
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 11 June 2012 doi:10.1093/comjnl/bxs050

Novel Compression Algorithm Based
on Sparse Sampling of 3-D Laser

Range Scans
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Three-dimensional models of environments can be very useful and are commonly employed
in areas such as robotics, art and architecture, facility management, water management,
environmental/industrial/urban planning and documentation. A 3-D model is typically composed of a
large number of measurements. When 3-D models of environments need to be transmitted or stored,
they should be compressed efficiently to use the capacity of the communication channel or the storage
medium effectively. We propose a novel compression technique based on compressive sampling
applied to sparse representations of 3-D laser range measurements. The main issue here is finding
highly sparse representations of the range measurements, since they do not have such representations
in common domains, such as the frequency domain. To solve this problem, we develop a new algorithm
to generate sparse innovations between consecutive range measurements acquired while the sensor
moves. We compare the sparsity of our innovations with others generated by estimation and filtering.
Furthermore, we compare the compression performance of our lossy compression method with widely
used lossless and lossy compression techniques. The proposed method offers a small compression ratio

and provides a reasonable compromise between the reconstruction error and processing time.
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1. INTRODUCTION

Many techniques have been developed to build 3-D models of
indoor and outdoor environments. Three-dimensional modeling
techniques allow us to describe environments including objects
with indefinite shapes or patterns, although these techniques
can be complex and computationally expensive [1]. The main
advantage of using 3-D models of environments is that such
models are more descriptive and have richer information content
than 2-D models in terms of the features extracted from the
environments, resulting in less ambiguity in distinguishing
features [2]. Three-dimensional models are used in a wide range
of fields such as robot motion planning and navigation [1, 3–
5], art and architecture [6–10], environmental/industrial/urban
planning, water management and forestry documentation [11–
13]. These models can be obtained using a variety of
sensors measuring range or intensity. A common approach
in constructing these models is to employ laser range finders

(LRFs) that measure the range between the sensor and the
objects along the path of the beam emitted by the sensor.
These sensors can supply range measurements within their
field of view, as the laser beam is rotated by the sensor.
There are several approaches to obtaining 3-D models with
LRFs; the first uses a conventional 3-D laser scanner. However,
since these products are very expensive, this approach is not
frequently employed. Another approach is acquiring 3-D range
measurements by translating a 2-D LRF that horizontally or
vertically scans a field of view of 180◦. A third alternative
is to acquire the 3-D range information by rotating the 2-D
LRF around a fixed axis [4]. In the latter two, multiple 2-D
LRFs can be employed, where each sensor scans either the
horizontal or the vertical axis [4]. On the market today, various
LRFs, suitable for both indoor and outdoor applications, are
provided by several companies such as SICK [14], RIEGL [15],
FARO [16], Zoller + Fröhlich [17], Leica [18], MENSI [19] and
Velodyne [20].
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FIGURE 1. (a) The front view of the SICK LMS200 LRF, (b) its measurement principle, (c) its field of view (reprinted from [36])
and (d) the front view of the RIEGL VZ-400 LRF.

As an example of the use of 3-D models in the field of robotics,
Brenneke et al. [1] proposed a technique for simultaneous
localization and mapping (SLAM) in outdoor environments.
They applied the existing 2-D mapping algorithms to one
horizontal layer of a 3-D model. Maps are also obtained in
other ways and used in 3-D SLAM applications [21–23]. To
build 2-D or 3-D maps from sequentially acquired scans, an
iterative closest point (ICP) algorithm is employed, integrated
with odometry measurements [4]. This ICP algorithm is not
just used in the registration of scans of planar surfaces, but
also for curves and non-planar surfaces, as in [24]. In addition
to ICP, semantic information of the range measurements,
which is the gradient between the neighboring measurements,
is used for the same purpose [5]. Apart from deterministic
methods for the registration of 3-D objects, parametric methods
such as expectation-maximization [2] and maximum-likelihood
estimation [25] are employed. Moreover, non-parametric
methods, such as the k-means clustering algorithm [26], are
also used for the same purpose. Devices such as panoramic
cameras can be used in conjunction with laser scanners [27].
Besides the techniques for modeling indoor environments,
terrains are modeled using airborne laser scanners as in [28, 29],
especially for navigation of land vehicles. Apart from modeling
environments above the sea level, 3-D models of the sea floor
can also be acquired, using autonomous underwater vehicles
equipped with a camera, sonar and oceanographic sensors [30].
Building 3-D urban models is another area of application.
In summary, many techniques for acquiring and processing
3-D measurements have been developed in a variety of fields,
using sensors such as LRFs and cameras as in [31–33]. New
techniques are continuously being introduced such as those
proposed in [34, 35].

