work has been done in the past decade to explore the use
of NN techniques in flow modelling and control with various degrees of success.
Several of these works showed promising results but were based on numerical
simulations and lacked any experimental validation of the concept. The few
experimental studies available are concerned with slowly varying states of the flow.
Most of these works deal with models having massively interconnected structures.
To the best of our knowledge, no attempt has been made so far in using an adaptive
linear element (ADALINE) to model a more dynamic, higher frequency flow.
Therefore, many questions remain open about the merit and effectiveness of
connectionist techniques in the research on aerodynamic flows. Having this motiva-
tion in mind, in this paper, we investigated the use of an ADALINE to predict the floor
pressure of a subsonic flow over a shallow rectangular cavity. A comprehensive
review of this self-excited phenomenon is given by Cattafesta et al. (2003) and by
Rowley and Williams (2006). Rossiter first developed an empirical formula for
predicting the cavity flow resonance frequencies, today referred to as Rossiter
frequencies or modes (Rossiter, 1964). His original model was later refined by Heller
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and Bliss to account for the dependence on the Mach number of the acoustic
propagation (Heller and Bliss, 1975). The goal of our study is to develop an emulator
predicting the floor pressure values based on localized sensory information. Clearly,
the major contribution of the current paper is to demonstrate that a simple ADALINE
can yield satisfactorily precise predictions with a consistent learning of the dynamics
in hand. The latter is shown by considering different tuning schemes and the
simplicity in structure and adaptation for a complicated experimental flow system is
the original value of the presented work.

This paper is organized as follows: The second section introduces the experimental
set-up. The tuning laws and the obtained simulation results are discussed in the third
section, and the conclusions constitute the last part of the paper.

2. The experimental facility

In this study, the experimental facility illustrated in Figure 1 and described in detail
in Debiasi and Samimy (2003, 2004) and Yan et al. (2006) is used. The facility
consists of an optically accessible, blow-down type wind tunnel capable of
continuous operation in the subsonic range. A shallow cavity with a depth
D=1274mm and length L=50.8mm and having length to depth aspect ratio
L/D =4 is recessed in the floor of the test section as shown in Figures 1-4. The cavity

Figure 1 The appearance of the overall system
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Figure 2 The physical locations of the pressure transducers

Actuator

Figure 3 The incoming (baseline) flow, outgoing flow and the
actuator
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Figure 4 A close-up view of the test section with the pressure
transducer placed at the centre of the cavity floor

shear layer is forced by a 2D synthetic-jet type actuator issuing from a high-aspect-
ratio converging nozzle embedded in the cavity leading edge (Figures 2—4). Pressure
fluctuations are measured by Kulite-type dynamic pressure transducers placed
in different locations in the test section and used to derive different acoustic quantities
as described in Debiasi and Samimy (2004). The control flow is provided by a
synthetic jet exhausting from a slot spanning the width of the cavity upstream
wall (Figure 3). The flow control set-up is equipped with a host computer, which is
capable of real-time acquisition of data from the pressure transducers or hot wires,
and is able to actuate a synthetic actuator shown in Figure 3 to affect the flow field
in the test section. Data acquisition software with the relevant digital signal
processor (DSP) board is installed on a host computer. The simultaneous time traces
collected from the pressure transducers have been used to obtain the weights of the
ADALINE. It is critically important to emphasize that the collected data must be
spectrally rich enough to capture the cases that are likely to be encountered in real-
time operation. This ensures that the tuned predictor responds appropriately to the
input variables.

In Debiasi and Samimy (2004), it is observed that the cavity flow exhibits strong,
single-mode resonance in the Mach number ranges 0.25-0.31 and 0.39-0.5, and multi-
mode resonance in the Mach number range 0.32—-0.38. It is also reported in Debiasi and
Samimy (2004) that the frequency of sinusoidal forcing with the synthetic jet-like
actuator has a major impact on the cavity flow resonance, whereas the effect of
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the amplitude is relatively minor and it affects the control authority only at higher
Mach numbers.

3. Real-time conditions for the acquisition of the experimental data

As can be seen from Figure 2, simultaneous time traces can be obtained from the flow
field with the aid of the DSP hardware reading the shown transducers. The sensors
are located in such a way that the critical information about the flow physics is dense,
ie, the entry of control excitation, the upstream and downstream wall neighbourhood,
test section entry (baseline flow) and the cavity floor. In the tests, we have chosen
the data read from the first, third, fifth and the sixth sensors shown in Figure 2.
The first sensor records the sent excitation signal generated within the host computer.
With this in mind, S; measures the actuation signal in volts and S, measures u(t),
the pressure fluctuations just before the actuator exit, ie, the signal equal to that
produced at S;. S; measures v(t), the pressure fluctuation just after the actuator exit
(ie, at the receptivity region at the cavity leading edge), S, measures the pressure
fluctuations (if any) before the cavity, Ss measures w(t), the pressure fluctuations at the
cavity trailing edge and Ss measures y(t), the pressure fluctuations at the centre of
the cavity floor (Figure 4). Finally, S; measures the pressure fluctuations related to
the baseline flow.

