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Broadcast encryption (BE) deals with secure transmission of a message to a group of receiv-
ers such that only an authorized subset of receivers can decrypt the message. The transmis-
sion cost of a BE system can be reduced considerably if a limited number of free riders can
be tolerated in the system. In this paper, we study the problem of how to optimally place a
given number of free riders in a subset-difference (SD)-based BE system, which is currently
the most efficient BE scheme in use and has also been incorporated in standards, and we
propose a polynomial-time optimal placement algorithm and three more efficient heuris-
tics for this problem. Simulation experiments show that SD-based BE schemes can benefit
significantly from the proposed algorithms.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Today’s secure multimedia applications such as pay-TV, content protection, secure audio streaming and Internet multi-
casting usually require a broadcast encryption (BE) scheme which enables data transmission to a large set of receivers such
that only an authorized subset can decrypt it. This is typically achieved by pre-establishing a set of long-term keys at each
receiver device, which is later used to support or revoke selected sets. The particular design of a BE system varies according
to the system characteristics, such as size of the user domain, required security level, available bandwidth, and hardware
capabilities. In the traditional setting, the amount of long-term storage is very limited as it has to be tamper resistant, the com-
munication channel is one way, and the devices are stateless in the sense that no additional long-term storage is possible.

Although recent advances in the technology, such as the availability of two-way communication channels, have reduced
the pay-per-view TV systems’ reliance on BE schemes, new application areas have emerged that greatly benefit from BE, such
as content protection [18,23], multicasting promotional material and low cost pay-per-view events [2,16], multi-certificate
revocation/validation [3] and dynamic group key management [24,25,5,8,19].

Two important performance parameters in evaluating a BE system are the key storage and transmission overheads in-
curred. Some of the most efficient BE schemes today are the subset-difference (SD) scheme of Naor et al. [20] and its variants
[12,13]. The SD scheme has become popular in applications recently and is already implemented in the next-generation DVD
standard [1].

In the traditional BE model, it is assumed that all unauthorized receivers must be excluded in a broadcast. Abdalla et al.
[2] observed that this model is unnecessarily strict for most practical applications and the cost of a BE system can be reduced
significantly when some free riders can be tolerated.
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1.1. Related work

After Berkovits [4] introduced the idea of BE in 1991, Fiat and Naor [11] presented their model, which is the first formal
work in the area. They introduced the resiliency concept, and defined k-resilience to mean being resilient against a coalition of
up to k revoked users. Their best scheme required every receiver to store Oðk log k log nÞ keys and the center to broadcast
Oðk2log2k log nÞ messages where n is the total number of users.

Wallner et al. [24] and Wong et al. [25] independently proposed the logical key hierarchy (LKH) for secure Internet mul-
ticast. LKH was not a broadcast encryption scheme, but its key distribution idea was very useful for broadcast encryption.
The idea was to relate the receivers with the leaves of a tree, associate a unique key with each node of the tree, and give
each receiver the keys of the nodes on the path from the corresponding leaf to the root. With this approach, key storage com-
plexity became logarithmic in terms of the number of receivers, Oðlog nÞ.

In [20], which is another milestone in broadcast encryption research, Naor, Naor and Lotspiech proposed two schemes,
the complete subtree (CS) and subset-difference (SD). The CS scheme was mainly an adaptation of the LKH ideas to BE
and has a transmission cost of Oðr logðn=rÞÞ, r denoting the number of revoked users. The SD scheme decreased the transmis-
sion overhead to OðrÞ at the expense of increasing the key storage to Oðlog2nÞ. The SD scheme was the most efficient scheme
at the time of its proposal, and most of the recent schemes proposed since then are still based on the SD scheme.

The first significant variant of SD was the layered subset-difference (LSD) scheme, which was proposed by Halevy and
Shamir [13]. Optimized LSD has a transmission overhead of Oðlog n log log nÞ and a key storage of Oðr log log nÞ. Goodrich
et al. [12] introduced the stratified subset-difference (SSD) scheme, which has Oðr log n= log log nÞ transmission overhead
and Oðlog nÞ key storage complexity. An analysis of [11,13,20] can be found in [14].

In the last few years, a number of different approaches have been introduced in BE research. A work on public key cryp-
tographic solutions by Boneh et al. [6] uses bilinear maps and the bilinear decision Diffie–Hellman exponent problem. They
achieve constant size ciphertext and a trade-off between ciphertext and public key sizes, whose product is linear in number
of receivers. Another recent work by Boneh and Hamburg provides a framework for identity-based broadcast encryption
schemes [7]. Recently, there has been an increasing amount of interest in the public key BE framework and it has been
the subject of several new studies [9,10,15,17,21].

