
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 5 January 2012 doi:10.1093/comjnl/bxr133

A Parallel Framework for In-Memory
Construction of Term-Partitioned

Inverted Indexes

Tayfun Kucukyilmaz, Ata Turk and Cevdet Aykanat
∗

Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey
∗Corresponding author: aykanat@cs.bilkent.edu.tr

With the advances in cloud computing and huge RAMs provided by 64-bit architectures, it is possible
to tackle large problems using memory-based solutions. Construction of term-based, partitioned,
parallel inverted indexes is a communication intensive task and suitable for memory-based modeling.
In this paper, we provide an efficient parallel framework for in-memory construction of term-based
partitioned, inverted indexes. We show that, by utilizing an efficient bucketing scheme, we can
eliminate the need for the generation of a global vocabulary. We propose and investigate assignment
schemes that can reduce the communication overheads while minimizing the storage and final query
processing imbalance. We also present a study on how communication among processors should be
carried out with limited communication memory in order to reduce the total inversion time. We
present several different communication-memory organizations and discuss their advantages and

shortcomings. The conducted experiments indicate promising results.

Keywords: index inversion; term-based partitioning; parallel inversion; memory-based inversion

Received 30 July 2011; revised 29 October 2011
Handling editor: Yannis Manolopoulos

1. INTRODUCTION

The evolution of communication technologies in recent years
gave rise to a rapid increase in the amount of textual digital
information and the demand to search over this type of
information. One of the largest industries of our era, the
searching industry, has flourished around these demands.

Inverted indexes, due to their superior performance in
answering phrase queries [1], are the most commonly used data
structures in Web search systems. An inverted index consists
of two parts: a vocabulary and inverted lists. The vocabulary
contains the collection of distinct terms, which are composed
of character strings (words) that occur in the documents of the
collection. For each term in the vocabulary, there is an associated
inverted list, or posting list. The inverted list for a term is a
list of postings, where a posting contains an identifier for a
document that contains that term. Depending on the granularity
of information, the frequency and the exact term positions may
also be stored in the postings.

Inverted index data structure is quite simple, yet Web-scale
generation of a global inverted index is very costly due to
the size, distributed nature and growth/change rate of the Web

data [2]. Fast and efficient index construction schemes are
required to provide fresh and up-to-date information to users.
Furthermore, since the data to be indexed is crawled and stored
by distributed or parallel systems (due to performance and
scalability reasons), parallel index construction techniques are
essential.

There are two major partitioning schemes used in distributing
the inverted index on parallel systems: document-based and
term-based partitioning. In document-based partitioning, the
documents are assigned to index servers and all the postings
related with the assigned documents are stored in a particular
index server. In term-based partitioning, each term in the
vocabulary and the related inverted lists are assigned to an
index server.

Almost all of the major search engines use document-based
partitioning due to the ease in parallel index construction
of document-based, partitioned, inverted indexes. Term-based
partitioning, on the other hand, has advantages that can be
exploited for better query processing [3]. In this study, we
propose an efficient parallel index construction framework that
can be used for generating term-based partitioned, inverted

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

1318 T. Kucukyilmaz et al.

indexes starting from a document-based partitioned collection
most possibly generated via a parallel crawling of Web
documents.

1.1. Related work

Early studies on index construction are focused around disk-
based algorithms designed for sequential systems [4–6]. In
[4], authors present a method that traverses the disk-based
document collection twice; once for generating a term-based
partition to divide the work into loads, and once for inverting
the dataset iteratively for each pass defined in the previous pass.
The emphasis is on using as little memory as possible. In [5],
authors use a multi-way, in-place, external merge algorithm for
inverted index construction with less primary memory. In [6],
authors propose an in-memory index construction method for
disk-based inverted indexes where the document set is divided
into batches that are inverted in memory and then merged and
written into disk. In their work, authors facilitate the use of
compression in order to achieve a more effective inversion.

More recent works on sequential systems are mainly focused
on on-line incremental updates over disk-based, inverted
indexes [7, 8]. In [7], the authors propose a hybrid indexing
technique. The proposed method merges small posting lists with
the already existing index, while using posting list reallocation
for large posting lists. The authors also propose two in-place
merge techniques for updating long posting lists. In [8], the
authors evaluate two index maintenance strategies and propose
alternatives for improving these strategies. These improvements
are based on over-allocation of posting lists and keeping
incremental updates within vocabulary before index remerging.

The following studies on index construction [3, 9–14]
extend disk-based techniques for parallel systems. In [9],
a document-based allocation scheme for inverted indexes is
presented. The authors emphasize both storage balance and
inter-processor communication times and try to minimize both
using genetic algorithms. In [10], the authors evaluate the effects
of term- and document-based partitioning methods on a shared-
everything architecture. They use query statistics to balance
the required I/O times among processors on a disk-based
architecture.

In [11, 12], the authors present a disk-based, parallel index
construction algorithm, where initially the local document
collections are inverted by all processors in parallel. The
processors generate a global vocabulary on a host processor and
the host processor divides the document collection among all
processors in lexicographic order assuming global knowledge
over the document collection. The authors also analyze
the merging phase of the inverted lists in [12], presenting
three algorithms. In their work, the authors mainly focus
on the parallel generation of the distributed index and the
communication costs are not taken into consideration.

In [13], the author describes an index inversion framework for
distributed information retrieval systems. Although the method

presented in [13] achieves storage balance among processors,
it does not consider minimizing the communication loads of
the processors. In [13], it is also assumed that it is possible
for the inverted indexes to be incrementally updated over time,
and specialized data structures for minimizing the index update
times are proposed. The cost of the inversion process is also
emphasized, and four different index inversion methods are
presented. In [14], the authors again start from a document
partitioned collection and use a software-pipelined architecture
to invert document collections. The collection is divided into
runs, and for each run, documents are parsed, inverted, sorted
and flushed into disk in a pipelined fashion. In [3], the authors
propose a load balancing strategy in a term-partitioned inverted
index on a pipelined query processing architecture [15]. In [3],
both replication of inverted lists and a query statistics-based
assignment scheme is presented, yielding up to 30% net query
throughput improvement.

1.2. Motivation and contributions

We would like to repeat a catchy phrase often credited to
Jim Gray: ‘Memory is the new disk, disk is the new tape’.
With the advent of 64-bit architectures, huge memory spaces
are available to single machines and even very large inverted
indexes can fit into the total distributed memory of a cluster
of such systems, enabling memory-based index construction.
Furthermore, cloud computing systems such as Amazon EC2
are commercially available today. They offer leasing of virtual
machines without owning and maintenance costs and thus ease
the utilization and management of large cluster of servers.
Thus, we believe that the benefits of parallel index construction
is not limited to dividing and distributing the computational
task to different processors. The current advances in network
technologies, cloud computing and the high availability of low-
cost memory provides an excellent medium for memory resident
solutions for parallel index construction.