According to these definitions, we performed a set of experiments to collect the
data. The first set of experiments address the noise driven cases. For Mach numbers
equal to 0.25, 0.28, 0.30, 0.32 and 0.35, we have excited the flow field with a computer-
generated noise signal. The excitation signal is low-pass filtered with a cut-off
frequency of 200 Hz and high-pass filtered with a cut-off frequency of 10 kHz. This is
implemented to meet the operating conditions of the synthetic actuator. The second
set of experiments includes open-loop free forced observations at the same Mach
numbers stated above. The flow field is excited with sinusoidal signals of amplitude
2.35Vims and frequency 3250 Hz and then another sinusoidal signal with 4.06 Vi
magnitude and frequency equal to 3920 Hz. These numbers have been set according to
the open-loop expertise gained through the design of the experimental facility. Such a
collective training data set clearly represents how the system behaves under different
operating conditions. In all cases described above, we have adopted T, =1/f,, where
fs=>50kHz is the sampling rate, and soft-filtered the collected data with a high-pass
filter having a cut-off frequency equal to 10kHz. Among the cases described above,
the case with Mach number 0.25, excitation voltage 2.35 V,,,s and excitation frequency
3250Hz is used only for validating the model; this dataset is not used during the
model derivation.

In the next section, the modelling strategies for finding the best parameter vector 0
are discussed. Since the algorithms work in discrete time, we denote y; for y(t)
measured when t=kT,.
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4. The ADALINE model and the adaptation schemes

The structure of the ADALINE predictor chosen in this study has the following form

P = RIO, (1)

where
bo=(a bi by o o fi S g) (2a)
Ri=(ue ye w1 v v owe weer M) (2b)

where 6 is the parameter vector, Ry is the regressor at discrete time index k and M
denotes the Mach number. The model structure given by (2a)-(2b) is determined after
a set of tests seeking simplicity and performance. The goal is to find a parameter
vector 6 that minimizes a cost or maximizes a performance function defined over
some history of 1. Since we are interested in one-step-ahead prediction, we have
dx =Yi+1, where dj is the desired predictor output at time kT;. So we try to minimize
the error dy — Ji+1, in some optimal fashion, where . is a prediction for dy generated
from the data collected up to time kT.

4.1 Least mean squares algorithm (LMS)

We would like to match N successive observations of di =1y1 with the model, yi1,
given in (1). One can write the N observations in matrix form as

» R A
~| @ 6= |, Y~ob (3)
YN+1 RY PN+

The value of 6 minimizing J = 1/2 Z,j(vzl (die — Prsr)? is given by

f=(o"®) o'y = Pyo’Y (4)

Notice that since the used strategy runs at batch mode, we have dropped the subscript
k from 0.
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4.2 Recursive least squares algorithm (RLS)

The algorithm offers an iterative solution to save the computation time and handle
variations in the process likely to occur in time. Briefly, the governing equations are

O = k1 + Kick (5a)

T —1
K = Pi—1 Ri(I + R} Pr—1 Ry) (5b)
P = (I— Kle{)Pk_l (SC)

where P(t)) = (®7®)7! is computed for some initial set of observations and the
algorithm iteratively updates 6 based on the weighting factor K and the correction
term ¢y = dj — R,{ 0r_1. See Astrom and Wittenmark (1995) for details.

4.3 Modified Kaczmarz’s algorithm (MK)

Also known as the normalized projection algorithm, the MK can also be used
iteratively to achieve a good parameter vector. The update law is

N ~ VRk < TA)
2] =0, +————F—(d. — R.6 6
k-t 1 ]”+a+RkTRk k « Ok (6)

where @ >0 and 0 < y < 2. In this study, we adopt «=1 and y=0.25.
4.4  Stochastic approximation algorithm (SA)

If the data were generated by (1) with no error, the update law would be described by

b1 = Ok + Pk(dk - RkTék) (7

where P, = (X%, RTR)™". Clearly, as k increases, P; gets smaller and smaller;
consequently the update term becomes small in magnitude. Since we work on a data
set with a finite number of elements, we implement the algorithm in a loop for a
predefined number of executions and we record the cumulative error over all data
pairs, ie, J; = /N Y1, (dv — RI6,).