The idea of allowing some free riders in the system in order to get better performance was introduced by Abdalla et al. [2].
This work was also the first to adapt the key distribution idea of the LKH scheme to broadcast encryption. They investigated
the efficient usage of free riders in depth and developed the basic intuitions about the effective assignment of free riders. To
minimize the transmission overhead, Ramzan and Woodruff [22] recently proposed an algorithm to optimally choose the set
of free riders to be allowed in the CS scheme. Their algorithm was based on a dynamic programming approach that decides
the free rider assignment in a tree recursively in a bottom-up fashion.

1.2. Contributions

In this paper, we study how the transmission cost of an SD scheme can be minimized by the effective placement of a lim-
ited number of free riders. The contribution is twofold: First, we give a polynomial-time algorithm which computes the opti-
mal placement for a given number of free riders in an SD scheme. We then propose three heuristic methods which work in a
greedy fashion. Experimental results show that significant cost reductions are possible in the SD scheme by these algorithms.
They also show that the heuristic methods yield nearly optimal solutions most of the time, with a running time dramatically
better than that of the optimal algorithm.

1.3. Organization

After describing the SD scheme in Section 2, we formalize the problem in Section 3. Section 4 gives the optimal algorithm
and Section 5 describes the proposed heuristics for the problem. After presenting the experimental results in Section 6, we
conclude the paper in Section 7.
2. Subset-difference scheme

The SD scheme [20], like many other BE schemes, organizes the set of users in the system as leaves of a binary tree. The
basic notations regarding this tree are summarized in Table 1. The nodes in the tree are organized into subsets, and an
encryption key is assigned to each subset. A user is given the keys of the subsets of which he is a member. The SD scheme
is distinguished by the way it defines these subsets: For every non-leaf node x, and every descendant y of x, a subset is de-
fined as
Sx;y ¼ fv jv 2 TðxÞ and v R TðyÞg:
The collection of the Sx;y subsets is denoted by S. An example subset-difference and an example cover are illustrated in Fig. 1.
In the broadcast phase of the scheme, to send an encrypted message to a set of privileged users P, the center finds a col-

lection C#S that exactly covers P,



Table 1
Notations regarding the SD tree.

LðxÞ Immediate left child of x
RðxÞ Immediate right child of x
dðxÞ Depth of x; the distance between x and the root
TðxÞ Subtree rooted at node x
rðxÞ Number of revoked users in TðxÞ
pðxÞ Number of privileged users in TðxÞ

Fig. 1. Example of subset difference and cover.
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P ¼
[

Sx;y2C
Sx;y:
A message encryption key k is used to encrypt the transmitted packet. For each subset Sx;y 2 C, a separate copy of k is en-
crypted under that subset’s key and transmitted along with the message in the header. The transmission cost of the broad-
cast is defined as the number of these encryptions, i.e., the cardinality of the cover jCj.

3. Problem statement

As observed by Abdalla et al. [2], in many cases it may be preferable to allow a limited number of free riders in a BE sys-
tem in order to reduce the transmission cost. Given the number of free riders that can be tolerated, the question becomes
how to utilize this quota most efficiently.

In our treatment, U denotes the set of all receivers, and P and R ¼ U � P denote the set of privileged and revoked receivers,
respectively, where n ¼ jUj, p ¼ jPj, r ¼ jRj. We denote the tree of all users in the system by T. The free rider quota allowed is
denoted by f, and cf denotes the free rider ratio f=p. The problem is to find a cover C#S, P #

S
Sx;y2CSx;y with

j
S

Sx;y2CSx;y � Pj 6 f , such that jCj is minimum.

Definition 1 ( i-point, e-point). We call a node x an inclusion point (i-point) and y an exclusion point (e-point) in an SD
configuration where Sx;y is in the cover C.

Definition 2 (meeting point). A node x is called a meeting point if both TðLðxÞÞ and TðRðxÞÞ contain revoked leaves, or if x itself
is a revoked leaf.