In this work, we extend our previously proposed in-memory
parallel inverted index construction scheme [16] and compare
the effects of different communication-memory organization
schemes to the parallel inversion time. In our framework,
we propose to avoid the communication costs associated
with global vocabulary construction with a term-to-bucket
assignment schema. This schema prevents term information
to be sent to a host, where a reasonable term-to-processor
assignment would be computed using the term distribution
among processors, thus avoiding a possible bottleneck
of communication. Furthermore, term-to-bucket partitioning
allows the framework to completely avoid creating a global
vocabulary, eliminating the need of a further communication
phase.

We also investigate several assignment heuristics for
improving the final storage balance, the final query processing
loads and the communication costs of inverted index
construction. Here, storage balance is important since we

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

A Parallel Framework for in-Memory Construction 1319

are trying to build a memory-based inverted index. Query
processing load balance is important since the reason for
building the inverted index is for faster query processing and this
can be done better if the loads of the processors are balanced.
Finally, the communication cost is important since it affects the
running time of parallel inversion.

Furthermore, we investigate the effects of various
communication-memory organization schemes. Since parallel
inversion is a communication-bound process, we observe that
the utilization of the communication memory and the network
has significant effects on the overall inversion time. Our find-
ings indicate that, dividing the communication memory into
2 × K buffers, where K of which are used for sending mes-
sages and the remaining K are used for receiving messages,
yields the best performance. This is due to the fact that this
communication-memory organization scheme maximizes the
communication/computation overlap.

Finally, we test the performance of the proposed schemes
by performing both simulations and actual parallel inversion
of a realistic Web dataset and report our observations. Our
contributions in this work are prior to optimizations such
as compression [17]. However, it is possible to apply data
compression to the proposed model, making it possible to work
with even larger data collections.

The organization of this paper is as follows: in Section 2,
we introduce the memory-resident distributed index inversion
problem and describe our framework. In Section 3, we provide
our overall parallel inversion scheme. In Section 4, we describe
the investigated assignment schemes in detail. In Section 5,
we present several memory organization schemes in order to
reduce the communication time and discuss their advantages
and disadvantages. We provide our experiments, their analysis
and extensive discussions on the results of our experiments in
Section 6. Finally, in Section 7, we conclude and discuss some
future work.

2. FRAMEWORK

Most of the largest text document collections that are actively in
use today are Web-based. These repositories are mainly created
and used by Web search engines. An important consideration in
the design of parallel index construction systems should be their
applicability to such real-life data collections. In this work, our
efforts are based on presenting an efficient and scalable index
construction framework specifically designed for Web-based
document collections.

Parallel search engines collect Web pages to be indexed
via distributed Web Crawlers [18]. In general, at the end of
a crawling session, a document-based partition of the whole
document collection is obtained, where each part is stored
in a physically separate repository [18]. The state-of-the-art
approach to distributing the crawling and storage tasks uses a
site-hash-based assignment, where the site names of pages are

hashed and documents are assigned to repositories according to
those hash values [19–21].

The framework presented in this study has three assumptions
on the initial data distribution. First, the initial document
collection is assumed to be distributed among the processors
of a parallel system; that is, each processor is assumed to have a
portion of the crawledWeb documents and maintain information
about only its own local dataset. Thus, in this work, no processor
contains a global view of the document collection. Secondly,
each processor is assumed to contain a disjoint set of documents.
This means that the overall system contains no replica of any
document. Thirdly, the Web pages are assumed to be distributed
among these processors using a site-based hashing; that is,
all pages from a site are assigned to a single processor, and
hence each site is assumed to be an atomic storage task.
Consequently, the initial storage loads of the processors are not
necessarily perfectly balanced. These three assumptions are in
concordance with the output format of general purpose crawling
systems.

In this framework, the objective of parallel index construction
is to generate a final term-partitioned, parallel inverted index
from a document-partitioned collection stored on a distributed
shared-nothing architecture. The final term-partitioned inverted
index will also be stored in a distributed fashion in order to allow
both inter- and intra-query parallelism on query processing. In
this context, our approach has similarities with parallel matrix
transpose operations.

3. PARALLEL INVERSION

Our inversion scheme starts with a document-based, initial
partition. Such an initial, document-based partition is depicted
in Fig. 1a. Our overall parallel inversion scheme has the
following phases:

(i) Local inverted index construction: Each processor
generates a local inverted index from its local document
collection. This process is illustrated in Fig. 1b. Note
that inverted lists for some terms can appear in multiple
processors.

(ii) TermBucket-to-processor assignment: Each processor
uses hashing to find a deterministic assignment
of terms into a predetermined number buckets.
Buckets are used to randomly group inverted lists so
that the communication costs in the termBucket-to-
processor assignment phase is reduced. All processors
communicate the sizes of their term buckets to the host
processor. The host processor generates a termBucket-
to-processor mapping under the constraint that in the
final assignment, the storage and query processing
load balance is achieved and communication cost is
minimized. This process is illustrated in Fig. 1c. Note
that many buckets exist in multiple processors due to
the initial document partitioning.

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

1320 T. Kucukyilmaz et al.

(iii) Inverted list exchange-and-merge: The processors
communicate appropriate parts of their local inverted
indexes in an all-to-all fashion. This process is illustrated
in Fig. 1d. The remaining local inverted index portions

are merged with the received portions and final inverted
index is generated. The final term-partitioned inverted
index of the initial document-partitioned index in Fig. 1b
can be seen in Fig. 1e.

FIGURE 1. Phases of the index inversion process. (a) Initial document partition, (b) local inverted index construction, (c) TermBucket-to-processor
assignment, (d) inverted list exchange-and-merge and (e) final term-partitioned index.

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

A Parallel Framework for in-Memory Construction 1321

3.1. Local inverted index construction

In the local inverted index construction phase, each processor
generates a local vocabulary and local inverted lists from its
local document collection. Since each processor only contain
a unique subset of documents, this operation can be achieved
concurrently without any communication. In this phase, the
local vocabularies and inverted list sizes are determined and
each term is given a unique identifier.

3.2. TermBucket-to-processor assignment

After the local inversion phase, processors contain a document-
based, partitioned inverted index. In this partition, processors
contain different portions of inverted lists for each term. In
order to create a term-based, partitioned inverted index, each
inverted list, in its full form, should be accumulated in one of
the processors. To this end, each term in the global vocabulary
should be assigned to a particular processor.

This term-to-processor assignment depicts an inverted index
partitioning problem. A suitable index partitioning can be
defined by many different criteria. In this work, we set
the following quality metrics for a ‘good’ term-to-processor
assignment:

QM1: Balancing the ‘expected’ query processing loads of
processors.

QM2: Balancing the storage loads of processors.
QM3: Reducing the communication overhead during the

inversion process through minimizing:

(a) Total communication volume.
(b) Communication load of the maximally loaded

processor.

The final query processing loads of processors indicate the
amount of processing that a processor is expected to perform
once the inversion is finished and the query processing begins.
We can estimate this load utilizing previous query logs.

The storage balance of processors guarantees an even
distribution of the final inverted index allowing larger indexes
to fit in the same set of processors.