In this study, we consider both indoor and outdoor
environments scanned in 3-D with an LRF. Scans of indoor
environments have been acquired with the SICK LMS200

illustrated in Fig. 1a. This 2-D device measures the range
between itself and the objects within its field of view, based on
the time-of-flight principle. The sweeping laser beam is aligned
by the rotating mirror, as illustrated in Fig. 1b. The laser has a
maximum range of 80 m, field of view of 180◦ (Fig. 1c), range
resolution as low as 1 mm and a selectable angular resolution
of either 0.25◦, 0.5◦ or 1◦. The measurements have a systematic
error of±4 cm, as well as some statistical error that changes with
the measurement range, the ambient temperature, illumination
and the reflectivity of the objects in the environment. The
acquisition frequency of the 2-D scans is 75 Hz [36]. In this
study, scans of outdoor environments, acquired with the RIEGL
VZ-400 illustrated in Fig. 1d, are also used. The measurement
principle of this device is similar to that of SICK LMS200. This
device is dedicated to outdoor modeling with 100◦ vertical and
360◦ horizontal scanning field of view. The angular resolution
is at least 0.0024◦ in both horizontal and vertical directions. The
laser has a maximum range of 350 m in the high-speed mode in
which 60◦ is scanned horizontally in one second [37].

The advantages of using a laser beam is reliable detection of
the presence of an object and independence of the measurements
from the amount of ambient light and the color of the objects.
A major disadvantage is that, for proper operation of the
sensor, the environment should not contain highly reflective or
transparent materials, such as glass. LRFs are used in various
tasks such as estimating volumes and positions of objects
and their classification, collision prevention for vehicles and
surveillance.

The scan data collected by any sensor usually need to be
transmitted to a station where the data are processed and
analyzed. The scan data of a 3-D model, likely to be composed
of hundreds of thousands of range measurements, also need to
be stored in a medium, where the amount of allocated memory
is required to be as small as possible. Thus, the data must be
recorded to the medium efficiently in terms of the memory
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space, as must the speed in reading and writing operations for
the data. This way, fast and accurate autonomous search and
scan systems can be developed.

To satisfy all of the requirements mentioned above, the scan
data must be compressed before it is transmitted or stored.
By decreasing the size of the data, the amount of data stored
can be increased and the elapsed time required to transmit
the data through the communication channel can be reduced.
Although many compression techniques have been developed
for various types of data (see, for instance [38–41]), determining
the optimum data compression technique with respect to the
following criteria is still an open research field.

An important aspect of data compression is the compression
ratio (CR), which is the ratio of the size of the compressed output
to the size of the original data. The CR is between zero and one
(or 0 and 100%) for a compression operation, and greater than
one for an expansion operation. The closer the CR is to zero,
the larger is the amount of compression [42].

Salomon [42] points out that no data compression method is
perfect; thus compressing any number of bits into one bit, which
may be a fictional case, is such a success that even compressing
two bits into one bit can be considered as ‘perfect’. Therefore,
a compression method can be considered efficient when the
size of the original data is reduced by more than one half. In
other words, an efficient compression method, at least halves
the storage and communication costs [43].

The amount of distortion is the second aspect in data
compression [44]. The size of the data is lowered by employing
either lossless compression techniques, in which the whole
information in the data is encoded, or lossy compression
techniques, in which the essential part of the information is
encoded. Although distortion, which is the difference between
the data and its reconstruction using the compressed data, is
observed in lossy compression, lossy compression methods are
usually preferred since they result in lower CRs than lossless
compression methods. Distortion can be measured in various
ways depending on the type of data, and is required to be as
low as possible. Let x = {xi}Ni=1 and x̂ = {x̂i}Ni=1 represent the
data sequence and its reconstruction, respectively. A common
measure of distortion, which is also used in this study, is the
root mean squared error (RMSE) between x and x̂, calculated

as
√

(1/N)
∑N

i=1(xi − x̂i )2.

Speed is another aspect in data compression. It is a measure
of how fast the data are compressed (encoding speed) and
reconstructed from the compressed data (decoding speed)
by using a given compression technique. Speed is inversely
proportional to the time required for encoding and decoding
the data, and required to be as high as possible.