A ‘‘meeting point” is a point where a branch occurs in the Steiner tree induced by the revoked users in T, which is the
minimum subtree in T that covers all revoked leaves. As in other works [20,13,22], this Steiner tree is of particular interest
for the optimization algorithms we will discuss. We will denote the highest meeting points in the left and right subtrees of a
node x in this tree, i.e., the ‘‘meeting point children” of x, by LmpðxÞ and RmpðxÞ, respectively.

By definition, there are r meeting points that are leaves. Since every other meeting point is a common ancestor of two
other meeting points, there are r � 1 internal meeting points. Thus, there are 2r � 1 meeting points in total. Also note that
the highest meeting point does not have to be the root of the whole binary tree. If one of the root’s children does not have any
revoked users under it, then the root will not be a meeting point.

4. Optimal algorithm

In this section, we describe a dynamic programming solution for the SD optimization problem with free riders. The ap-
proach is based on the dynamic programming approach of Ramzan and Woodruff [22] for the CS scheme. However, a
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completely different formulation is needed here due to the complicated relationship between the recursive subproblems in
the SD scheme. For the same reason, the approximation algorithm of [22] is also not applicable.

Let x be a meeting point and let ðx; fxÞ denote the problem instance where exactly fx free riders are to be placed in TðxÞ. Let
Costðx; fxÞ denote the cost of the optimal solution to this problem. Let the left and right meeting point children of x be
y ¼ LmpðxÞ and z ¼ RmpðxÞ. Consider the case where fy of the free riders are to be assigned under y and fz ¼ fx � fy of them
are to be assigned under z. Then, as proven in Section 4.1, the optimal cost for this partition can be expressed in terms of
the optimal solutions of ðy; fyÞ and ðz; fzÞ as
Costðy; fyÞ þ Costðz; fzÞ þ Cl þ Cr; ð1Þ
where Cl denotes the additional cost of covering the path between x and y (by the addition of either Sx;y or SLðxÞ;y, as we explain
in detail below) and Cr denotes its counterpart between x and z. Accordingly, the cost of the optimal solution to the problem
ðx; fxÞ can be expressed as
Costðx; fxÞ ¼ min
fy ;fzP0
fyþfz¼fx

fCostðy; fyÞ þ Costðz; fzÞ þ Cl þ Crg: ð2Þ
Now consider Cl, the cost of the subset that will be added between x and y. First of all, if fy ¼ rðyÞ, the subtree TðyÞ and con-
sequently, the whole left subtree of x will be privileged, and no subsets will be needed on the left side of x.

Given that TðyÞ is not fully privileged, Sx;y will be added to the cover if and only if fz ¼ rðzÞ; i.e., the right subtree of x is fully
privileged.

Given that TðzÞ is not fully privileged either (i.e., fz < rðzÞÞ, the only possible addition on the left side of x is SLðxÞ;y, which
will take place if and only if LðxÞ – y (i.e., y is not the immediate left child of xÞ.

The addition of Sx;y or SLðxÞ;y to the cover may or may not bring an additional cost. If y is an i-point in the optimal solution to
ðy; fyÞ, the new set will be merged with the existing set under y, and again we will have Cl ¼ 0.

Hence the value of Cl is determined as
Cl ¼
1; if f y < rðyÞ and fz ¼ rðzÞ or dðyÞ � dðxÞP 2ð Þ and y is not an i-point:
0; otherwise:

�

The value of Cr is determined similarly.
If there are more than one solutions that give the minimum cost at (2), the solution that makes x an i-point is selected for

the possibility of a later merger.

4.1. Optimal substructure property

Theorem 4.1 below states the optimal substructure property of the SD optimization with free riders problem.

Theorem 4.1. Let x be a meeting point in an SD tree T, and y ¼ LmpðxÞ and z ¼ RmpðxÞ. Consider the problem of placing fx free
riders under x optimally, where fy of them are to be placed under y. An optimal solution to this problem exists that is based on the
optimal solutions of ðy; fyÞ and ðz; fzÞ, where fz ¼ fx � fy.