Since inversion is a communication-bound process, the
minimization of the communication overhead ensures that
the inverted list exchange phase of the parallel inversion
process takes less time. In this work, minimization of the
communication overhead is modeled as the minimization of
the total communication volume while maintaining the balance
on the communication loads of the processors. These are
the two commonly used quality metrics that determine the
communication performance of a task-to-processor assignment
when the message latency overhead remains negligible
compared with the message volume overhead [22, 23], which
is the case for parallel index inversion.

To optimize the above-mentioned metrics, we investigate
existing assignment schemes, comment on possible enhance-
ments over these schemes and propose a novel assignment
scheme that performs better than its counterparts. Our dis-
cussions about bucket-to-processor assignment schemes are
explained in detail in Section 4.

For the purpose of finding a suitable term-to-processor
assignment, the previous works in the literature either assume
the existence of a global vocabulary or generate a global
vocabulary from the local vocabularies. The global vocabulary
can be created by sending each term string, in its word form,
to a host processor, where they are assigned global term-ids,
and these global term-ids are broadcasted to all processors.
However, in such a scheme, a particular term would be sent
to the host machine by all processors if all processors contain
that specific term. Our observations indicate that the cost of
such an expensive communication stage is proportional to the
cost of inverted list exchange phase. Furthermore, since the host
processor receives all the communication, it constitutes a serious
bottleneck.

In this work, we propose a novel and intelligent scheme
that enables us to avoid global vocabulary construction
cost. We propose to group terms into buckets prior to the
term-to-processor assignment. Using string hashing functions,
each word in a local vocabulary is assigned to a bucket.
Afterward, only the bucket size information is sent to the
host processor. The host processor computes a termBucket-
to-processor assignment, which induces a term-to-processor
assignment, and broadcasts this information to the processors.
The effect of the bucket processing order on the quality of the
assignment is not investigated in this work and the same random
bucket processing order is used in evaluating the assignment
schemes. We should also note here that it is not necessary to
build a global index at the host processor ever. It suffices for the
host processor to store only a bucket-to-processor assignment
array. Whenever the host processor receives a query term, all it
has to do is to compute the hash of the term, find the bucket for
that term and forward the term to the owner processor of the
bucket.

3.3. Inverted list exchange-and-merge

At the end of the termBucket-to-processor assignment phase, all
bucket-to-processor assignments are broadcast to the processors
by the host processor, so that each processor is aware of the
bucket-to-processor assignments. In order to create a term-
partitioned inverted index, the document-based partitioned,
local inverted list portions should be communicated between
processors in such a way that the whole posting list of each
term resides in one of the processors. To this end, all processors
should exchange their inverted list portions in an all-to-all
fashion. However, utilizing termBuckets instead of terms for
assignment dictates a major change (and an additional cost) in
the inverted list exchange-and-merge phase.

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

1322 T. Kucukyilmaz et al.

Since termBucket-to-Processor assignment prevents the need
of creating a global vocabulary, when a processor receives a
posting list portion of a term from another processor, it also
requires additional information to identify the posting list it
receives. To this end, upon sending the posting list portions,
the processors should also send the associated term, in its
word form, to the receiving processor. Due to this, the all-
to-all inverted list exchange communication becomes slightly
more costly. However, since the processor-to-host bottleneck
due to global vocabulary construction is already avoided, the
performance degradation in all-to-all inverted list exchange
communication is more than compensated. Furthermore, this
vocabulary exchange is distributed among all processors evenly,
further reducing its overhead.

The inverted list exchange between processors is achieved in
two steps. First, terms, in their word form, and their posting sizes
are communicated. This is done by an all-to-all personalized
communication phase, where each processor receives a single
message from each other processor. At the end of this step,
all processors obtain their final local vocabularies and can
reserve space for their final local inverted index structures.
Secondly, inverted list portions are exchanged in bucket id
order, and within the buckets in alphabetical order. This step is
again performed as an all-to-all personalized communication.
However, since this step consumes significant amount of time,
the inverted list portions are sent via multiple messages.
Memory organization and communication scheme used in this
phase is explained in detail in Section 5. At the end of inverted
list exchange, the remaining inverted lists and obtained inverted
lists for each term are merged and written into their reserved
spaces in the memory.

4. TERM-TO-PROCESSOR ASSIGNMENT SCHEMES

In this section, we try to solve the termBucket-to-processor
assignment problem with the objectives of minimizing the
communication overhead during the inversion and maintaining
a balance on the query processing and storage loads of
processors after the inversion. We present adaptations of two
previously proposed assignment algorithms [24] to the problem
at hand, discuss the shortcomings of these algorithms and
propose a novel assignment algorithm that provides superior
parallel performance.

In the forthcoming discussions we use the following
notations: The vocabulary of terms is indicated by T . Due to
the initial site-hash-based crawling assumption, the posting list
of each term tj ∈ T is distributed among the K processors.
In this distribution, wk(tj) denotes the size of the posting list
portion of term tj that resides in processor pk at the beginning
of the inversion, whereas wtot(tj) = ∑K

k=1 wk(tj) denotes the
total posting list size of term tj .

We assume that prior to bucket-to-processor assignment, each
processor has built its local inverted index Ik and partitioned

the vocabulary T = {t1, t2, . . . , tn} containing n terms into a
predetermined number m of buckets. The number of buckets m

is selected such that m � n and m � K . Let

B = �(T) = {T1 = b1, T2 = b2, . . . , Tm = bm}. (1)

denote a random term (RT)-to-bucket partition, where Ti

denotes the set of terms that are assigned to bucket bi . In this
partition, wtot(bi) denotes the total size of the posting lists of
terms that belong to bi and wk(bi) denotes the total size of the
posting list portions of terms that belong to bi and that reside in
processor pk at the beginning of the inversion.

We also assume that we are given a query set Q where each
query q ∈ Q is a subset of T , i.e. q ⊂ T . The number of queries
that a term tj is requested by is denoted with f (tj).

In an m-bucket and K-processor system, the bucket-to-
processor assignment can be represented via a K-way partition

�(B) = {B1, B2, . . . ,Bk}. (2)

of the buckets among the processors. The quality of a bucket-
to-processor assignment �(B) is measured in terms of three
metrics: The query processing load balance (QM1), storage
load balance (QM2) and the communication cost (QM3). The
query processing load QP(pk) of a processor pk induced by the
assignment �(B) is defined as follows:

QP(pk) =
∑

bi∈Bk

∑
tj ∈bi

wtot(tj) × f (tj). (3)

The storage load S(pk) of a processor pk induced by the
assignment �(B) is defined as follows:

S(pk) =
∑

bi∈Bk

∑
tj ∈bi

wtot(tj). (4)

The communication cost of a processor pk induced by the
assignment �(B) has two components. Each processor must
receive all portions of the buckets assigned to it from other
processors. Thus total reception cost/volume of a processor pk is

Recv(pk) =
∑

bi∈Bk

∑
tj ∈bi

(wtot(tj) − wk(tj)). (5)

Each processor must also send all postings that are not assigned
to it to some other processor. The total transmission cost of pk

is represented by Send(pk) and is defined as

Send(pk) =
∑

bi �∈Bk

∑
tj ∈bi

wk(tj). (6)

The total communication cost of a processor is defined as

Comm(pk) = Send(pk) + Recv(pk). (7)

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

A Parallel Framework for in-Memory Construction 1323

4.1. Minimum communication assignment

Minimum communication assignment (MCA) algorithm
minimizes the total communication volume while ignoring
storage and communication balancing [24]. The MCA scheme
is based on the following simple observation. If a termBucket
is assigned to the processor that contains the largest portion
of the inverted lists of the terms belonging to that bucket, the
total message volume incurred due to this assignment will be
minimized. Thus, if we assign each termBucket bi ∈ B to the
processor pk that has the largest wk(bi) value, the total volume
of communication for this term will be minimized. By assigning
all terms using the above criteria, an assignment with global
minimum total communication volume can be achieved.