In the literature, there are various compression techniques
dedicated to 3-D range measurements. Some of them are aimed
to fit geometrical structures expressed with a few parameters
explicitly to the separate clusters of range measurements.
For instance, Obaid fits line segments to measurements after

arranging them by applying Peano scanning to the whole
3-D scan [45]. Kaushik et al. [46] fit polygons to planar
surfaces detected in the 3-D scan in an iterative manner.
Rivest and Siddiqi [47] attempt to fit rectangles to the
consecutive measurements having values close to the average
of the measurements inside the same rectangle. In these
algorithms, the parameters of the geometrical structures fitted
to the measurements are encoded using a lossless compression
technique. Furthermore, some well-known algorithms generally
employed to encode different types of data are also considered
in compressing 3-D scans. For instance, Differential Pulse Code
Modulation, widely used in compressing speech signals, is
employed in [47]. In a study closely related to our work [48],
the authors focus on real-time compression of laser data
acquired on board a mobile robot platform. A 3-D scan is
handled as a gray-scale image data and different lossless and
lossy compression techniques are compared in terms of the
transmission time of laser-generated 3-D maps. It is shown that
JPEG-LS compression performs the best with a CR of about
19.4% and a maximum RMSE of 4 mm.

In this paper, we propose an effective compression method
that can be applied to 3-D laser range measurements as the
data are being acquired. The main contribution of this study
is to provide a method to generate sparse representations
of laser range measurement sequences. These representations
include an incredibly small number of nonzero values compared
with the number of measurements in the original sequences.
Then the sparse representations are compressed by applying
sparse sampling techniques that have been applied in sampling
parametric signals [49], and are based on compressive sensing.
The proposed method is similar to difference encoding and is a
causal system because it generates sparse representations based
on current and previous measurements. Therefore, in theory, it
can compress even an infinite number of range measurement
sequences.

The rest of this paper is organized as follows: Compressive
sensing is reviewed in Section 2. The proposed method is
described in detail in Section 3 and compared with widely
used compression techniques in terms of the CR, distortion and
speed in Section 4. Three experimental datasets, independently
acquired at different institutions with two different LRF brands,
are used for this purpose. Conclusions and directions for future
work are provided in the last section.

2. BACKGROUND ON COMPRESSIVE SENSING

Compressive sensing enables signals to be successfully
reconstructed with fewer samples than the Shannon/Nyquist
sampling theorem requires, by using a linear sampling model
with an optimization procedure for reconstructing the original
signal [50]. To achieve this, compressive sensing relies on
sparsity and incoherence properties. The sparsity property
requires signals to have sparse representations in proper
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domains. Sparse signals can be represented with a lower
sampling frequency than the Nyquist rate. Furthermore, sparsity
enables discrete-time signals to be represented more briefly
when expressed using a proper basis �. The incoherence
property states that the sparse representation of the signal on
basis � must be extended in the domain in which the signal is
sampled [51].

The first step in compressive sensing is to represent the signal
using a proper basis, i.e. one on which the representation is
sparse. The basis should contain a set of orthonormal vectors
that form a set of waveforms such as a wavelet basis [51]. Let
x = [x1, . . . , xN ]T be the column vector that represents the
N samples of the signal in �N , where N is a large integer;
� = [�1, . . . , �N ] stands for the basis matrix with orthonormal
basis vectors {�i}Ni=1. Here, it is assumed that the basis vectors
are column vectors in �N so that � is an N × N matrix. Thus,
we can represent the signal as x = ∑N

i=1 si�i = �s, where
s = [s1, . . . , sN ]T, si = 〈x, �i〉 with i = {1, . . . , N} [50] and
〈·, ·〉 denotes the inner product of two vectors. Note that x and
s are different representations of the same signal in different
domains: the time domain and the � domain, respectively. If
the projection of the signal onto the basis � is sparse, only a
small number of coefficients in s, denoted by K , will have large
values, whereas the majority, denoted by (N −K), will be close
to zero. When K � N , s is referred to as K-sparse. The sparsity
property defined here is motivated by the assumption that most
signals are compressible with the proper choice of a basis �.
The approximation of signals with K-sparse representations is
the basis of transform coding [50].

After the first step, the signal is sampled using a linear
measurement model that computes M measurements, where
M � N . We assume that the measurement model � =
[�T

1 , . . . , �T
M ]T is an M × N matrix, and is composed of

basis vectors {�j }Mj=1, each of which is a column vector
in �N . Let the measurement vector be denoted as y =
[y1, . . . , yM ]T composed of {yj }Mj=1, where yj = 〈x, �j 〉. Thus,
the measurement vector can be defined as y = �x = ��s =
�s, which has fewer dimensions than the original signal,
referred to as the undersampled case [51]. The objective of
compressive sensing can be briefly summarized as determining
a measurement model � and a sparsifying basis � that allow
the reconstruction of the signal x, which is not damaged despite
the reduction in dimensionality. More briefly, the objective of
compressive sensing is determining �.