Proof. Assume to the contrary that the optimal solution to the problem at x gives a suboptimal configuration at either y or z
(w.l.o.g., assume it is suboptimal at yÞ; and assume no equivalent solution exists that is based on some optimal solutions at y
and z. Let cost0y denote the cost of the suboptimal configuration at TðyÞ induced by the optimal solution at x. Similarly, let
cost0z, C0l, and C0r denote the costs it induces at subtree TðzÞ, and on the paths x–y and x–z respectively. Let costy and costz

be the cost of the optimal solutions of ðy; fyÞ and ðz; fzÞ, and Cl and Cr denote the associated costs on the paths x–y and x–
z in the solution to ðx; fxÞ based on these optimal solutions at y and z. Hence, we have
cost0y þ cost0z þ C0l þ C 0r < costy þ costz þ Cl þ Cr ; ð3Þ
cost0y > costy; ð4Þ
cost0z P costz: ð5Þ
Given that Cl and Cr are either 0 or 1, the situation above is possible only with Cl ¼ Cr ¼ 1 and C0l ¼ C0r ¼ 0. The case
Cl ¼ Cr ¼ 1 is possible only when (i) TðyÞ and TðzÞ are not fully privileged; (ii) y and z are not an immediate child of x;
and (iii) y and z are not i-points in the optimal solutions of ðy; fyÞ and ðz; fzÞ. Under conditions (i) and (ii), the assumption that
C0r ¼ 0 is possible only when z is an i-point in the corresponding solution in TðzÞ. Given that z was not an i-point in the opti-
mal solution of ðz; fzÞ, this implies cost0z > costz. Therefore,
cost0y þ cost0z þ C0l þ C 0r P costy þ costz þ Cl þ Cr: �
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4.2. Algorithm OPTIMALASSIGN

Algorithm 1. OPTIMALASSIGN ðT; P; f Þ

1: MP  FIND MEETINGPOINTSðRÞ
2: for i ¼ 1 to r do
3: x MP½i�
4: Cx½0�;Cx½1�; Ix½0�; Ix½1�  0
5: for i ¼ r þ 1 to 2r � 1 do
6: x MP½i�; y LmpðxÞ; z RmpðxÞ
7: for fx ¼ 0 to minðrðxÞ; f Þ for
8: Cx½fx�  1
9: for fy ¼maxðfx � rðzÞ;0Þ to minðrðyÞ; fxÞ do

10: fz  fx � fy

11: tcost  Cy½fy� þ Cz½fz� þ Cl þ Cr

12: if tcost < Cx½fx� or ðtcost ¼ Cx½fx� and ðrðyÞ ¼ fy or rðzÞ ¼ fzÞÞ

then

13: Cx½fx�  tcost
14: Lx½fx�  fy

15: Ix½fx�  0
16: if fy ¼ rðyÞ or fz ¼ rðzÞ then
17: Ix½fx�  1
18: rootMP  MP½2r � 1�
19: ðresult; factÞ  FINDCOSTðrootMPÞ
20: C FINDCOVERðrootMP; factÞ

Algorithm 2. FINDCOST ðrootMPÞ

1: result  1;
2: for frootMP  0 to f do
3: rcost  CrootMP ½frootMP �
4: if dðrootMPÞ– 0 then
5: if IrootMP ½frootMP �– 1 then
6: rcost  rcost þ 1
7: if result > rcost then
8: result  rcost
9: fact  frootMP

10: return ðresult; factÞ

Algorithm 1 shows the optimal algorithm based on the dynamic programming formulation given in (2). The MP array,
which is initialized on line 1, contains a list of the meeting points in T. This array is generated by the FINDMEETINGPOINTS pro-
cedure such that a meeting point is always listed before its parent. Hence, as the array is processed in order, the program
proceeds from the leaves towards the root. In the course of the algorithm, a two-dimensional cost array Cx½fx� is filled in a
bottom-up fashion where a cell ½x; fx� stores the cost of the optimal solution for the subtree of x when fx free riders are used.

In addition to the cost array, the arrays Ix and Lx are used to maintain the critical information regarding the optimal solu-
tion obtained for each problem instance ðx; fxÞ. In the algorithm, Ix½fx� holds whether x is an i-point in that optimal solution
and Lx½fx� holds how many of the fx free riders in that optimal solution are assigned to the left subtree of x.

In Algorithm 1, two more procedures are used: The first one, FINDCOST, called on line 19, is described in Algorithm 2. It tra-
verses the cost array filled in the dynamic programming part and finds the optimal cost. The second procedure, FINDCOVER, uses
Ix and Lx arrays to find the Sx;ys used in the optimal solution. As described above, the array Ix½fx� holds whether x is an i-point
(i.e., Sx;y 2 C for some y 2 TÞ, and Lx½fx� holds how many of the fx free riders are assigned to the left subtree of x in the optimal
solution. Note that for an i-point x, the corresponding e-point y is the first descendant of x such that y has more revoked
nodes in its subtree than free riders, and also, if y is not a leaf node itself, both children of y have more revoked nodes in
their subtrees than free riders. Hence, FINDCOVER can construct C with a breadth-first search in OðrÞ time.

