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2Department of Electronics and Communication Engineering, Yıldız Technical University, İstanbul 34349, Turkey
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SUMMARY

Robust controller design for a flow control problem where uncertain multiple time-varying time-delays exist is considered.
Although primarily data-communication networks are considered, the presented approach can also be applied to other flow
control problems and can even be extended to other control problems where uncertain multiple time-varying time-delays
exist. Besides robustness, tracking and fairness requirements are also considered. To solve this problem, an H∞ optimization
problem is set up and solved. Unlike previous approaches, where only a suboptimal solution could be found, the present
approach allows to design an optimal controller. Simulation studies are carried out in order to illustrate the time-domain
performance of the designed controllers. The obtained results are also compared to the results of a suboptimal controller
obtained by an earlier approach. Copyright q 2009 John Wiley & Sons, Ltd.

Received 4 April 2007; Revised 15 July 2009; Accepted 14 September 2009

KEY WORDS: time-delay systems; multiple time-delays; robust control; H∞-based control; flow control; data-
communication networks

1. INTRODUCTION

In data communication networks, network providers
should satisfy the desired Quality of Service (QoS) to
the users. Most important problem that hinders QoS is
congestion. Congestion occurs at a node of the network,
when the total incoming flow to that node exceeds the
capacity of the outgoing link of that node. In such a
situation, long queuing delays may result and/or buffers
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may overflow, which would result in the loss of data. To
avoid such undesirable behaviour, congestion control
mechanisms must be implemented. One such mecha-
nism is the flow control, which regulates data sending
rate of the sources. In general, there are two flow control
methods: rated-based [1–3] and window-based [4, 5].
Although window-based control is widely used for end-
to-end congestion control in TCP/IP networks, rate-
based control is preferred for edge-to-edge control in
newer generation networks [6, 7].

In the rate-based flow control method, the controller
is implemented at the bottleneck node to regulate the
rate of data packets sent from the sources, which
feed this node. The existence of time-delays in the
network makes the flow control problem challenging.
Furthermore, these time-delays are also uncertain and
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time-varying. Moreover, since there usually are more
than one source feeding a bottleneck, there are multiple
time-delays.

There are a number of different controller design
methods for systems that involve time-delays (e.g.
see [8] and references therein). The main difficulty
in designing controllers for time-delay systems is
that, such systems are infinite-dimensional. Toker and
Özbay [9] used the operator theory [10, 11] to formu-
late an H∞-optimal controller design approach for
single-input single-output (SISO) infinite-dimensional
systems. Nagpal and Ravi [12] and Tadmor [13] used
state-space methods and Meinsma and Zwart [14] used
J -spectral factorizations to solve the same problem
for systems that involve a single delay. Mirkin and
Raskin [15] considered parameterization of controllers,
which stabilize a linear time-invariant (LTI) system
with a single delay. The general solution of the
H∞-optimal controller design problem for systems
which involve multiple delays, however, was not
available up until recently. Meinsma and Mirkin [16]
formulated a solution to this problem by splitting the
problem into a nested sequence of simpler problems
each with a single delay.

An H∞-based controller design approach for the
rate-based flow control problem was proposed in [17]
by using the design techniques in [9]. The imple-
mentation of this controller was later illustrated in
[18]. In [17, 18], however, the uncertain delays were
assumed to be time-invariant. Furthermore, since
the design approach in [9] is for SISO systems, the
controller was designed for the multiple delays consid-
ering the longest delay and equalizing the delays in
the other channels to the longest one. The case of
uncertain time-varying multiple time-delays was later
considered in [19], where a rate-based flow controller
was designed, which is robust to variations in such
delays. However, in [19], the controller was obtained
by defining separate H∞ control problems for each
channel. The solutions to these problems were then
weighted and blended to obtain the overall controller.
Therefore, the overall solution presented in [19] is not
optimal, but suboptimal in the H∞ sense. To find an
optimal solution to this problem, the approach of [16]
was first considered in [20]. Then, in [21], where the
general framework of the present work was reported,

the approach of [16] was used to obtain an H∞-
optimal solution to the problem presented in [19]. In
[21], however, it was assumed that the uncertain parts
of the time-delays are always non-negative. This was
achieved by using the minimum possible time-delays
as the nominal time-delays, which introduces two
disadvantages: (i) the best performance is obtained, not
for the plant with most probable time-delays, but for
the plant with minimum time-delays; (ii) robustness
range must be larger, since the absolute value of
the maximum allowable variation on the time-delays
must now be twice compared to the case when the
nominal time-delays are chosen as the average of the
minimum and maximum possible time-delays. The
reason for using the minimum possible time-delays
as the nominal time-delays in [21] was to ensure the
causality of the uncertainty block. The necessity of
using causal uncertainty blocks stems from the fact
that the small-gain theorem [22, 23], which is needed
during the design process, is not in general valid for
non-causal systems (see Example 1 in [24]). Recently,
however, Ünal and İftar [24] showed that, under
certain conditions, a small-gain theorem is valid for
systems that involve non-causal blocks. Extending this
result, Ünal and İftar [25] also showed that non-causal
uncertainty blocks can indeed be used in the robust
flow controller design for networks with multiple
time-delays. Although an alternative approach (see
Remark 3 at the end of Section 2) exists, in the present
work, we remove the assumption of non-negativity
on the uncertain parts of the time-delays, by allowing
the uncertainty block to be non-causal. The problem
is presented in Section 2. Its solution is given in
Section 3. A number of simulations are presented in
Section 4, to illustrate the performance of the controller
in a number of typical cases. Concluding remarks are
given in the last section.

The mathematical model considered in this work
may also appear in flow control problems in areas other
than data-communication networks. Typical examples
are transportation networks, material transport systems
(e.g. oil or gas pipelines), manufacturing systems,
and process control. Therefore, the controller design
approach presented here may also be applied in those
areas (e.g. see Chapters 2 and 7 of [8]). In fact,
this approach may be extended to the control of any
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(a) (b) (c)

Figure 1. (a) Input–output relation of a 4-block system; (b) it’s chain-scattering representation; and (c) cascade connection
of two systems in chain-scattering representation.

integrating system with multiple uncertain time-varying
time-delays in its input and/or output channels.