The solution to the determination of � must satisfy two
important properties: Restricted Isometric Property (RIP) and
incoherence. RIP requires that ζ , a constant between 0 and 1,
should be close to 0 by the following statement:

(1 − ζ )‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + ζ )‖x‖2
2, (1)

where ‖ · ‖2 is the two-norm of the corresponding vector.
The above statement expresses that any vector multiplied
by � cannot be in the null space of �, and so � must

preserve the length of the vectors multiplied by itself. The
second requirement for � is the incoherence property, which
indicates uncorrelatedness between the sparsifying basis � and
the measurement model � [51]. Incoherence states that basis
vectors in the measurement model cannot sparsely represent the
basis vectors in the sparsifying basis [50]. Coherence (i.e. the
opposite of incoherence) between � and � can be referred to
as a measurable quantity, computed by

μ(�, �) = √
N max

1≤i≤N, 1≤j≤M
|〈�i, �j 〉|, (2)

where μ indicates coherence, varying between 1 and
√

N [51].
Low levels of coherence are always preferable for constructing
�, so that we have maximal incoherence when μ is 1.

One remaining issue in the design of the compressive sensing
structure is determining a lower bound for M , which is the
number of measurements obtained by the measurement model.
Since the dimension of the sampled signal N and the number of
nonzero entries in the sparse representation K are both known,
the minimum value of M can be computed from either

M ≥ c1 K ln

(
N

K

)
[50], (3)

or M ≥ c2 μ2(�, �) K ln(N) [51], (4)

where c1 and c2 are small positive constants. No information is
lost after sampling as soon as a set of M samples that satisfies
Equation (3) or (4) is acquired in the measurement model. It is
seen that fewer samples in the measurement model are claimed
to be sufficient as the coherence decreases.

After a measurement vector y, which has far smaller
dimensions than the original signal x, is obtained, the next
step is the reconstruction of the original signal and its sparse
representation s from the measurement vector. At the end of the
sampling process, we have y = �s, where s is to be estimated
given y and �. Since � is an M ×N matrix with M � N , there
are infinitely many s̃ that satisfy y = �s̃. The optimal solution
to s is stated as

ŝ = arg min ‖s̃‖1 such that y = �s̃, (5)

where ‖ · ‖1 is the one-norm of the corresponding vector.
Furthermore, if the sparse representation is reconstructed
from noisy measurements, the following optimization can be
considered:

ŝ = arg min ‖s̃‖1 such that ‖y − �s̃‖2 ≤ ρ, (6)

where ρ is the bound on the noise in the measurement
vector y [52, 53]. Apart from the one-norm solution, a two-
norm solution is available in regularized minimization for
reconstruction [54]. In this case, ŝ = arg min ‖y − �s̃‖2

2 +
c0‖s̃‖1, where c0 is a small positive constant. One way to
solve the given optimization problems is to apply basis pursuit
algorithms [55]. As soon as the sparse representation of the
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signal s is estimated as ŝ, the original signal x is reconstructed
as x̂ = �ŝ, with a small distortion between x and x̂. In this
study, we use the solution given by Equation (5) because the
measurement model � employed here provides a noiseless
measurement vector y.

2.1. Determining the sparsifying basis

As stated above, the first step in compressive sensing is
to determine the best sparsifying basis � for efficient
representation of the original signal x. Thus, the projection of
x onto this basis should represent x with fewer values than x
has, and allow the reconstruction of x with small error. Any
sparsifying basis is composed of a set of basis vectors that are
actually waveforms. In the literature, these waveforms are called
atoms, and the set of atoms that comprises the sparsifying basis
is called a dictionary. Although there are some readily available
dictionaries, such as wavelet and cosine packets, Gabor and
Fourier dictionaries, chirplets and warplets, dictionaries can
also be designed and tailored according to the signal features. In
this study, Fourier, Gabor and Haar dictionaries [55] are tested
with the experimental scan data to acquire sufficiently sparse
representations.

2.2. Determining the measurement model

An interesting application of compressive sensing is the single
pixel camera, which is used to sample sparse images, as
reported in [56]. In the implementation of sampling, light is
projected onto a digital micromirror device having an array of N

micromirrors, as shown in Fig. 2.According to the measurement
model used, a random number generator selects a set of
micromirrors to focus the reflected light onto a photodiode. The
measurement model is generated in three different ways: raster
scan, basis scan and compressive sampling (CS). As a result,
different combinations of M pixels out of N are measured by
the photodiode. In the raster scan, the photodiode measures N

pixels one at a time (i.e. M = N ), where � is the N ×N identity
matrix. In the basis scan, the photodiode measures M pixels,
which are determined according to theWalsh basis, one at a time.
In this model, � is the N ×N Walsh matrix that includes binary

coefficients [57]. In CS, the photodiode measures M different
linear combinations of N pixels, using random test functions. It
is shown that the smallest distortion of images occurs with the
smallest number of measurements, which is achieved when CS
is used as the measurement model.