4.2. Balanced-load MCA

The balanced-load (BLMCA) scheme is an effort to incorporate
storage balancing to MCA [24]. In this scheme, termBuckets
are iteratively assigned to processors. In BLMCA, for each
termBucket, first the target processor that will incur the minimal
total communication is determined using the criteria in the
MCA scheme. If assignment of the particular termBucket to
that processor does not make the storage loads of the processors
more skewed (does not increase the maximum storage load of
all processors) at that iteration, the assignment proceeds as in
the MCA scheme. Otherwise, the termBucket is assigned to the
minimally loaded processor.

4.3. Energy-based assignment

In BLMCA, two separate cost metrics are evaluated: The
storage load balance and total communication cost. However,
at each iteration, only one of these metrics is chosen to be
optimized. Furthermore, both MCA and BLMCA model the
communication cost as the total communication volume and
disregard the maximum communication volume of a single
processor. In order to minimize the maximum communication
cost of a processor, we should consider both the reception cost
of the assigned processor and the transmission costs of all other
processors.

In the energy-based assignment (EA) scheme, we propose a
model that prioritizes reducing the maximum communication
cost of processors as well as maintaining storage and query
processing load balance. To this end we define the energyE of an
assignment �(B). This energy definition is based on the storage
loads, query processing loads and communication costs of
processors. Recall that Comm(pk) of a processor incorporates
both reception and transmission costs of processor pk .We define
two different energy functions for a given termBucket-to-
processor assignment �(B):

E1(�(B)) = Max

{
Max

1≤k≤K
{Comm(pk)},

Max
1≤k≤K

{S(pk)}, Max
1≤k≤K

{QP(pk)}
}

, (8)

E2(�(B)) =
K∑
1

(Comm(pk))
2 +

K∑
1

(S(pk))
2

+
K∑
1

(QP(pk))
2. (9)

Utilizing these two energy functions, we propose a
constructive algorithm that assigns termBuckets to processors
in a successive fashion. The termBuckets are processed in some
order, and the energy increase in the system by K possible
assignments of each bucket are considered. The assignment that
incurs the minimum energy increase is performed; that is, for
the assignment of a termBucket bi in the given order, we select
the assignment that minimizes

E(�(Bi−1 ∪ {bi})) − E(�(Bi−1)), (10)

where Bi−1 denotes the set of already assigned termBuckets.
We should note here that proposed EA schemes also have the

nice property of being easily adaptable for incremental index
updates. To enable this feature at the end of inversion process,
it is sufficient to store the energy levels of each process. These
values then can be used to perform (re)assignment of indexes
in an incremental fashion. The minimization of inversion time
feature of these schemes would be very helpful in minimizing
the incremental update time as well. However, we should
note that enabling incremental update in these schemes would
necessitate the construction of a global vocabulary on the server
node.

We consider both E1 and E2 energy definitions and report
the results of both schemes in our experiments. We call the E1-
based assignment scheme as E1A and the E2-based assignment
scheme as E2A.

5. COMMUNICATION-MEMORY ORGANIZATION

In the final stage of the memory-based parallel inverted index
construction, the portions of each posting list are communicated
between processors to accumulate each posting list in one
processor, where they would be merged in order to construct
the final inverted index. This phase can be summarized as
an all-to-all personalized communication phase with different
number of messages and total message sizes. In this phase,
each processor should identify local posting list portions to be
sent to other processors, prepare message buffers to send them
using the available memory for this communication and send
them to the target processors. At the same time, each processor
should retrieve posting list portions assigned to them from other
processors and merge them in order to generate the final posting
lists.

Posting list exchange operation requires intensive communi-
cation between processors and dominates the total time required
to complete the index inversion. An important question when
communicating the posting list portions is how to use/organize

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

1324 T. Kucukyilmaz et al.

the available memory so that the communication phase takes
the least possible time. In this work, we evaluate four different
communication memory organization schemes and their impact
on the total run time of index inversion. These schemes are:

(i) 1-Send 1-Receive buffer scheme (1s1r).
(ii) 1-Send (K − 1)-Receive buffer scheme (1sKr).

(iii) (K − 1)-Send 1-Receive buffer scheme (Ks1r).
(iv) (K − 1)-Send (K − 1)-Receive buffer scheme (KsKr).

In investigating different communication-memory organiza-
tion schemes, we assume that the total memory spared for com-
munication is fixed, say M . In 1s1r, the communication memory
is split into one send and one receive buffer, each with size M/2.
In 1sKr and Ks1r, the memory is split into K buffers each with
size M/K . In 1sKr, one of these buffers is used as a send buffer
and the remaining K −1 buffers are reserved for receiving mes-
sages from other processors. In Ks1r, each processor maintains
one receive buffer and K−1 send buffers, which are reserved for
sending messages to other processors. In KsKr, the memory is
split into (2 × K)− 2 buffers each with size M/((2 × K)− 2).
K − 1 of these buffers are reserved as send buffers as in Ks1r,
while the other K − 1 buffers are reserved as receive buffers as
in 1sKr.

In all of these schemes, the communication commences
through several stages. First, all processors issue non-blocking
receives for each receive buffer. Then, each processor starts
preparing the outgoing send buffer(s). During this preparation,
the vocabulary of the local inverted index is traversed in order
to copy the local posting list portions to the send buffer(s).
Whenever a send buffer is full, the owner processor issues a
blocking send operation. The blocking send operation stalls
all computation on the sender-side until the send operation
is successfully completed. Upon receiving a message, each
processor starts emptying its respective receive buffer by
copying the received posting list portions to the final inverted
index, effectively finalizing the merge of posting list portions.
After the merging phase is completed, processors issue a
new non-blocking receive in order to receive any remaining
messages from other processors, and restart filling their send
buffers.

5.1. 1-Send (1s) versus (K − 1)-send (Ks) buffer schemes

In the 1s buffer schemes, in order to prepare messages to be
sent to other processors, all posting list portions targeted to
a specific processor should be put into the single send buffer
prior to sending it. For a single target processor, in order to
send all required posting list portions, the vocabularies of each
local inverted index must be traversed once. As each processor
probably requires to communicate with all other processors,
preparation of the send buffers requires K − 1 traversals over
the local inverted index.