1.1. Notation and preliminaries

Throughout, I and 0 respectively denote an identity
matrix and a zero matrix of appropriate dimensions.
For a positive integer k, Ik denotes the k×k iden-
tity matrix and 1k denotes the 1×k matrix of all 1’s.
For a vector w, nw denotes the dimension of w. For
two vectors z and w, Jzw :=blockdiag(Inz ,−Inw) is a
signature matrix. For a matrix M , MT denotes its trans-
pose, M−1 denotes its inverse, and M−T denotes the
transpose of its inverse. An H∞ mapping Q is called
contractive if ‖Q‖∞<1.⎡⎣A B

C D

⎤⎦
denotes the transfer function matrix (TFM)C(s I−A)−1

B+D. For a system with TFM e−hsC(s I −A)−1B, �h
denotes the completion operator, which is defined as

�h

⎛⎝e−hs

⎡⎣A B

C 0

⎤⎦⎞⎠=
⎡⎣ A B

Ce−Ah 0

⎤⎦−e−hs

[
A B

C 0

]
,

whose impulse response, g(t), is limited to the time
interval [0,h):

g(t)=
{
CeA(t−h)B, 0�t<h

0, otherwise
. (1)

Consider a system with TFM

P̂=
[
P̂11 P̂12

P̂21 P̂22

]

with input
[

w
u

]
and output

[
z
y

]
, and a feedback

connection u=Ky as depicted in Figure 1(a). The
closed-loop TFM from w to z is given as Fl(P̂,K ) :=
P̂11+P̂12K (I−P̂22K )−1 P̂21, where Fl(·, ·) denotes
the lower linear fractional transformation
(lower-LFT) [26].

Note that, for the system in Figure 1(a),

z = P̂11w+ P̂12u, (2)

y = P̂21w+ P̂22u. (3)

If P̂−1
21 exists, then (3) can be written as

w=−P̂−1
21 P̂22u+ P̂−1

21 y. (4)

By replacing w in (2) by (4), we obtain

z = (P̂12− P̂11 P̂
−1
21 P̂22)u+ P̂11 P̂

−1
21 y,

w = −P̂−1
21 P̂22u+ P̂−1

21 y.

Therefore, if we define

� :=
[
P̂12− P̂11 P̂

−1
21 P̂22 P̂11 P̂

−1
21

−P̂−1
21 P̂22 P̂−1

21

]
=:
[

�11 �12

�21 �22

]
,

the system in Figure 1(a) can be represented as in
Figure 1(b), where � is called the chain-scattering
representation of P̂ and denoted as �=CHAIN(P̂)

[27]. When the feedback connection u=Ky is made,
then the closed-loop TFM from w to z in Figure 1(b) is
given as HM(�,K ) :=(�11K +�12)(�21K +�22)

−1,
where HM(·, ·) denotes the homographic transforma-
tion [27]. From Figure 1(a), the same TFM can also
be written as Fl(P̂,K ). Thus, Fl(P̂,K )=HM(�,K ).
The main reason for using the chain scattering repre-
sentation is for its simplicity in representing cascade
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connections. The cascade connection of two chain
scattering representations �1 and �2, as shown in
Figure 1(c), is represented as the product �1�2 of
each chain scattering representation. Furthermore, the
closed-loop TFM in Figure 1(c), from w to z, is
obtained as

HM(�1,HM(�2,K ))=HM(�1�2,K ). (5)

Moreover, if � in Figure 1(b) is invertible, and the
closed-loop TFM Q :=HM(�,K ) is known, then K
is easily obtained as [27]:

K =HM(�−1,Q). (6)

2. PROBLEM STATEMENT

2.1. Network model

In this study, we consider the flow control problem in a
data communication network with n sources feeding a
single bottleneck node. The flow controller, which is to
be designed, is implemented at the bottleneck node. The
controller calculates a rate command for each source to
adjust the rate of data it sends to the bottleneck node
in order to regulate the queue length at the bottleneck
node so that congestion is avoided.

In an actual data-communication network, data
flow consists of discrete entities, since data packets
are handled individually. Since a model that reflects
this behaviour would be very complicated, many
researchers have used continuous flow models, which
are customarily called fluid-flow models (e.g. see
Chapters 5 and 6 of [28] and references therein).
Therefore, here we will also use a fluid-flow model for
the purpose of controller design. For the simulation
studies in Section 4, however, we will use a more
realistic discrete model and show that a controller that
is designed based on a fluid-flow model can also work
well when the actual flow is discrete.

According to our fluid-flow model, the dynamics of
the queue length are given as [19]:

q̇(t)=
n∑

i=1
rbi (t)−c(t), (7)

where

q(t) is the queue length at the bottleneck node at
time t ,
rbi (t) is the rate of data received by the bottleneck
node at time t from the i th source, i=1, . . . ,n,
c(t) is the outgoing rate of data from the bottleneck
node at time t , which equals to the capacity of the
outgoing link assuming that q(t) is non-zero [19].
The total amount of data received at the bottleneck

node from the i th source, i=1, . . . ,n, by time t is given
as [19]:∫ t

0
rbi (�)d�=

⎧⎪⎪⎨⎪⎪⎩
∫ t−� f

i (t)

0
rsi (�)d�, t−� f

i (t)�0

0, t−� f
i (t)<0

,

(8)

where

rsi (t) is the rate of data sent from the i th source at
time t and is assumed to be (for controller design
purposes) equal to rci (t),
rci (t) :=ri (t−�bi (t)) is the rate command received
by the i th source at time t , and
ri (t) is the rate command for the i th source issued
by the controller at time t .

By taking the derivative of both sides of (8) and using
rsi (t)=rci (t)=ri (t−�bi (t)), the rate of data received by
the bottleneck node, rbi (t), is given in terms of the rate
command, ri (t), as follows:

rbi (t)=
⎧⎨⎩(1− �̇

f
i (t))ri (t−�i (t)), t−� f

i (t)�0

0, t−� f
i (t)<0

. (9)

Here, �i (t)=�bi (t)+� f
i (t) is the round-trip time-delay,

where

�bi (t)=hbi +�bi (t) is the backward time-delay at
time t , which is the time required for the rate
command to reach the i th source. Here, hbi is
the nominal time-invariant known backward time-
delay, and �bi (t) is the time-varying backward
time-delay uncertainty,
� f
i (t)=h f

i +� f
i (t) is the forward time-delay at

time t , which is the time required for the data sent
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from the i th source to reach the bottleneck node.
Here, h f

i is the nominal time-invariant known

forward time-delay, and � f
i (t) is the time-varying

forward time-delay uncertainty.