The main body of the algorithm OPTIMALASSIGN consists of the three nested loops between lines 5 and 17. The first for loop,
on line 5, iterates r � 1 times; the second loop, on line 7, iterates minðrðxÞ; f Þ times; and the last one, on line 9, iterates
OðminðrðyÞ; f ÞÞ times. Hence, a straightforward analysis gives the time complexity of the algorithm as Oðrf 2Þ. However, as
the following theorem proves, a tighter bound can be found as Oðrf þ r log log nÞ. The proof is along the same lines as that
of the dynamic programming algorithm given for the CS scheme in [22].
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Theorem 4.2. The time complexity of the algorithm OPTIMALASSIGN is Oðrf þ r log log nÞ.

Proof. Let iMP denote the set of internal meeting points in T. For a meeting point x 2 iMP, we will use y and z to denote
LmpðxÞ and RmpðxÞ such that rðyÞ 6 rðzÞ. Then, the total complexity of the three nested loops on lines 5–17 is bounded by
t ¼
X

x2iMP

minðrðxÞ; f Þ �minðrðyÞ; f Þ: ð6Þ
The terms that contribute to this summation will be analyzed in three classes:

(1) x 2 iMP such that rðyÞ; rðzÞ < f .
(2) x 2 iMP such that rðyÞ 6 f < rðzÞ.
(3) x 2 iMP such that f 6 rðyÞ; rðzÞ.

We will denote these classes by MP1, MP2, MP3, and their contributions to summation (6) by t1, t2, t3, respectively.
First consider MP1 and t1:
t1 ¼
X

x2MP1

rðxÞrðyÞ ¼
X

x2MP1

rðyÞrðyÞ þ
X

x2MP1

rðzÞrðyÞ ð7Þ
Let t01 and t001 denote the first and the second halves of summation (7). Since, by definition, rðyÞ 6 rðzÞ, we have t01 6 t001, and
therefore, t1 6 2t01.

To compute a bound on t001, we will define a formal variable Xu for each revoked user u and set all of these formal variables
to 1. By using these variables, we can write rðyÞ ¼

P
u2R\TðyÞXu and rðzÞ ¼

P
u2R\TðzÞXu; hence,
rðzÞrðyÞ ¼
X

u2R\TðyÞ
v2R\TðzÞ

XuXv ;
where every Xi equals 1.
Now consider the question of how many monomials XuXv a particular revoked user u contributes to the summation t00. Let

T0 denote the Steiner tree consisting of the meeting points in T, where a meeting point x and its meeting point children
LmpðxÞ and RmpðxÞ are linked directly. Let x be the highest ancestor of u in T0 that is in MP1. Consider the path
u ¼ u0;u1; . . . ;uk ¼ x in T0. Let v i be the sibling of ui for 0 6 i < k. Since Tðv iÞ and Tðv jÞ are disjoint for all i – j, there arePk�1

i¼0 jrðv iÞj monomials containing Xu and each of them has coefficient 1. So the number of monomials containing Xu can be
no more that 2f since x 2 MP1 and TðxÞ contains at most 2f revoked users. Given that there are r revoked users in total, we
have t01 ¼ Oðrf Þ, and consequently, t1 ¼ Oðrf Þ.

Second, consider MP2 and t2:
t2 ¼
X

x2MP2

minðrðxÞ; f Þ �minðrðyÞ; f Þ ¼
X

x2MP2

frðyÞ
Note that any x 2 MP2 cannot be a descendant of any other x0 2 MP2; hence the TðyÞ, Tðy0Þ subtrees are disjoint for any dis-
tinct x; x0 2 MP2. Therefore, we have
t2 ¼ f
X

x2MP2

rðyÞ 6 rf :
Third and last, consider MP3 and t3. Consider the subtree T00 �T0 consisting only of the meeting points in MP3 and their left
and right children. Since there are r revoked users in total, there can be at most r=f leaves in T00. So, the number of the meet-
ing points in MP3 is no more than r=f � 1. Note that the contribution of a meeting point in MP3 to t3 is f 2; hence
t3 ¼ f 2Oðr=f Þ ¼ Oðrf Þ.