4.5 Gradient descent algorithm (GD)

Also known as the steepest descent, gradient descent is a very popular tuning
algorithm in the realm of NNs. The idea that lies behind is to modify the parameter
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along with the negative gradient of an appropriately defined cost function, which
is Jp = 1/2¢} = 1/2(di — $111)* = 1/2(di — R[6;)*. The update rule is then

. . ol
Ocsr = Ok — n—rt = O + e Ry ®)
00

where 0 < n <1 is the learning rate. To speed up the convergence, the tuning law is
modified as given below

b1 = O + nex Ry + M(ék - ék—l) (%a)
ni+A E<E_,

- 9b

771+1 { r]l; E[ >Ej_l ( )

where (9a) describes the weight update during the ith forward pass (epoch) and the
learning%]rate (n) is updated as in (9b), utilizing the value of the epoch error defined as
Ei =) ;_, Jr. In this study, we choose A=0 and ¢=0.99. The algorithm typically
displays very slow convergence.

4.6 Levenberg-Marquardt (LM) optimization technique

The Levenberg-Marquardt algorithm is a good balance between the GD and Newton’s
law. The update law is defined as below

A A —1
Ore1 = O + (il + RkR{) Reex (10a)

mi+ A E<Ei,
Mis1 = { wie  E>E. (10b)
The quantity u; is adapted according to the evolution of the epoch error. If ; is large,
the above update law becomes more like the steepest descent, yet for small p;, the
tuning behaves like Newton’s law. When compared with the GD algorithm, LM
predicts much better update directions at the cost of matrix inversion at each step.
In this study, we choose A =1.05, ¢=0.9 and p=1000.

4.7 Sliding mode-based tuning algorithm (SM)

The last search strategy considered in this paper is the one introduced by Sira-Ramirez
and Colina-Morles (1995). The original form of the tuning law is given by

Ric

)
k+1 k+anTRk

sgn(dk - R,(Ték) (11)
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where 7 is the gain of the tuning law. Because of the chattering that arises when
di — Rka ~ 0, the sign function prescribes very sharp fluctuations in 6x. For this
reason, the sign function is smoothed by replacing the sgn(x) ~ x/|x| 4+ with § > 0
being the parameter determining the sharpness around x =0. This paper uses § =0.01
and 1 =0.0001.

5. A performance comparison of the tuning laws

Several quantities are defined to distinguish the performance of the mentioned
parameter search routines. The first quantity is the relative error defined by

NV a2
e = N 2z 1 = Fient T 600, (12)

N,
VN YL 1del?

where di = yi11, Ji+1 corresponds to the predicted value of the floor pressure signal,
and Ny represents the “final time” at which the experiment is terminated. Note that
1/Ny Zk | ldi — P411* can be seen as the mean squared error (MSE) quantifying the
performance over a set of observations. The second measure we are interested in is
A, = ||F{d} — F{J}||., where F{d} and F{y} stand for the Fourier transforms of d and J,
respectively. The other quantities of interest are the associated computational compl-
exity, denoted by C in Table 1, and the roots of the polynomial D(z) = 1 — byz=! — hyz™2
Note that if we had perfect estimation, Ji41 = di = yi+1, then the z-transform of the
autoregressive part of (1) would correspond to this polynomial and the behaviour
would be described best by its roots (Equations 2a and 2b).

The tests have been carried out on the data that has not been used during the
derivation of the model. The operating conditions when the test data are acquired are
Mach number M =0.25, the excitation signal is a sinusoidal with frequency 3250 Hz
and amplitude 2.35 V.

According to the results summarized in the third column of Table 1, which were also
presented during International Conference on Mathematical Problems in Engineering,
Aerospace and Sciences (2006), one can claim that all algorithms guide the roots of the