The nominal round-trip time-delay for the i th
channel of the system is hi =hbi +h f

i , and the time-
varying round-trip time-delay uncertainty is �i (t)=
�bi (t)+� f

i (t). It is assumed that the uncertainties are
bounded as follows:

|�i (t)|<�+
i , |�̇i (t)|<�i , |�̇ f

i (t)|<� f
i (10)

for some bounds �+
i >0 and 0<� f

i ��i<1. It is further
assumed that �i (t) is such that �i (t)�0 at all times. In a
real application, there also exist some hard constraints,
such as non-negativity constraints and upper bounds on
the queue length and data rates. In this work, however,
we assume that such constraints are always satisfied for
the purpose of controller design. We will consider such
constraints in Section 4, while running simulations.

Remark 1
The term �̇

f
i in (9), which results from the differentia-

tion of (8), represents the jitter effect [29] and is a char-
acteristic of networks with a time-varying delay. Note
that the jitter effect appears only due to the variations in
the forward time-delays and not in the backward time-
delays, since the variations in the backward time-delays
does not induce any variations on the data flow.

It should also be remarked that, in a data-
communication network, the round-trip time-delay for
an individual data packet can be measured after this
packet travels to its destination and its notification
comes back to the source. That is the round-trip
time-delay, �i (t), can be measured at time t+�i (t); i.e.
after a time-delay which equals to itself. Therefore,
this measurement cannot be used by the controller. Of
course, �i (t) can be estimated based on such measure-
ments (e.g. see [30]). However, good estimates cannot
be obtained when variations on �i (t) are rather fast and
random [31]. In such a case, to guarantee stability and
obtain good performance, a robust controller design
approach is needed as it was undertaken in [8, 32–36],
among other places.

2.2. Control problem

Our aim is to design a controller, for the above
described system, to regulate the queue length q(t).
The controlled system must be robustly stable against
all time-varying uncertainties in the time-delays
which satisfy (10). Assuming that limt→∞ c(t)=c∞
exists, the nominal system must satisfy the tracking
requirement:

lim
t→∞q(t)=qd , (11)

and the weighted fairness [19] requirement:

lim
t→∞ri (t)=�i c∞, i=1, . . . ,n. (12)

Here, qd is the desired queue length, which is chosen
as some positive number (typically half the buffer size)
and �i>0, i=1, . . . ,n, are the fairness weights [19],
which satisfy

∑n
i=1 �i =1.

To obtain an uncertainty model, we define the uncer-
tainty in the queue length as �q(t) :=q(t)−q0(t), where

q0(t) :=
∫ t

0

[
n∑

i=1
ri (�−hi )−c(�)

]
d�+q(0)

is the nominal queue length. By defining rhi (t) :=ri (t−
hi ), i=1, . . . ,n, and proceeding as in [19] (by using
rhi instead of ri ), we obtain �q(t)=∑n

i=1 �iq(t), where

�iq(t) is the output of the system shown in Figure 2. In
Figure 2, M� represents multiplication by �. The differ-
ence between Figure 2 and Figure 10 of [19] is that ri (t)
and �i (t) in [19] are now respectively replaced by rhi (t)
and �i (t). This makes the system in Figure 2 not neces-
sarily causal, since we may have �i (t)<0. In this case,
the delay blocks in Figure 2 are in fact time-advance
blocks and the integral is a non-causal integral. The
reason for this difference is that, here, unlike in [19], we
would like to take the nominal delays outside the plant
(see Figure 3) in order to apply the approach of [16].
This will allow us to design an optimal controller,
opposed to [19], where a suboptimal controller was
designed. Following steps similar to those in [19], we
choose

�i,1=√
2

�i +� f
i√

1−�i
and �i,2=2

√
2�+

i ,
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Figure 2. Uncertainty model.

Figure 3. Overall system.

so that the L2-induced norms of the LTV systems �i,1

and �i,2 are both less than 1/
√
2.

Remark 2
We note that �i,2 could be taken as

√
2�+

i , as shown
in [25]. Here, however, we let �i,2=2

√
2�+

i as in [19],
so that we can compare our results to those of [19].

Without the loss of generality, let us assume that
h1�h2� · · ·>hn�0. Let N be the number of distinct
hi ’s and let us rename the nominal time-delays as
h̄1>h̄2> · · ·>h̄N�0 so that all h̄i ’s are distinct. For this,
let h̄1=h1, h̄2=hi2 , where i2 is the smallest index such
that hi2<h1, h̄3=hi3 , where i3 is the smallest index
such that hi3<hi2 , and so on. Also let li (i=1, . . . ,N )

be the number of channels with nominal round trip
time-delay h̄i . Then,

∑N
i=1 li =n.

Now, we can describe the overall system as
shown in Figure 3, where Po(s)=(1/s)1n is the
nominal plant, K is the controller to be designed,

�u(s)=blockdiag(e−h̄1s Il1, . . . ,e
−h̄N s IlN ) represents

the nominal time-delays, which are taken outside the
plant in order to apply the approach of [16], W1(s)=
[W 1(s) · · ·Wn(s)], where Wi (s)=[(�i,1/s) �i,2], and

�=blockdiag

([
�1,1

�1,2

]
, . . . ,

[
�n,1

�n,2

])

represents the uncertainties in the system. Note that,
since the L2-induced norms of the LTV systems �i,1

and �i,2 (i=1, . . . ,n) are made less than 1/
√
2, � is

a LTV system whose L2-induced norm is less than 1.
Furthermore, since �i,1 and �i,2 (i=1, . . . ,n) may
be non-causal, � is a non-causal system in general.
However, using the result of [25], we can still apply
the small-gain theorem as long as �i (t) :=hi +�i (t)�0,
∀t�0, ∀i , which is naturally satisfied since round-trip
time-delays cannot actually be time-advances. By
Theorem 2 of [25] (which is an extension of the
well-known small-gain theorem [26]), if we choose
K to stabilize the system with �=0 and make the
L2-induced norm of the system from w1 to z1 in
Figure 3 less than 1, then the overall system is
robustly stable for all uncertainties satisfying (10).
Alternatively, if K stabilizes the system with �=0
and make the L2-induced norm of the system from
w1 to z1 in Figure 3 less than some 	>0, then
the overall system is robustly stable for all � with
L2-induced norm less than 1/	. The uncertainty
block � would have L2-induced norm less than 1/	
if, for example, |�i (t)|<�+

i /	 and |�̇i (t)|<�̃i and
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|�̇ f
i (t)|<�̃

f
i , i=1, . . . ,n, where 0<�̃

f
i ��̃i<1 are such

that (�̃i + �̃
f
i )/(

√
1− �̃i )=(�i +� f

i )/	
√
1−�i .