Since each of t1, t2, and t3 is Oðrf Þ, we have t ¼ Oðrf Þ. Besides, finding the meeting points at the beginning of the algorithm
takes Oðr log log nÞ time [22]. Hence, the overall time complexity of the algorithm OPTIMALASSIGN is Oðrf þ r log log nÞ. h
5. Greedy heuristics

When a faster solution is needed, a heuristic algorithm that gives nearly optimal solutions in a shorter time can be pre-
ferred. In this section we describe three heuristic methods for this purpose, two greedy algorithms and a third combined
method, which return near-optimal results with a running time significantly faster than that of the optimal algorithm.

5.1. Top-down heuristic

The first heuristic searches the user tree in a top-down fashion to identify the Sx;y subsets to cover a given receiver set P,
such that each subset taken satisfies in itself the free rider ratio cf ¼ f=p.
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Note that an SD tree cannot be searched greedily by just looking at single nodes because the Sx;y subsets are defined by
two nodes having a descendant–ascendant relationship. We define an exclusion point eðxÞ for every node x to be the descen-
dant of x with the largest subtree under it that is completely revoked. The TOPDOWNASSIGN heuristic first calls the FINDEPOINTS

procedure, which identifies eðxÞ for a node x recursively, beginning from the root of the Steiner tree, i.e., the highest meeting
point. Then TOPDOWNCOVER is called, which searches the tree from top to bottom for subsets that satisfy the free rider ratio cf .

TOPDOWNCOVERðxÞ takes Sx;eðxÞ into the cover if it satisfies the free rider ratio. Otherwise, if x is a meeting point, the proce-
dure is called recursively on LðxÞ and RðxÞ. If x is not a meeting point, then a subset that covers all privileged descendants of x
until the first meeting point is added to the cover, and the procedure is repeated, beginning from that meeting point. One can
also see that we indeed do not need the e-points between an immediate child of a meeting point and its first meeting point
descendant. Hence, FINDEPOINTS only finds the e-points of the meeting points and those of their immediate children.

Algorithm 3. TOPDOWNASSIGNðT; P; f Þ

1: MP  FINDMEETINGPOINTSðRÞ
2: rootMP  MP½2r � 1�
3: cf  f=p
4: if root ¼ rootMP then
5: C ;
6: else
7: C fSroot;rootMPg
8: FINDEPOINTSðrootMPÞ
9: TOPDOWNCOVERðrootMPÞ

Algorithm 4. FINDEPOINTSðxÞ

1: if rðxÞ > 0 then
2: if pðxÞ ¼ 0 then
3: eðxÞ  x
4: else
5: y eðLðxÞÞ  FINDEPOINTSðLmpðxÞÞ
6: z eðRðxÞÞ  FINDEPOINTSðRmpðxÞÞ
7: if rðyÞ > rðzÞ then
8: eðxÞ  y
9: else

10: eðxÞ  z
11: return eðxÞ
12: else
13: return null

Algorithm 5. TOPDOWNCOVERðxÞ

1: if rðxÞ � rðeðxÞÞð Þ= pðxÞ � pðeðxÞÞð Þ 6 cf then
2: C C [ fSx;eðxÞg
3: else
4: if rðLðxÞÞ > 0 and rðRðxÞÞ > 0 then
5: TOPDOWNCOVERðLðxÞÞ
6: TOPDOWNCOVERðRðxÞÞ
7: else
8: if rðRðxÞÞ ¼ 0 then
9: C C [ fSx;LmpðxÞg

10: TOPDOWNCOVERðLmpðxÞÞ
11: if rðLðxÞÞ ¼ 0 then
12: C C [ fSx;RmpðxÞg
13: TOPDOWNCOVERðRmpðxÞÞ

The TOPDOWNASSIGN heuristic has two main subroutines: FINDEPOINTS and TOPDOWNCOVER. Both subroutines are recursive
methods called once for each meeting point, and do a constant amount of work at each call, hence have a complexity of
OðrÞ. The complexity of the algorithm also includes the cost of finding meeting points, which is Oðr log log nÞ. Hence, the over-
all time complexity of TOPDOWNASSIGN is Oðr log log nÞ.
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5.2. Bottom-Up Heuristic