On the other hand, in the Ks buffer schemes, in order to
prepare outgoing messages, only one traversal of the local

inverted index is sufficient. In this traversal, the processor would
pick any outgoing posting list portion and place it into the
appropriate send buffer. Once one of the send buffers is full,
the communication can commence. However, using blocking
sends ultimately results in stalling the process every time a send
is issued, reducing the processor utilization.

5.2. 1-Receive (1r) versus (K − 1)-receive (Kr) buffer
schemes

In 1r schemes, the communication memory is fairly utilized,
whereas in Kr schemes, the utilization of the communication
memory depends on the number of messages received by each
processor and may be poor for most of the processors. In 1sKr,
since there can be only K messages over the network at any
time, only K of the K × (K − 1) receive buffers would be
actively used. In this case, K × (K − 2) unused receive buffers
are left idle, leaving the (K − 2) × M of the total K × M

memory unused. In KsKr, since there are K − 1 send buffers,
the processors can produce enough messages to actively use
most of the K × (K − 1) receive buffers, resulting in a more
utilized communication memory.

In Kr schemes, since each processor has a specific receive
buffer for all other processors, cycles in the communication
dependency graph do not cause deadlocks. However, in 1r
schemes, depending on the communication order, cycles in
the communication dependency graph may cause deadlocks.
To avoid these deadlocks, we can utilize non-blocking sends
instead of blocking sends. Non-blocking sends allow a
processor to continue processing after a send is issued without
the need of waiting for it to finalize, thus avoiding any possible
deadlocks. However, the issued send still requires its particular
send buffer to be intact. As a result, the processor should again
be halted in case a local posting list is required to be written in
that send buffer. For this reason, each send buffer is locked after
a send, and all such buffers are probed after each messaging
iteration. If a send buffer is released after a successful send, the
lock is freed, allowing the processor to issue writes into that
send buffer again.

In Ks1r, whenever a non-blocking send is issued, it is possible
to fill other send buffers, allowing computation to overlap with
communication. However, in 1s1r, deadlock avoidance via non-
blocking sends may cause poor performance since there is only
one send buffer and it is not possible to overwrite the contents
of this buffer until the non-blocking send is completed, causing
the computation to be stalled.

It is also possible to avoid deadlocks in the 1s1r scheme by
employing a BSP-like [25] communication/computation pattern
and by ensuring that no two processors send messages to the
same processor in any given communication step. In 1s1r, since
K − 1 traversals over the local inverted index is required for
each processor, it is possible to divide the computation into
K − 1 traversal steps and communicate at the end of each
computation step. We can also freely choose the communication

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

A Parallel Framework for in-Memory Construction 1325

order in such a scheme. By exploiting this freedom, we can find
a communication schedule that avoids deadlocks. Minimizing
the number of communication steps induced by this schedule
corresponds to minimizing the total inversion time of the
proposed BSP-like scheme.

In this work, we show that the problem of finding a
communication schedule with minimum number of steps can
be reduced to the ‘Open Shop Scheduling Problem’ (OSP). In
OSP, there are |J | jobs and |W | workstations. Each job ji ∈ J

has to visit all workstations and perform a different task. There
is an associated time t (ji, wk) for finishing job ji at workstation
wk ∈ W . No restrictions are placed on the execution order of
jobs and it is given that no job can be carried out simultaneously
on more than one workstation.

In [26], the authors proposed an optimal algorithm to find
minimum finish time in an OSP. This is achieved by constructing
a bipartite graph from the jobs and workstations, iteratively
finding complete matchings over this graph, and modifying the
graph by decreasing edge weights of edges in the discovered
matching by the smallest edge weight until no more complete
matchings can be found. Finding a complete matching ensures
that no two jobs are assigned to the same workstation, while no
two workstations are working on the same job at any time.

The posting list exchange and merge phase of the index
inversion process can also be modeled using the above
mentioned algorithm. In the parallel index inversion problem,
each processor has to send inverted list portions to other
processors. The send operation of inverted list portions
corresponds to jobs in the scheduling problem. Also, each send
should be received by a processor and merged into the final
inverted lists. In that sense, each processor also functions as a
workstation in the scheduling problem. There are two associated
vertexes, one job vertex and one workstation vertex, for each
processor in the bipartite graph. That is, the send responsibilities
of processors constitute the jobs and the receive responsibilities
of processors constitute the workstations. If a processor pi has
to send a message to processor pj , there is an associated edge
between the job vertex of pi and workstation vertex of pj and the
number of messages to be sent from pi to pj is the weight of this
edge. In this model, each match found on the constructed graph
correspond to a schedule step, where finding an optimal finish
time schedule defines an optimal communication schedule with
the least possible number of communication steps.

6. EXPERIMENTS

6.1. Experimental framework

We conducted our experiments on a realistic dataset obtained
by crawling educational sites across America. The raw size
of the dataset is 30 GB and contains 1 883 037 pages from
18 997 different sites. The biggest site contains 10 352 pages
while average number of pages per site is 99.1. The vocabulary
of the dataset consists of 3 325 075 distinct terms. There are

787 221 668 words in the dataset. The size of the inverted
index generated from the dataset is 2.8 GB. For query load
balancing purposes, we used a synthetically generated query
log of 1 000 000 distinct queries each of which contains 1 to 7
terms. In our experiments, we used a fixed number of buckets
in termBucket-to-processor assignment and set the number of
buckets to 10 000.

We tested the performance of the proposed assignment
schemes in two different ways: First we report the relative
performances of the assignment schemes in terms of the
quality metrics described in Section 3.2 through simulations. In
simulations we theoretically compute the assignment of terms
to processors and compute the storage, query processing and
communication costs of the assignment without performing
actual parallel inversion. The simulation experiments are
conducted for K = {4, 8, 16, 32, 64, 128} values on a Sun
AMD-Opteron machine with 128 GB of RAM.

Secondly, we provide a set of experiments using actual
parallel inversion runs in order to show how improvements in
quality metrics relate to parallel running times. For this purpose
we developed an MPI-based parallel inversion code that can
utilize each of the four communication-memory organization
schemes described in Section 5 for a given termBucket-to-
processor assignment. These second set of experiments are
conducted on a 32-node PC-cluster, where each node is an
Intel Pentium IV 3.0 GHz processor with 1 GB RAM connected
via an interconnection network of 100 Mb/s fast Ethernet. The
total communication-memory size M is set at 5 MB in these
experiments.

6.2. Evaluation of the assignment schemes

As a baseline inversion method, we implemented a RT
assignment algorithm. In the RT scheme, each term is assigned
to a random processor without a term-to-bucket assignment. In
this scheme the global vocabulary has to be created. In order
to evaluate the viability of term-to-bucket assignment and as a
baseline termBucket-to-processor assignment scheme, we also
implemented a random assignment (RA) algorithm that assigns
buckets to processors randomly. Note that RA requires the least
possible time to compute a termBucket-to-processor assignment
while avoiding the need for global vocabulary creation, and
thus it can be used to compare/analyze the merits of the
proposed bucketing scheme and the assignment schemes. The
performance of the proposed assignment schemes are compared
against the RT and RA schemes.