Remark 3
As pointed out by one of the anonymous reviewers, the
use of non-causal uncertainty blocks can be avoided
by first designing a controller for the case when � is
replaced by �1 :=��u , which is causal and has the
sameL2-induced norm as �, and then showing that the
same controller also stabilizes the original system and
achieves the same norm, by using some manipulations
and a result from [15]. However, given the result of
[25], it is more natural and more straightforward to
directly use �, which is non-causal, as the uncertainty
block.

3. OPTIMAL H∞ CONTROLLER DESIGN

To solve the control problem defined in the previous
section, we consider a mixed sensitivity minimization
problem for the system shown in Figure 4 [20]. Here,
W2(s)= 1

s , W3(s)= 
1
s , and

W4(s)= 
2
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2
�1

−1 0 0

�3
�1

0 −1 0

...
...

. . .
...

�n
�1

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 
1>0 and 
2>0 are design parameters. Further-
more, d := q̇d −c, e1 is the integral of the error,
y :=qd −q , and is introduced to achieve tracking (11),
and e2 is introduced to achieve the weighted fairness
requirement (12).

Here, the weighting matrix W1, which was intro-
duced in the previous section, is used to normalize the
uncertainty block. Weights W2 and W3 are introduced
to reject disturbances (in the variations of qd and c) and
achieve the tracking requirement (11). The weighting
matrix W4 is introduced to achieve the weighted fair-
ness requirement (12). Design parameters 
1 and 
2,
which appear respectively in W3 and W4, can be used

Figure 4. System for the mixed sensitivity minimization
problem [20].

Figure 5. Equivalent system for the mixed sensitivity
minimization problem.

to assign relative importance to tracking and weighted
fairness respectively (see Section 4, Cases 4 and 5).

Note that the nominal plant, Po, has a pole at the
origin. Furthermore, the integral terms in the weights
W2, W3, and W4 forces K to have integral action [26].
Therefore, the sensitivity function of the closed-loop
system of Figure 4 has a double zero at the origin,
which causes uncontrollable pole-zero cancelations
to occur between the weights and the sensitivity.
To avoid this problem, we let Po(s)= M̃−1(s)Ñ (s),
where Ñ (s)=(1/(s+�))1n and M̃(s)=s/(s+�),
where �>0 is arbitrary. By using this factorization
and making some simple block diagram manipula-
tions, the system in Figure 4 is transformed to the
system in Figure 5, where M(s)=(s+�)2/s2, Ŵ1(s)=
M̃(s)W1(s), Ŵ2(s)=1/(s+�), Ŵ3(s)=
1/(s+�), and

K̂ (s)= s

s+�
K (s). (13)
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Figure 6. General four-block problem.

Therefore, the problem is now transformed into the
general four block problem of Figure 6, where the
general plant is described as

⎡⎢⎣
z

· · ·
ŷ

⎤⎥⎦ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

e1

e2

· · ·
ŷ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
... I

−Ŵ3MŴ1 Ŵ3MŴ2
... −Ŵ3MÑ

0 0
... W4

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

−MŴ1 MŴ2
... −MÑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
w1

d

· · ·
u

⎤⎥⎥⎥⎥⎦=: P̂
⎡⎢⎣

w

· · ·
u

⎤⎥⎦ (14)

and the problem is to design a controller K̂ so that
‖Fl(P̂,�u K̂ )‖∞<	, for minimum possible 	, where
Fl(P̂,�u K̂ ) is the closed-loop TFM from w to z. Let
us define the normalized plant

P̂	 :=
[

	−1 I 0

0 I

]
P̂=:

[
P	11 P	12

P	21 P	22

]
,

so that K̂ must satisfy ‖Fl(P̂	,�u K̂ )‖∞<1.
As it was done in [16], we will use chain scattering

representations to reduce the above defined 4-block
problem to a 1-block problem. It can be shown that
P	12( j�) has full column rank and P	21( j�) has
full row rank for all �∈R∪{∞}, which guarantees
existence of a solution in the delay-free case (i.e. when
�u = I ) for sufficiently large 	 [26]. The latter condi-
tion also allows us to introduce an output augmentation

Figure 7. New problem definition under chain-scattering
representation.

by defining y := P	21w+P	22u, where

[
P	21
P	21

]
is

invertible. Then, the augmented plant

P̂	 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P	11

... P	12

· · · · · · · · · · · ·

P	21

... P	22

P	21

... P	22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
has a chain-scattering representation �:=CHAIN(P̂	),
which in turn has a (Jzw, Juw)-lossless factorization

�=:��, (15)

as shown in Figure 7, where� is (Jzw, Juw)-lossless and
� is unimodular [27]. Furthermore, � is decomposed as

�=
[
�11 0

�21 �22

]
,

where �11 is (nu+nŷ)×(nu+nŷ) dimensional and
bistable.
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From Figure 7, the closed-loop TFM from w to z
is HM(�, Q̂), where Q̂ :=HM(�,�u[K̂ 0]). Since �
is (Jzw, Juw)-lossless, HM(�, Q̂) is contractive if and
only if Q̂ is contractive [27]. Therefore, the problem
of finding a K̂ such that Fl(P̂	,�u K̂ )=HM(�, Q̂) is
contractive is equivalent to finding a K̂ such that Q̂
is contractive. Furthermore, we can write Q̂=[Q 0],
where Q :=HM(�11,�u K̂ ). Therefore, the problem
of finding a controller K̂ for the system in Figure 6 is
reduced to finding K̂ such that Q=HM(�11,�u K̂ )

is contractive. Since HM(�11,�u K̂ )=HM(�11�, K̂ ),
where �=blockdiag(�u,1), the problem is reduced
to finding K̂ such that the H∞ norm of Q=
HM(�11�, K̂ ) is less than 1, which is a one block
problem (OBP) [16]. Following [16], to obtain a
causal controller, we can write Q=HM(�11�, K̂ )=
HM(�11�

−1
11∞�,K	), where �11∞ := lims→∞ �11(s)

and K	 :=HM(�−1�11∞�, K̂ ). In our case, we can
choose � in (15) such that

�11∞ := lim
s→∞�11(s)=

⎡⎢⎣ In 0

0
	√

D21DT
21

⎤⎥⎦ , (16)

where D21 := lims→∞ P	21(s). Then, �−1�11∞�=
�11∞ , and thus we would have

K	 :=HM(�−1�11∞�, K̂ )=HM(�11∞, K̂ ). (17)

Defining G :=�11�
−1
11∞ , the problem can be

written as:
OBP(G,�): Find a controller K	 satisfying

‖HM(G�,K	)‖∞<1.
The solution to this problem is found by a sequence

of iterations [16]. In each iteration, a problem which is
called an adobe delay problem is solved. The solution
to a generic adobe delay problem will be explained in
Section 3.1. Then, the general solution to OBP(G,�)

will be presented in Section 3.2.