The free rider quota can be utilized more efficiently by a targeted free rider placement heuristic that places the free riders
on an existing solution to merge the subsets in the cover C as efficiently as possible: One can remove an existing Sx;y subset
from C by saturating TðyÞ with free riders. Then TðxÞ will become fully privileged and has to be covered. Consequently, the
subset SparentðxÞ;siblingðxÞ will be temporarily added to the cover, and it will be determined whether it can be merged with any
other subsets or not. Note that if parentðxÞ is an e-point in the current cover (i.e., Sx0 ;parentðxÞ 2 C for some x0Þ, the newly sat-
urated TðxÞ will be merged with Sx0 ;parentðxÞ, replacing Sx0 ;parentðxÞ by Sx0 ;siblingðxÞ. Similarly, if siblingðxÞ is an i-point in the current
cover (i.e., SsiblingðxÞ;y0 2 C for some y0Þ, then TðxÞ will be merged with SsiblingðxÞ;y0 . Hence, there are three possibilities regarding
the reduction in the cover size jCj:

� 0: There will be no reduction if the subset SparentðxÞ;siblingðxÞ cannot be merged with any other subset. This happens when nei-
ther parentðxÞ is the e-point nor siblingðxÞ is the i-point of any other subset in C.

� 1: A reduction of 1 will be obtained when the subset SparentðxÞ;siblingðxÞ can only be merged with either Sx0 ;parentðxÞ or SsiblingðxÞ;y0 for
some x0 or y0.

� 2: As the best case, a reduction of 2 will be obtained when SparentðxÞ;siblingðxÞ can be merged with both Sx0 ;parentðxÞ and SsiblingðxÞ;y0 ,
for some x0, y0.

To decide which subset to remove next, the BOTTOMUPASSIGN heuristic uses the rate of return, defined as the reduction in the
cover size divided by the number of free riders needed. The heuristic dynamically maintains a priority queue SL of subsets in
the current cover ordered according to their rate of return. Whenever a subset is to be removed, the first one in the queue is
selected.

Algorithm 6. BOTTOMUPASSIGNðT; P; f Þ

1: C SDEXACTASSIGNðT; PÞ
2: SL GETPQðC; f Þ
3: while SL – ;
4: repeat
5: ðx; yÞ  EXTRACTFIRSTðSLÞ
6: until rðyÞ 6 f
7: C C� fSx;yg
8: SATURATEðyÞ
9: ðxnew; ynewÞ  MERGEðC; SL; xÞ

10: C C [ fSxnew ;ynew
g

11: INSERTðSL; Sxnew ;ynew
Þ

12: f  f � rðyÞ

Algorithm 7. MERGEðC; SL; xÞ

1: if Sx0 ;parentðxÞ 2 C for some x0 then
2: xnew  x0

3: C C� fSx0 ;parentðxÞg
4: REMOVEðSL; Sx0 ;parentðxÞÞ
5: else
6: xnew  parentðxÞ
7: if SsiblingðxÞ;y0 2 C for some y0 then
8: ynew  y0

9: C C� fSsiblingðxÞ;y0 g
10: REMOVEðSL; SsiblingðxÞ;y0 Þ
11: else
12: ynew  siblingðxÞ
13: return ðxnew; ynewÞ

The GETPQ procedure produces the priority queue SL of Sx;y subsets with rðyÞ 6 f , ordered according to their rate of return.
The EXTRACTFIRST procedure extracts the first subset Sx;y in SL and returns the corresponding indices. The SATURATE procedure
updates the r and rate of return values of all ascendants of y, rearranging SL accordingly.

Regarding the time complexity of the BOTTOMUPASSIGN heuristic, finding the initial cover with the SDEXACTASSIGN procedure,
which is Naor, Naor and Lotspiech’s exact SD assignment algorithm, takes Oðr log nÞ time [20]. Then, creation of the priority
queue SL takes Oðr log rÞ time. In the while loop, the EXTRACTFIRST routine is called OðrÞ times in total, among which at most f
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lead to a set merger. The calls not leading to a merger will be completed in Oðr log rÞ time in total. For the calls that lead to a
merger, a run of INSERT, REMOVE and SATURATE may be needed per merger. INSERT and REMOVE take Oðlog rÞ time. SATURATE includes
Oðlog nÞ decrease key operations, each of which may take Oðlog rÞ or Oð1Þ time depending on whether a binary or Fibonacci
heap is used for implementing SL, making the total cost of the set merger operations Oðf log n log rÞ or Oðf log nÞ accordingly.
Therefore, the overall complexity of BOTTOMUPASSIGN is Oðr log nþ f log n log rÞ with a binary heap implementation and
Oðr log nÞ with a Fibonacci heap implementation of the priority queue SL.