6.2.1. Simulation results
Tables 1–3 compare the performance of the assignment schemes
in terms of the quality metrics described in Section 3.2.

Table 1 displays the performance of the proposed assignment
schemes in optimizing the quality metric QM1. In the table,
the query load imbalance percentages for different assignment
schemes and different number of processors is presented. The

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

1326 T. Kucukyilmaz et al.

query load imbalance values are calculated according to the
following formula:

(
Max1≤k≤K{Q(pk)}
(
∑K

k=1(Q(pk)))/K
− 1

)
× 100. (11)

Table 2 shows the performance of the proposed assignment
schemes in optimizing quality metric QM2. In the table,
the initial imbalances due to hash-based distribution and
the final imbalances after applying the assignment schemes
are presented. The storage imbalance values are computed

TABLE 1. Percent query processing load imbalance values.

K RT RA MCA BLMCA E1A E2A

4 30.5 54.3 91.4 51.6 47.8 19.6
8 55.5 86.3 115.0 78.2 74.1 24.1

16 100.4 102.8 352.1 92.4 90.1 44.8
32 319.3 233.8 457.3 167.1 123.4 61.7
40 437.2 284.9 755.8 225.6 189.3 79.8
64 602.5 503.7 1446.2 407.9 374.5 112.5

128 857.3 969.4 8456.8 821.7 682.1 216.4

TABLE 2. Percent storage load imbalance values.

Final

K Initial RT RA MCA BLMCA E1A E2A

4 13.8 4.4 12.1 38.3 0.0 2.8 5.9
8 31.9 11.7 09.9 60.0 0.1 7.2 14.1

16 38.2 18.2 27.4 66.2 1.7 9.3 23.2
32 58.4 44.1 29.6 83.0 5.4 16.1 32.5
40 66.3 32.2 37.0 77.4 6.2 17.9 33.1
64 69.0 44.7 56.6 92.2 11.5 21.7 36.0

128 81.4 65.3 94.7 95.6 15.7 32.6 45.8

according to the following formula:(
Max1≤k≤K{S(pk)}
(
∑K

k=1(S(pk)))/K
− 1

)
× 100. (12)

Table 3 compares the communication performance of the
assignment schemes in terms of the average and the maximum
message volume to be handled by a processor during parallel
index inversion. The total volume of communication required
by an assignment scheme can be computed from the table by
multiplying the respective average message volume value of the
assignment scheme with the respective K value. Thus, the ‘Avg’
columns of Table 3 indicate the performance of the assignment
schemes in optimizing QM3(a). The ‘Max’ columns in Table 3
indicate the communication load of the maximally loaded
processor and thus indicate the performance of the assignment
scheme in optimizing QM3(b). The communication-load
balancing performance of each assignment scheme can be
evaluated by comparing the ‘Avg’ and ‘Max’ columns.

The comparison of RT and RA schemes relates to the
effectiveness of the proposed term-to-bucket assignment. As
shown in Table 2, RA performs slightly better than RT for
K ≤ 64. Both Tables 1 and 3 display that RT and RA perform
similarly in terms of query load balancing and communication
volumes. Comparison of these two assignment schemes shows
that term-to-bucket assignment prevents the global vocabulary
construction without degrading much our quality metrics.

As seen in Table 1, MCA achieves significantly worse query
load imbalance than all other assignment schemes. Similarly,
Table 2 shows that MCA considerably degrades the initial
storage balance. On the other hand, Table 3 reveals that
MCA achieves the best average communication cost. These
experimental findings are expected since MCA only considers
the minimization of the total communication cost, disregarding
storage and communication balancing.

As mentioned in Section 4.2, BLMCA is a modified version
of MCA with added emphasis on storage balancing. As seen
in Table 2, BLMCA achieves the best final storage balance
in all instances. However, as seen in Table 3, the storage
balance in BLMCA is achieved at the expense of increased

TABLE 3. Message volume (send + receive) handled per processor (in terms of ×106 postings).

RT RA MCA BLMCA E1A E2A

K Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

4 131.184 133.233 131.189 145.713 122.091 150.263 127.450 128.619 129.437 134.683 131.857 131.154
8 76.511 88.862 76.554 90.582 71.448 119.745 73.402 75.974 77.562 80.327 77.385 78.229

16 41.002 44.562 41.008 49.249 38.322 77.114 39.217 43.443 43.205 44.944 42.792 42.953
32 21.118 32.254 21.188 28.754 19.817 71.127 20.283 26.025 21.218 25.788 21.047 21.695
40 17.026 26.629 17.053 23.962 15.991 44.793 16.322 20.014 17.072 20.576 17.471 18.118
64 10.761 18.690 10.761 17.769 10.088 74.273 10.339 15.421 10.981 15.222 11.201 12.354

128 5.423 11.883 5.424 11.967 5.088 65.586 5.222 10.980 5.662 10.437 7.233 8.178

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

A Parallel Framework for in-Memory Construction 1327

total communication volume compared with MCA. Table 1
also shows that especially with increasing K , BLMCA fails
in balancing query processing loads.

Table 1 displays that, for all processor values, E2A performs
significantly better than all other assignment schemes in terms of
query processing load balance. Additionally, in terms of query
load imbalances, E1A is the second best performer. As seen
in Tables 2 and 3, although E2A slightly degrades the storage
balance, it performs better than the other schemes in terms of
maximum communication volume handled by a processor for
almost all K values (except for K = 2 and 4). Although E1A

produces better storage balance than E2A, the communication
volume handled by a processor incurred by E1A is slightly
worse than BLMCA. In terms of the maximum communication
volume handled by a processor, E2A achieves the best results
for K > 8. Table 3 also indicates that the average and maximum
communication volume values induced by E2A are close, which
shows that E2A manages to distribute the communication load
among processors evenly.

6.2.2. Parallel inversion results
Table 4 compares the running times of our parallel inversion
code for different assignment schemes. Since the creation of
the local inverted indexes from local document sets is an
operation prior to our inversion schemes, it is assumed that the
local inverted indexes are already created. Thus, the time for
converting local document collection to local inverted indexes
is not included in the inversion times displayed in Table 4.

We provide the RT scheme in order to present the benefits of
using a term-to-bucket assignment. The RT scheme differs from
other schemes in two ways. First, in the RT scheme termBucket-
to-processor assignment is replaced with a term-to-processor
assignment. Secondly, in the RT scheme there is an additional
phase called global vocabulary construction phase. As seen in
Table 4, RT performs significantly worse than other assignment
schemes for all K values other than K = 2. This indicates that
our bucketing scheme has a significant impact on performance.