3.1. Solution to a generic adobe delay problem

An adobe delay problem is described as OBP(Ga,�a)

where �a , called adobe delay, has a special form as:

�a :=
[
e−has I
a 0

0 I�a

]
,

where 
a<nu+nŷ and 
a+�a =nu+nŷ [16]. In this
subsection, the solution to this adobe delay problem for
a generic bistable

Ga =

⎡⎢⎢⎣
Aa B
a B�a

C
a I
a 0

C�a 0 I�a

⎤⎥⎥⎦ ,

where the partitioning is compatible with that of �a , is
presented. OBP(Ga,�a) is finding a controller Ka such
that Qa =HM(Ga�a,Ka) is contractive. For the delay-
free case, i.e. when �a = I , using (6), Ka is obtained as
Ka =HM(G−1

a ,Qa) for any contractive Qa . However,
for the present case, this mapping is not causal in
general. Therefore, to find the solution, we proceed as
in [16]. We define

J
a := [I
a 0]Ju ŷ
[
I
a

0

]
,

J�a := [0 I�a ]Ju ŷ
[

0

I�a

]
,

Ha :=
⎡⎣Aa−B�aC�a −B�a J�a B

T
�a

−CT

a
J
aC
a −AT

a +CT
�a
BT

�a

⎤⎦ ,

�(t) =
[

�11(t) �12(t)

�21(t) �22(t)

]
:=eHat ,

and

�a =
[

�a11 �a12

�a21 �a22

]
:=�(ha).

Then, the solution to OBP(Ga,�a) exists if and only
if �22(t) is nonsingular for all t ∈[0,ha], and is given
by [16]:

Ka =HM

([
I 0

�a I

]
G̃−1

a , Q̃a

)
, (18)
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where

G̃a :=

⎡⎢⎢⎢⎢⎣
Aa �T

a22B
a +�T
a12C

T

a
J
a B�a

C
a�
−T
a22

C�a − J�a B
T
�a

�−1
a22�a21

I
a+�a

⎤⎥⎥⎥⎥⎦ ,

is finite-dimensional and bistable,

�a(s) :=�ha

⎛⎜⎜⎝e−has

⎡⎢⎢⎣ Ha

B
a

−CT

a
J
a

C�a J�a B
T
�a

0

⎤⎥⎥⎦
⎞⎟⎟⎠

is a finite impulse response (FIR) filter of duration ha ,
and Q̃a is contractive, but otherwise arbitrary.

3.2. Solution to the general problem

The general problem, OBP(G,�), is solved in N steps,
if h̄N>0, and in N−1 steps, if h̄N =0.

Step 1: Assuming h̄N>0 (if h̄N =0, we directly start
with step 2, using �̃1 :=� and G̃1 :=G), let �=:�1�̃1,
where

�1(s) :=
[
e−h̄N s I
1 0

0 I�1

]
,

where 
1=∑N
i=1 li =n and �1=n+1−
1=1. Then,

using (5), HM(G�,K	)=HM(G�1,HM(�̃1,K	)).
Letting

K1 :=HM(�̃1,K	), (19)

the problem becomes determining K1 so that ‖HM
(G�1,K1)‖∞<1, which is the problem discussed in
Section 3.1. Therefore, its solution is

K1=HM

([
I 0

�1 I

]
G̃−1

1 , Q̃1

)
, (20)

where �1 and G̃1 are respectively determined as �a
and G̃a in Section 3.1, and Q̃1 must be contractive.
Note that, by (6),

Q̃1=HM

(
G̃1

[
I 0

−�1 I

]
,K1

)
,

where K1 is given by (19). Hence, using (5), we can
write Q̃1=HM(G̃1�̃1, K̃1), where

K̃1 :=HM

(
�̃

−1
1

[
I 0

−�1 I

]
�̃1,K	

)
. (21)

Therefore, the remaining problem is to determine K̃1,
so that ‖HM(G̃1�̃1, K̃1)‖∞<1, which is considered in
the next step.

Step 2: Let �̃1=:�2�̃2, where

�2(s) :=
[
e−(h̄N−1−h̄N )s I
2 0

0 I�2

]
,

where 
2=∑N−1
i=1 li =n−lN and �2=n+1−
2=

1+lN . Then, using (5), HM(G̃1�̃1, K̃1)=HM(G̃1�2,

HM(�̃2, K̃1)). Letting

K2 :=HM(�̃2, K̃1), (22)

the problem becomes determining K2 so that ‖HM
(G̃1�2,K2)‖∞<1, which is the problem discussed in
Section 3.1. Therefore, its solution is

K2=HM

([
I 0

�2 I

]
G̃−1

2 , Q̃2

)
, (23)

where �2 and G̃2 are respectively determined as �a
and G̃a in Section 3.1, and Q̃2 must be contractive.
Note that, by (6),

Q̃2=HM

(
G̃2

[
I 0

−�2 I

]
,K2

)
,

where K2 is given by (22). Hence, using (5), we can
write Q̃2=HM(G̃2�̃2, K̃2), where

K̃2 :=HM

(
�̃

−1
2

[
I 0

−�2 I

]
�̃2, K̃1

)
. (24)
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Therefore, the remaining problem is to determine K̃2,
so that ‖HM(G̃2�̃2, K̃2)‖∞<1, which is considered in
the next step.

...