5.3. Hybrid heuristic

The running time of the BOTTOMUPASSIGN heuristic increases significantly when the amount of the free rider quota to be
placed is high. This problem can be solved by using the TOPDOWNASSIGN procedure to obtain an initial configuration and run-
ning BOTTOMUPASSIGN on top of it, instead of starting BOTTOMUPASSIGN with an exact SD cover and placing all free riders one by
one. This combined method, which we call HYBRIDASSIGN, returns near-optimal solutions significantly faster than the original
BOTTOMUPASSIGN.

6. Experimental results

We tested the practical performance of the algorithms in a series of simulation experiments, conducted with the param-
eters n ¼ 1024, 1 6 p 6 1024, and 0 6 cf 6 2. We summarize the results in this section. Each data point in the plots is aver-
aged over 50,000 runs. At each run, a set of p users are selected randomly to be the privileged user set P. The free riders are
chosen according to that P by the algorithm being tested. Then the SD cover is computed for the resulting receiver set, and
that cover’s cardinality is taken into account as the transmission cost for that run.

Figs. 2 and 3 compare the transmission costs obtained by the proposed algorithms against that of the basic SD scheme.
Fig. 2 presents the results according to the privileged set size p for a set of selected cf values. Fig. 3 presents the results
according to the free rider ratio cf .
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Fig. 2. Transmission costs of the algorithms with respect to p.
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Fig. 3. Transmission costs of the algorithms with respect to cf .
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Fig. 4. Execution time of the algorithms in seconds. The figures are the total time of the 50,000 runs taken for each data point.
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The results show that significant gains are possible by the proposed algorithms. With a limited free rider ratio such as 0.1,
a 20% or greater reduction can be obtained; and when larger values of cf are tolerable, a reduction of 80% or more is possible.
The experiments also show that the results returned by the HYBRIDASSIGN heuristic are usually very close to the results obtained
by the optimal algorithm. In the experiments, we also observed that if the distribution of the revoked users is uniform, then
the distribution of the free riders is as well.

Fig. 4 compares the running times of our algorithms. The results show that HYBRIDASSIGN turns out to have the best cost-
benefit performance among the heuristic methods. Its running time is only slightly more than that of TOPDOWNASSIGN, while
its performance matches that of BOTTOMUPASSIGN and sometimes approaches that of the optimal algorithm.
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Fig. 5. Transmission costs obtained by the optimal algorithms for the CS and the SD schemes.

M. Ak et al. / Information Sciences 179 (2009) 3673–3684 3683
6.1. Comparison with the CS Scheme

An optimal free rider assignment algorithm for the CS scheme was given by Ramzan and Woodruff [22]. We also imple-
mented this algorithm and compared it to our optimal algorithm for the SD scheme. Fig. 5 compares the performance of the
two optimal algorithms in terms of the transmission cost. The results show that, with the same number of free riders al-
lowed, the SD scheme can give a transmission cost of 20% less than that of the CS scheme.
7. Conclusion

The SD scheme is one of the most efficient BE schemes today. In this paper, we studied the problem of improving the per-
formance of an SD scheme by allowing a limited number of free riders in the system. We first proposed an optimal algorithm
based on a dynamic programming approach, which finds the best free rider placement that leads to the minimum transmis-
sion overhead. Subsequently, we proposed three heuristics for the same problem, that return near-optimal solutions with a
faster running time. The TOPDOWNASSIGN heuristic works extremely fast, but it may not utilize all the available free rider quota,
or it may spend a large amount of it fast and carelessly, possibly missing configurations that are more efficient. These draw-
backs were solved in the BOTTOMUPASSIGN heuristic, which uses a targeted placement approach, placing the free riders slowly
and carefully, and using all the available quota. However, this procedure gets slower as the free rider quota to be placed in-
creases. Noting the advantages and disadvantages of the two procedures, we offered a third heuristic, HYBRIDASSIGN, that com-
bines the advantages of the two approaches.

The experimental results show that the optimal placement algorithm and the three heuristics proposed provide signifi-
cant reductions in the transmission cost of the SD scheme.

Besides the basic SD scheme, these algorithms can also be applied to its variants, such as LSD [13] and SSD [12]. These
variants differ from the basic SD in the way they generate the keys of the tree, but they are exactly the same as the basic
SD scheme as far as cover finding is concerned. Hence, the systems based on these SD variants can benefit equally from
the proposed algorithms.
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