As seen in Table 4, for K = 2, MCA achieves the lowest
inversion time compared with the other schemes. This is
because, for K = 2, minimizing the total communication
volume also minimizes the maximum communication volume
handled by a processor. However, for all K values greater than 2,
MCA performs significantly worse since the maximum message
volume handled by a processor for MCA is considerably
higher than other assignment schemes. As seen in Table 4,
E2A performs considerably better than the other assignment
schemes. For example for K = 32, E2A performs up to 9%
better than RA in terms of running time and achieves better
final query load and storage balancing. The relative performance
order of the assignment schemes in terms of actual inversion
time values displayed in Table 4 are generally in concordance
with the relative performance order of the assignment schemes
in terms of the quality metrics displayed in Tables 2 and 3.

Figure 2 displays the dissection of parallel inversion time into:
local inverted index construction, termBucket-to-Processor
assignment and inverted list exchange-and-merge phases for
different assignment and communication-memory organization
schemes on K = 8 processors. For the sake of a better insight on
the overall index inversion process, the inverted list exchange-
and-merge phase is further divided into two components. The
first component is called vocabulary communication, where
processors send each other the terms, in their word form, and the
associated posting list sizes in an all-to-all personalized fashion.
The second component is called inverted list communication,
where the posting list portions are communicated between
processors.

Figure 2 shows that for the in-memory inversion task, the
construction of a global vocabulary takes considerable time.
For K = 8 processors, almost 35% of the total inversion time
is spent on global vocabulary construction in the RT scheme.

As seen in Fig. 2, the local inverted index construction
takes the same time in all schemes since local index inversion
depends only on the initial data distribution. Figure 2 also shows
that, as the complexity of the assignment schemes increases,
the time required for termBucket-to-processor assignment also
increases. The RA-based termBucket-to-processor assignment
phase takes <1% of the total inversion time, whereas the
E2A-based termBucket-to-processor assignment phase takes
more than 4% of the total inversion time. As the ‘Max’

TABLE 4. Parallel inversion times (in seconds) including
assignment and inverted list exchange times for different
assignment and communication-memory organization schemes.

K RT RA MCA BLMCA E1A E2A

1s1r

2 105.90 109.80 85.72 106.08 108.15 108.13
4 71.60 69.19 81.34 68.63 69.34 68.49
8 66.44 51.42 66.76 46.45 47.27 45.74

16 63.00 35.89 60.82 33.04 33.65 32.48
32 73.38 19.31 48.45 18.20 18.53 17.20

Ks1r

2 105.66 109.82 86.04 105.87 107.36 107.97
4 69.55 73.69 80.31 70.60 71.51 70.71
8 68.10 53.34 68.27 50.04 49.77 48.58

16 62.59 36.66 60.30 34.32 34.70 32.91
32 73.10 20.21 50.34 18.52 20.13 17.72

1sKr

2 105.17 109.60 86.06 106.31 108.11 108.91
4 71.37 70.84 80.82 70.11 70.35 69.44
8 69.60 58.13 64.97 45.78 47.63 45.22

16 60.17 34.67 59.13 32.54 32.97 31.41
32 73.31 20.24 48.36 18.59 19.02 18.07

KsKr

2 106.30 110.05 86.13 106.01 108.14 108.12
4 67.25 66.79 71.89 64.50 64.08 62.51
8 62.23 45.44 59.82 41.46 40.89 38.79

16 57.92 31.28 54.56 29.36 28.78 26.00
32 72.17 18.43 47.81 18.11 18.01 16.97

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

1328 T. Kucukyilmaz et al.

FIGURE 2. Times (seconds) of various phases of the parallel inversion algorithm for different assignment and communication-memory organization
schemes on K = 8 processors.

columns of Table 3 suggest, the time spent on the vocabulary
communication phase is minimum for E2A and maximum for
the MCA assignment scheme.

As seen in Fig. 2, the inverted list exchange-and-merge phase
takes almost 85% of the total inversion time, thus confirming
that parallel inversion is a communication-bound process. We
compare and analyze the impact of different communication-
memory organization schemes on this phase in the following
subsection.

6.3. Evaluation of communication-memory organization
schemes

Table 4 compares the running times of parallel inversion for
different communication-memory organization schemes. Ks1r
has the worst overall performance for all K values >2.Although
Ks1r avoids redundant memory reads by doing only one
traversal over the local inverted lists, the use of blocking sends
causes stalls and prevents overlap between communication and
computation.

Although 1sKr performs better than 1s1r for K ≤ 16, its
relative performance decreases when the number of processors
increases. This is due to lower memory utilization of 1sKr on a
higher number of processors since each processor must maintain
K − 1 receive buffers. We theorize that for a higher number of
processors, 1sKr would perform even worse.

For all K values >2, KsKr performs superior with respect
to the other communication-memory organization schemes.
As the number of processors increases, the performance gap
between KsKr and the other schemes increases in favor of
KsKr. This is because KsKr avoids redundant traversals during
the preparation of send buffers and overlaps computation with
communication. For this reason, we select KsKr as the de

FIGURE 3. The effect of the available communication-memory size
(M) on the inverted list exchange-and-merge phase of a K = 8
processor parallel inversion system utilizing E2A and KsKr.

facto communication-memory organization scheme for the
remaining experiment.

Figure 3 evaluates the effect of the available communication-
memory size (M) on the running time of parallel inversion
code utilizing the E2A assignment scheme and the KsKr
communication-memory organization scheme for K = 8
processors. As seen in Fig. 3, KsKr scales well with increasing
communication-memory size. The ability to continue to process
several send buffers without stalling allows KsKr to function
relatively better with larger communication-memory sizes.

7. CONCLUSIONS

In this paper, a memory-based, term-partitioned, parallel
inverted, index construction framework was examined. Several

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

A Parallel Framework for in-Memory Construction 1329

problems were identified and improvements were proposed for
a parallel index inversion framework.

First, we proposed a termBucket-to-processor assignment
scheme. This scheme minimizes the communication cost of
local vocabularies among processors and distributes the final
query processing and storage loads among all processors,
allowing a finer grained parallelism. We also showed that,
by using a termBucket-to-processor assignment scheme, the
need to create a global vocabulary can be eliminated and all
associated communications can be prevented.

Secondly, we developed and investigated several heuristics
for generating a term-to-processor assignment. The results of
our experiments show that, compared with a baseline RA
scheme, our proposed methods improved the parallel inversion
times significantly while providing reasonable final query
processing and storage balances.

Thirdly, we presented and explored four different
communication-memory organization schemes in order
to reduce the communication time required. We also pre-
sented methods to avoid deadlocks and network congestion
and commented on memory utilization of the overall system.
Our results show that splitting the communication-memory in
2 × (K − 1) parts yields the best results.

Simulations and actual parallel inversion times are presented
in order to give insight on our improvements. According to the
observed results, we recommend the use of the E2A scheme for
termBucket-to-processor assignment, and the KsKr scheme for
communication-memory organization.

This work can be extended in several ways. First, the
framework used in this work does not consider the effect of
the bucket processing order. For example, processing buckets in
decreasing size order might present better results both in respect
of final storage balance and communication costs. Secondly,
the number of buckets is assumed to be fixed throughout this
work. The scaling of our framework using different numbers of
buckets can also be considered.