Step N: Let �̃N−1=:�N �̃N , where

�N (s) :=
[
e−(h̄1−h̄2)s I
N

0

0 I�N

]
,

where 
N =∑1
i=1 li = l1 and �N =n+1−
N =

1+∑N
i=2 li . Note that, �̃N = I . Then, using (5),

HM(G̃N−1�̃N−1, K̃N−1)=HM(G̃N−1�N ,HM(�̃N ,

K̃N−1)). Letting

KN :=HM(�̃N , K̃N−1), (25)

the problem becomes determining KN so that
‖HM(G̃N−1�N ,KN )‖∞<1, which is the problem
discussed in Section 3.1. Therefore, its solution is

KN =HM

([
I 0

�N I

]
G̃−1

N , Q̃N

)
, (26)

where �N and G̃N are respectively determined as �a
and G̃a in Section 3.1, and Q̃N must be contractive,
but otherwise arbitrary. Note that, since �̃N = I , (25)
gives KN = K̃N−1.

Now, using (6), from (21) we obtain

K	 =HM

(
�̃

−1
1

[
I 0

�1 I

]
�̃1, K̃1

)
. (27)

Similarly, from (24) we obtain

K̃1=HM

(
�̃

−1
2

[
I 0

�2 I

]
�̃2, K̃2

)
. (28)

Substituting (28) into (27) and using (5) we obtain

K	 =HM

(
�̃

−1
1

[
I 0

�1 I

]
�̃1�̃

−1
2

[
I 0

�2 I

]
�̃2, K̃2

)
.

(29)

Proceeding like this, through the first N−1 steps
and using the fact that K̃N−1=KN , which is given by
(26), we obtain

K	 =HM

(
�̃

−1
1

[
I 0

�1 I

]
�̃1 · · · �̃−1

N−1

×
[

I 0

�N−1 I

]
�̃N−1

[
I 0

�N I

]
G̃−1

N , Q̃N

)
.

(30)

On noting that �̃
−1
1 =�−1�1, �̃1�̃

−1
2 =�2, . . . ,

�̃N−2�̃
−1
N−1=�N−1, and �̃N−1=�N , we can rewrite

(30) as

K	 =HM(��G
−1
� ,Q�), (31)

where

�� :=�−1
N∏
i=1

�i

[
I 0

�i I

]

is a system which involves delays and FIR filters
(note that time-advances introduced by �−1 are all
cancelled by �i ’s; i.e. �� is causal), G� := G̃N is a
finite-dimensional and bistable system, and Q� := Q̃N
is such that ‖Q�‖∞<1, but otherwise arbitrary.

Once K	 is found as in (31), using (5) and (6), K̂ is
found by inverting (17) and the desired controller K is
found from (13) as

K (s)= s+�

s
HM(�−1

11∞��(s)G−1
� (s),Q�(s)). (32)

By decomposing �k’s as

�1=:[�1
11 �1

12 · · · �1
1N ],

where �1
1 j is 1×l j dimensional,

�2=:
[

�2
11 �2

12 · · · �2
1(N−1)

�2
21 �2

22 · · · �2
2(N−1)

]
,
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Figure 8. The implementation of the controller K .

where �2
1 j is lN ×l j and �2

2 j is 1×l j dimensional, . . . ,
and

�N =:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�N
11

�N
21

...

�N
N1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where �N
j1 is l j+1×l1 ( j =1, . . . ,N−1) and �N

N1
is 1×l1 dimensional, the controller K can be imple-
mented as shown in Figure 8. Here, �(s+�)/(s) is a
proportional-integral term, where

� := 	√
D21DT

21

= 	

2
√
2
∑n

i=1(�
+
i )2

,

HM(G−1
� ,Q�) is a finite-dimensional system (assuming

Q� is finite-dimensional) parameterized by Q�, which
must be contractive, and each �k

i j is an FIR filter.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1529–1548
DOI: 10.1002/rnc



ROBUST FLOW CONTROL IN DATA-COMMUNICATION NETWORKS 1541

Furthermore,

r̄1 :=

⎡⎢⎢⎢⎣
r1

...

rl1

⎤⎥⎥⎥⎦ r̄2 :=

⎡⎢⎢⎢⎣
rl1+1

...

rl1+l2

⎤⎥⎥⎥⎦ , . . . , r̄N :=

⎡⎢⎢⎢⎣
r∑N−1

i=1 li+1

...

rn

⎤⎥⎥⎥⎦ .

In the above, we assumed that 	>0 is such that there
exists a solution to the adobe delay problem at each
step. To find minimum such 	 and the corresponding
controller, i.e. to determine the optimal controller
Kopt(s)=((s+�)/s)K̂opt(s), where K̂opt solves

inf
K̂

‖Fl(P̂,�u K̂ )‖∞ =:	opt, (33)

we first find the minimum 	, call it 	0, for which there
exists a (Jzw, Juw)-lossless factorization (15). If step 1
also has a solution for this 	, we let 	1=	0. Other-
wise, we increase 	 and determine the minimum 	, call
it 	1, for which there exists a solution to the adobe
delay problem of step 1. After solving step k (k=
1, . . . ,N−1), and thus determining 	k , if step k+1 also
has a solution for this 	, we let 	k+1=	k . Otherwise, we
increase 	 and determine the minimum 	, call it 	k+1,
for which there exists a solution to the adobe delay
problem of step k+1 (of course, we resolve all the
previous steps for this new 	). In this way, 	opt in (33)
is determined as 	N at the end of step N . The controller
given by (32) for 	=	opt is the optimal controller.

Examining Figure 8, the controller to be imple-
mented involves a proportional-integral term (the
right-most block in Figure 8), which can simply be
realized as

ẋ(t) = ��(qd(t)−q(t))

ē(t) = x(t)+�(qd(t)−q(t))

where x is the scalar state variable. This block is
followed by a LTI block with TFM HM(G−1

� ,Q�)

put in a feedback loop with N FIR filters. FIR filters
are also connected from the kth output of this block
to (k+1)th, . . ., N th output (k=1, . . . ,N−1). The
state-space dimension of the LTI block with TFM
HM(G−1

� ,Q�) is equal to the state-space dimension

of G−1
� plus the state-space dimension of Q�. By

tracking back the design steps given above, it is seen
that the state-space dimension of G−1

� is the same as

the state-space dimension of G :=�11�
−1
11∞ , which is

same as the state-space dimension of �11, since �−1
11∞

is a constant matrix. The state-space dimension of
�11, finally, is equal to the state-space dimension of
the general plant in (14), which is n+1 (the second
and fourth block rows can be realized commonly as a
second order system, additional n−1 states are needed
to realize the third block row). Therefore, if Q� is
chosen as constant (it can simply be chosen as zero),
the state-space dimension of the LTI block with TFM
HM(G−1

� ,Q�) is simply equal to n+1. With Q� =0,

a state-space realization of HM(G−1
� ,Q�) can be

written as

ẋ(t) = (Aa−�T
a22B
aC
a�

−T
a22

−�T
a12C

T

a
J
aC
a�

−T
a22 )x(t)+B�a e(t)

r̃(t) = −C
a�
−T
a22 x(t),

where r̃ := [̃rT1 r̃T2 · · · r̃TN−1 r̃TN ]T, x(t) is the n+1
dimensional state vector, and the appearing matrices
are as defined in Section 3.1, corresponding to Step N .
Furthermore, each FIR filter, whose impulse response
is in the form of (1), can easily be realized in discrete-
time using h

� delay elements, where h is the length
of the impulse response and � is the sampling period.
Therefore, the implementation of the overall controller
is relatively simple.