Table 1 Comparison metrics and obtained values

€rel Ap Roots of D(z) MSE C

LMS 2.786% 56.0245 0.8843 15 0.2646 8.17e-3 n/a

RLS 2.801% 53.5851 0.8408 +;0.2676 8.17e-3 High
MK 3.029% 116.9703 0.7846 +j0.2073 9.09e-3 Low
SA 2.761% 76.4459 0.84804;0.2341 8.22e-3 Low
GD 3.516% 245.3962 0.7664 +;0.2032 8.77e-3 Low
LM 2.838% 71.7564 0.821640.2497 8.19e-3 High
SM 2.701% 20.1625 0.86194;0.2370 8.25e-3 Low
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polynomial D(z) to values around 0.8 & j0.23, which is a strong evidence of consistency
of the implemented strategies. Secondly, despite the small values of the quantity e, in
all strategies, the variation in A, is significant. In terms of the peak difference (A,), the
worst case is encountered at GD and the best results are obtained with the SM
algorithms. The computational intensity (C) is qualified in the last column of the above
table. Since LMS algorithm is not iterative, assessing its computational needs with
iterative algorithms is not of concern here. However, among the algorithms considered
here, those necessitating matrix inversion introduce a greater number of computations
than the others. Therefore, matrix-inverting algorithms are labelled ‘high’ in the last
column. According to the data seen in Table 1, the smallest e, and A, values are
obtained with SM algorithm with affordable computational cost. In Figure 5, the results
obtained with SM algorithm are illustrated. In the left sub-plots, the results in the
frequency domain are depicted. These results indicate that the match is quite good not
only around the dominant peak but also over the spectrum of interest. The right sub-
plots display the results obtained in the time domain. For better illustration, we show a
limited part of the entire set of results that indicate a very good prediction.
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Figure 5 The results obtained with SM algorithm; 5ms of time
period results and a limited band of frequency spectrum
containing the dominant peak illustrate the performance of the
developed model
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Aside from the quantities tabulated above, evolution of the squared norm of the
parameter vector 6 is a good indicator of how the strategies update 6 and how
convergent or oscillatory the parameter values are. This is illustrated in Figure 6.
The results obtained emphasize that the offline implemented approaches (SA, GD, LM
and SM) produce much smoother parameter norms, and among these four approaches,
the earliest convergence is observed with LM. The MSE level for each algorithm is
obtained with the final value of the parameter vector and are given in the fourth column
of Table 1, where LMS, RLS and LM algorithms result in the smallest MSE values;
however, one should note that the other values are also very close to this level.

MK
---------------- oo | D I
iy i R S R *
1 1 |_a> 1
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@ @ 1 1 1
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Figure 6 The norm of the parameter vector 6 as the training
progresses
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In terms of convergence properties, one sees that value of 676 settles down smoothly in
the LM and SA algorithms. LM, SM and GD algorithms, on the other hand, display a
visibly long flat period during which the value of 76 hardly changes. If the length of
this period was a performance measure, then the LM and SM algorithms would be the
most preferable strategies. Briefly, the evolution in all approaches except the MK is
admissibly consistent.

In Figure 7, the evolution of the roots of the polynomial D(z) is illustrated for each
algorithm except the LMS, which runs at batch mode. At first glance, one figures out
that the evolution with the MK algorithm fluctuates and the steady state values of the
roots are indistinguishable. The RLS algorithm shows the next revealing fluctuations.

RLS MK
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~~ : -

12 : : -1.2 : .
-1.2 0 0.8408 -1.2 0 0.7851
Real Real
SA GD
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0.2341 0.2032f-7--------- R : \ -
(o)) (o))
3 % | — &
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Figure 7 The roots of the polynomial D(z)
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When the offline algorithms are considered, the GD algorithm is seen to be the one
approaching the desired pole locations very quickly. Notice that the GD takes a big first
update towards the goal, which is visible in Figure 7; however, it takes a long time to
converge with GD and A, is the largest for this scheme. In terms of big initial updates
towards the goal, surprisingly the next is the LM algorithm, but its convergence rate is
the best encountered in the paper (Figure 6). The remaining two strategies, namely SA
and SM, come next, yet these two approaches cannot be distinguished from these sub-
plots. Briefly, the evolution in all approaches except the MK is admissibly consistent.

A last question that should be answered here is the following: Would an algorithm
be made better than the others by playing with the algorithm’s parameters such as the
gains 7, i, 7, o, epoch number and so on? The answer is no, based on many trials we
have carried out before obtaining the best possible results, which are presented in this
paper. The model could be a more complicated one possibly yielding better prediction
performance; yet, the goal of this study is to demonstrate that a simple model could
help in giving fairly good predictions, even revealing the capability of addressing the
changes in the Mach number, which is an external input to the ADALINE.

6. Concluding remarks

This paper considers seven different algorithms for floor pressure prediction with the
experimental data acquired from a shallow subsonic cavity flow facility. An ADALINE
model is built based on the pressure signals read from several critical locations of the
cavity. In order to see the effect of the external signals, the cavity is excited by noise and
sinusoidal signals of magnitude and frequency within the allowable limits of the
experimental set-up. A relative error is defined to compare the ratio of the powers of
reconstruction error signal and the measured pressure signal. Similarly, the peak value
of the FFT magnitude of the reconstruction error is also checked for all methods. These
two quantities are effective in deciding the best approach, which points to the SM
algorithm. The computational cost of the SM algorithm is low and the roots of D(z)
follow a very smooth path in the complex plane. In conclusion, although we make no
claim that the SM algorithm is superior to the others in all such applications, the SM
algorithm’s desirable features are visible from the obtained results and the structure of
the predictor is simple enough to consider in real-time applications requiring pressure
predictions based on localized information.
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