FUNDING

This work is partially supported by the Scientific and
Technological Research Council of Turkey (TUBITAK) under
project EEEAG-109E019.

REFERENCES

[1] Salton, G. (1989) Automatic Text Processing: The Transfor-
mation, Analysis, and Retrieval of Information by Computer.
Addison-Wesley Longman Publishing, Boston, MA, USA.

[2] Cho, J. and Garcia-Molina, H. (2000) The Evolution of the Web
and Implications for an Incremental Crawler. Proc. 26th Int.
Conf. VLDB, Cairo, September 10–14, pp. 200–209. Morgan
Kaufmann, Egypt.

[3] Moffat, A., Webber, W. and Zobel, J. (2006) Load Balancing
for Term-Distributed Parallel Retrieval. Proc. 29th Int. ACM

SIGIR Conf. Research and Development in IR, Seattle, WA, USA,
August 6–11, pp. 348–355. USA.

[4] Witten, I.H., Moffat, A. and Bell, T.C. (1999) Managing
Gigabytes: Compressing and Indexing Documents and Images
(2nd edn). Von Nostrand Reinhold, San Francisco, CA, USA.

[5] Moffat, A. and Bell, T.A.H. (1995) In situ generation of
compressed inverted files. J. Am. Soc. Inf. Sci., 45, 537–550.

[6] Heinz, S. and Zobel, J. (2003) Efficient single-pass index
construction for text databases. J. Am. Soc. Inf. Sci. Technol.,
54, 713–729.

[7] Buttcher, S. and Clarke, C.L.A. (2006) A Hybrid Approach to
Index Maintenance in DynamicText Retrieval Systems.Advances
in Information Retrieval 28th European Conf. IR Research,
London, April 10–12, pp. 229–240. UK.

[8] Lester, N., Zobel, J. andWilliams, H. (2006) Efficient online index
maintenance for contiguous inverted lists. Inf. Process. Manage.,
42, 916–933.

[9] Freider, O. and Siegelmann, H.T. (1991) On the Allocation of
Documents in Multiprocessor Information Systems. Proc. 14th
Int. ACM SIGIR Conf. Research and Development in Information
Retrieval, Illinois, October 13–16, pp 230–239. USA.

[10] Jeong, B.S. and Omiecinski, E. (1995) Inverted file partitioning
schemes in multiple disk systems. IEEE Trans. Parallel Distrib.
Syst., 6, 142–153.

[11] Ribeiro-Neto, B.A., Kitajima, J.P., Navarro, G., Sant’Ana,
C.R.G. and Ziviani, N. (1998) Parallel Generation of Inverted
Files for Distributed Text Collections. Proc. 18th Int. Conf.
Chilean Computer Science Society, Antofagasta, November
12–14, pp. 149. Chile.

[12] Ribeiro-Neto, B.A., Moura, E.S., Neubert, M.S. and Ziviani, N.
(1999) Efficient Distributed Algorithms to Build Inverted Files.
Proc. 22nd Int. ACM SIGIR Conf. Research and Development in
IR, Berkeley, CA, USA, August 15–19, pp. 105–112. USA.

[13] Sornil, O. (2001) Parallel inverted index for large scale dynamic
digital libraries. Ph.D. Thesis, Virginial Polytechnic Institute and
State University.

[14] Melink, S., Raghavan, S.,Yang, B. and Garcia-Molina, H. (2001)
Building a distributed full-text index for the web. ACM Trans. Inf.
Syst., 19, 217–241.

[15] Moffat, A., Webber, W., Zobel, J. and Baeza-Yates, R. (2005) A
pipelined architecture for distributed text query evaluation. Inf.
Retr., 10, 205–231.

[16] Kucukyilmaz, T., Turk, A. and Aykanat, C. (2011) Memory
Resident Parallel Inverted Index Construction. Proc. 26th Int.
Symp. Computer and Information Sciences (ISCIS2011), London,
September 26–28, pp. 99–106. Springer, UK.

[17] Zobel, J., Moffat, A. and Ramamohanarao, K. (1998) Inverted
files versus signature files for text indexing. ACM Trans. Database
Syst., 23, 453–490.

[18] Brin, S. and Page, L. (1998) The Anatomy of a Large-
Scale Hypertextual Web Search Engine. Proc. 7th Int. Conf.
World Wide Web, Brisbane, April 14–18, pp. 107–117. Elsevier,
Australia.

[19] Barroso, L., Dean, J. and Holzle, U. (2003) Web search for a
planet: the Google cluster architecture. Micro IEEE, 23, 22–28.

[20] Cho, J. and Garcia-Molina, H. (2002) Parallel Crawlers. Proc.
11th Int. Conf. World Wide Web, Honolulu, HI, USA, May 7–11,
pp. 124–135. USA.

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

1330 T. Kucukyilmaz et al.

[21] Cevahir, A., Aykanat, C., Turk, A. and Cambazoglu, B.B. (2010)
Site-based partitioning and repartitioning techniques for parallel
pagerank computation. IEEE Trans. Parallel Distrib. Syst., 22,
786–802.

[22] Uçar, B. and Aykanat, C. (2004) Encapsulating multiple
communication-cost metrics in partitioning sparse rectangular
matrices for parallel matrix–vector multiplies. SIAM J. Sci.
Comput., 25, 1837–1859.

[23] Bisseling, R.H. and Meesen, W. (2005) Communication
balancing in parallel sparse matrix–vector multiplication.

Electron. Trans. Numer. Anal. Special Issue on Combinatorial
Scientific Computing, 21, 47–65.

[24] Aykanat, C., Cambazoglu, B.B., Findik, F. and Kurc, T. (2007)
Adaptive decomposition and remapping algorithms for object-
space-parallel direct volume rendering of unstructured grids.
J. Parallel Distrib. Comput., 67, 77–99.

[25] Valiant, L.G. (1990) A bridging model for parallel computation.
Commun. ACM, 33, 103–111.

[26] Gonzales, T. and Sahni, S. (1976) Open shop scheduling to
minimize finish time. J. ACM (JACM), 23, 665–679.

The Computer Journal, Vol. 55 No. 11, 2012

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/55/11/1317/406637 by Bilkent U
niversity user on 16 D

ecem
ber 2018

	1 Introduction
	1.1 Related work
	1.2 Motivation and contributions

	2 Framework
	3 Parallel inversion
	3.1 Local inverted index construction
	3.2 TermBucket-to-processor assignment
	3.3 Inverted list exchange-and-merge

	4 Term-to-processor assignment schemes
	4.1 Minimum communication assignment
	4.2 Balanced-load MCA
	4.3 Energy-based assignment

	5 Communication-memory organization
	5.1 1-Send (1s) versus (K-1)-send (Ks) buffer schemes
	5.2 1-Receive (1r) versus (K-1)-receive (Kr) buffer schemes

	6 Experiments
	6.1 Experimental framework
	6.2 Evaluation of the assignment schemes
	6.3 Evaluation of communication-memory organization schemes

	7 Conclusions