4. SIMULATION STUDIES

In this section, we consider a number of example
cases to illustrate the time-domain performance of
the proposed controller. We also compare the present
results with the results obtained by using the controller
design approach of [19]. Simulations are done using
MATLAB Simulink, where non-linear effects (hard
constraints) are also taken into account. Furthermore,
rather than using the fluid-flow network model used
for controller design, we use a discrete model for all
the simulations. We assume that data flow consists
of discrete packets of size 1 Mbits each. All the
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Figure 9. Topology of the example network.

Table I. Design parameters.

Case h1 h2 �+
1 �+

2 �1 �2 � f
1 � f

2 �1 �2 
1 
2 	opt

1,2,6,7 3 1 0.5 1 0.6 0.5 0.3 0.2 2
3

1
3 0.25 0.25 5.7098

3 3 1 2 1 0.6 0.5 0.3 0.2 2
3

1
3 0.25 0.25 7.6280

4 3 1 0.5 1 0.6 0.5 0.3 0.2 2
3

1
3 1 0.25 10.7857

5 3 1 0.5 1 0.6 0.5 0.3 0.2 2
3

1
3 0.25 1 7.2040

8 1 1 0.5 1 0.6 0.5 0.3 0.2 2
3

1
3 0.25 0.25 4.1868

links are assumed to have a physical capacity of
100Mbits/second. Therefore, each data packet is
modeled as a pulse of width 10 milliseconds. Control
packets, which carry rate information from the bottle-
neck node to the sources, on the other hand, have much
smaller sizes. The output of the controller is assumed to
be sampled at a rate of 0.2 kHz. That is, the controller
at the bottleneck node sends a control packet to each
source at every 5ms. Each source updates its data
sending rate as soon as a new control packet arrives (if
the current rate is r packets/second, then a packet of
size 1Mbits is send every 1

r seconds). Note that, due
to the presence of time-varying backward time-delays,
control packets are not necessarily received, and
hence, data sending rates are not necessarily updated
at equal intervals. A constant simulation step size of
1 millisecond is used for all simulations.

We consider a network with two sources as shown
in Figure 9. The nominal time-delays (in seconds),
controller design parameters, and the resulting optimal
sensitivity level, 	opt, for each case are shown in Table I.
In all cases, we take Q� =0 and h f

i =hbi = 1
2hi , i=1,2.

In all cases, the buffer size (maximum queue length)
is taken as 60 packets and the desired queue length,
qd , is taken as half of this value, 30 packets. The rate
limits of the sources are taken as 100 packets/second
in all cases except Case 6. The capacity of the outgoing
link is taken as 90 packets/second in all cases except
Case 7. The uncertain part of the actual time-delays (in
seconds) are shown in Table II. The results are shown
in Figures 10–17, where q is the queue length, q(t)
(whose scale is shown on the right-hand-side of each
graph), and rsi , for i=1,2, is the actual rate, rsi (t) :=
min(max(rci (t),0),di ), of data sent from source i at
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Table II. The uncertain part of the actual time-delays.

Case i �bi (t) � f
i (t)

1, 4–8 1 0.2+0.3sin
(
2�
30 t
)

0.1+0.2sin
(
2�
70 t
)

2 0.4+0.3sin
(
2�
50 t
)

0.1+0.1sin
(

2�
100 t

)
2, 3 1 1.2+0.3sin

(
2�
30 t
)

0.1+0.2sin
(
2�
70 t
)

2 0.4+0.3sin
(
2�
50 t
)

0.1+0.1sin
(

2�
100 t

)
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Figure 10. Simulation results for Case 1.

time t , where di is the rate limit of source i and rci (t)=
ri (t−�bi (t)) is the rate command received at source i
at time t .

Case 1: This is the central case, which we will
compare all other simulation results. As shown in
Figure 10, the queue length remains almost zero for
a duration of about 18 s. This is the time required
for the incoming rates to reach the capacity of the
outgoing link. After a transient, which includes a
small overshoot, an oscillatory steady-state is reached
at about 40 s. The high-frequency oscillations in the
queue length are due to discrete arrival/departure of
packets (those oscillations would not be seen if a
fluid-flow model was used). Besides those oscillations,
the existence of time-varying forward time-delays also
cause oscillations, especially at the steady-state. As
shown in Figure 10, at steady-state, the queue length
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Figure 11. Simulation results for Case 2.
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Figure 12. Simulation results for Case 3.

oscillates around its desired value, qd , and the flow
rates oscillate around the values given by (12). Also
note that, the controller is more conservative on rate 1,
than it is on rate 2. The reason for this is that the
nominal delay of channel 1 is higher than that of
channel 2.

Case 2: We have the same controller as in Case 1,
but the actual delay in channel 1 is now increased. As
shown in Figure 11, this results in a longer transient
response and more overshoot.

Case 3: We increased the value of the design param-
eter �+

1 four times as shown in Table I. This makes the
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Figure 13. Simulation results for Case 4.
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Figure 14. Simulation results for Case 5.

resulting controller more robust, but more conservative.
As shown in Figure 12, when we apply the same actual
delays as in Case 2, it takes a longer time for the queue
to respond, but the overshoot is smaller.

Case 4: To show the effect of the design param-
eter 
1, we increased its value four times as shown
in Table I. This makes the response faster but more
oscillatory as shown in Figure 13.

Case 5: To show the effect of the design param-
eter 
2, we increased its value four times as shown in
Table I. This makes the the fairness condition (12) to
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Figure 15. Simulation results for Case 6.

be satisfied even during the transient response, but now
the response is slower as shown in Figure 14.

Case 6: The rate limits of the sources are decreased
to 50 packets/second. This causes the rate of the
first source to saturate as shown in Figure 15. The
controller, however, increases the rate of the second
source to compensate. Because of this extra compensa-
tion, however, the response here is slower compared to
the central case (note the difference in the time-scale
of this graph compared to the previous ones).

Case 7: To simulate the effects of cross and reverse
traffic, in this case we consider the changes in the
capacity, c, of the outgoing link. We assume that c
changes as a square wave as shown in Figure 16. The
response now undergoes a transient at every change of
the capacity as shown in the same figure. The same
steady-state as in Case 1, however, is reached before
the next change. In this case, after each sudden drop of
the capacity, the queue length reaches the buffer limit
for a short duration of time and a small amount of data
is lost (which must be re-transmitted). This could be
avoided by reducing the desired queue length, qd . This
would, however, increase the under utilization of the
outgoing capacity (indicated by a zero queue length)
following each sudden increase.

Case 8: We take equal nominal delays in two chan-
nels (hence only one adobe delay problem is solved
to design the controller). As shown in Figure 17, the
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Figure 16. Outgoing link capacity and simulation results for Case 7.
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Figure 17. Simulation results for Case 8.

response is faster compared to Case 1. This is due to
smaller nominal delay in channel 1. The rate response
of the controller is the same in both channels (apart
from the ratio �1/�2) since the nominal delays are
equal.

To compare our controller to the controller proposed
in [19], we also design a controller using the approach
of [19] using the design parameters (except 
1 and

2, which are not used in the approach of [19], where

tracking and robustness are achieved by solving a two-
block problem and fairness is achieved by including
the fairness weights in the controller derivation) shown
in Table I for Case 1. When we take the uncertain part
of the actual delays as shown in Table II for Case 1,
we obtain the response shown in Figure 18. The queue
response, when compared to the response shown in
Figure 10, is slower but has less overshoot. The two
rates, in the case of the controller of [19], are also closer
to each other, apart from a ratio given by the fairness
weights. This is due to the fact that in [19] fairness
is achieved by including the fairness weights in the
controller derivation. The present approach has more
design flexibility since relative weights of robustness,
tracking, and fairness can be defined using parameters

1 and 
2.

When the actual time-delay in channel 1 is increased
as shown in Case 2 of Table II, the controller designed
by the approach of [19] produces an unstable response
as shown in Figure 19. This shows that the controller
designed by the approach proposed here has better
robustness properties than the controller of [19], espe-
cially when there is an imbalance among the uncertain
parts of the actual delays in different channels. Even
the controller of [19] is redesigned using a larger �+

1 as
shown in Case 3 of Table I, the response is still unstable
as shown in Figure 20.
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Figure 18. Results of [19] for Case 1.

0

20

40

60

80

100

120

140

F
lo

w
 r

at
es

 a
t s

ou
rc

es
 in

 p
ac

ke
ts

/s
ec

on
d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Time in Seconds

rs
1

rs
2

q

Figure 19. Results of [19] for Case 2.

5. CONCLUSIONS

In this work, robust controller design has been
considered for the flow control problem in data-
communication networks as defined in [19]. A
controller, which is robust against uncertain time-
varying multiple time-delays and which satisfies
tracking and fairness requirements, is designed by
solving anH∞ optimization problem using the method
of [16]. Unlike [19], where only a suboptimal solu-
tion could be found, the present approach allows to
design an optimal controller. The present approach

Figure 20. Results of [19] for Case 3.

also provides more design flexibility, since relative
weights of robustness, tracking, and fairness can be
defined using parameters 
1 and 
2.

As opposed to our earlier work [21], here, using [25],
we allowed the uncertain part of the time-delays to be
negative. The improvement in the time-domain results
obtained by this relaxation can be observed from the
simulation results given in [25].

The mathematical model represented by (7) and
(9) may also appear in flow control problems in areas
such as transportation networks, material transport
systems, manufacturing systems, and process control
[8]. Therefore, the controller design approach presented
here may also be applied to flow control problems
in areas other than data-communication networks. In
fact, model (7)–(9) is simply a multi-input integrating
system with different uncertain time-varying time-
delays with a jitter effect in its input channels. Note
that, the present approach may be extended to a case
when there are multiple output channels with similar
time-delays. Therefore, our approach may be extended
to the control of any integrating system with multiple
uncertain time-varying time-delays in its input and/or
output channels.

In this work, we considered a network with only a
single-bottleneck node. The present approach may be
extended to the case of multiple bottleneck nodes along
the lines of [37].
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1. Altman E, Başar T, Srikant R. Multi-user rate-based flow
control with action delays: a team-theoretic approach.
Proceedings of ACM/SIGCOMM, San Diego, CA, U.S.A.,
1997; 2387–2392.

2. BenMohamed L, Meerkov S. Feedback control of congestion
in store-and-forward datagram networks: the case of a single
congested node. IEEE/ACM Transactions on Networking
1993; 1:693–708.

3. Bonomi F, Fendick KW. The rate-based flow control
framework for the available bit rate ATM service. IEEE
Network 1995; 9(2):25–39.

4. Floyd S. End-to-end congestion control schemes: utility
functions, random losses and ECN marks. ACM Computer
Communication Review 1994; 24:10–23.

5. Kunniyur S, Srikant R. TCP and explicit congestion
notification. Proceedings of the INFOCOM, Tel Aviv, Israel,
March 2000; 1323–1332.

6. Laberteaux KP, Rohrs CE, Antsaklis PJ. A practical controller
for explicit rate congestion control. IEEE Transactions on
Automatic Control 2002; 47:960–978.

7. Mascolo S. Smith’s principle for congestion control in high-
speed data networks. IEEE Transactions on Automatic Control
2000; 45:358–364.

8. Niculescu SI. Delay Effects on Stability: A Robust Control
Approach. Lecture Notes in Computer and Information
Science, vol. 269. Springer: Berlin, 2001.
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Turkey, September 2004 (in Turkish).
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controller design for multiple time-delay systems: the case
of data-communication networks. Proceedings of the 17th
International Symposium on Mathematical Theory of Networks
and Systems, Kyoto, Japan, July 2006.

22. Zames G. On the input-output stability of time-varying
nonlinear feeedback systems Part I: conditions derived
using concepts of loop gain, conicity, and positivity. IEEE
Transactions on Automatic Control 1966; AC-11:228–238.

23. Sandberg IW. On the L2-boundedness of solutions of nonlinear
functional equations. Bell System Technical Journal 1964;
43:1581–1599.
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