In this study, to construct a measurement model using random
test functions, the number of basis vectors in the model is
determined by taking c1 = 1 in Equation (3) such that

M =
⌈
K ln

(
N

K

)⌉
, (7)

where �· denotes the ceiling function.All elements in the model
matrix are selected independently from a Gaussian distribution
with zero mean and 1/N variance to obtain a model incoherent
with any sparsifying basis with high probability [50]. Then the
row vectors in � are orthonormalized by the Gram–Schmidt
process. Using this measurement model without a sparsifying
basis, where � = � and � is an N × N identity matrix, is
advantageous in reconstructing the original signal because RIP
is satisfied, since � has no null space with high probability,
where ζ is zero in Equation (1). Moreover, the incoherence
property is satisfied, where μ(�, �) is found likely to be around√

2 ln N .

3. THE PROPOSED METHOD

We can use compressive sensing to compress any signal using
a suitable sparsifying basis and an incoherent measurement
model. This approach is commonly applied in various fields,
such as magnetic resonance imaging in medicine [58],
interferometric imaging in astronomy [59] and advanced
techniques in image processing [60]. Although forming the
measurement model is a straightforward process, forming the
sparsifying basis is a more challenging problem. The signals
considered in this study are range measurement sequences taken
within the sensor’s field of view, as column vectors in �N , where
N can be very large. The main objective in this problem is to find
a representation of the signal that contains sufficiently sparse
critical information to recover the signal with small error [52].

FIGURE 2. The operation scheme of the single pixel camera (reprinted from [50]).
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In this section, we present the proposed method using one of
the benchmarking datasets described in more detail in Section 4.
The dataset used here is composed of 29 3-D scans collected
at different locations in the University of Osnabrück’s AVZ
building in Osnabrück, Germany [61]. Each 3-D scan in the
dataset is acquired by collecting 2-D scans from a sensor
rotated in small steps around a horizontal axis above the ground
level. Each 2-D scan is obtained as the laser beam emitted by
the sensor is swept within the sensor’s field of view in 0.5◦
intervals. A 3-D scan in this set is composed of 471 2-D scans
that are vectors of 361 consecutive range measurements (i.e.
N = 361). Different features such as a mannequin, a human
being, banisters at the top of stairs and chairs are observed while
they are stationary in these 3-D scans, as illustrated in Fig. 3a–d.
Gray levels in these images are directly proportional to the range
measurements such that white indicates the maximum and black
indicates the minimum range measurement.

To apply the sampling model described in Section 2, we first
consider the projections of a 3-D scan, illustrated in Fig. 3b,
onto some of the well-known sparsifying bases. The 2-D scans
forming the 3-D scan are projected one at a time onto N × N

sparsifying bases formed by using the Fourier, Gabor and Haar
dictionaries as follows:

(i) The Fourier dictionary is formed by N cosine
waveforms with frequencies ω = lπ/N , where l =
{ 1

2 , 3
2 , . . . , N − 1

2 }.
(ii) The Gabor dictionary is formed by N waveforms with

no delay, the unit standard deviation of the Gaussian
envelope of the waveforms and different frequencies
uniformly selected from [0, π).

(iii) The Haar dictionary is formed by N wavelets
with 1

32 dilation and l/32 translation for l =
{0, 1, . . . , N − 1}.

In the projections, the average percentages of the number of
nonzero values to the total number of values are 74.7, 61.3
and 88.7%, respectively, indicating that the projections onto the
bases described above are not sufficiently sparse. Thus, both the
CR and distortion would be high if CS were applied to these
projections [52].

During the process of data acquisition, the sequences of range
measurements are extracted and stored in arrays where each
value is stored after being converted from binary to decimal
format. 2-D scans acquired consecutively have similarities as
well as differences. The differences may be caused by changes
taking place in a dynamic environment, as well as by the
translational or rotational motion of the sensor; at each step of
the sensor, a different cross section of the 3-D environment is
being observed. Since we observe that the raw 2-D scans do not
have highly sparse representations in the domains listed above,
we attempt to represent them with sparse innovations exploiting
the correlation between two consecutively acquired scans, when
the sensor is rotated by a small amount before acquiring the next
scan. Thus, we define the innovations between:

(a) two consecutive scans;
(b) each scan and its estimate using linear regression [62]

based on the last two scans;
(c) each scan and its estimate using second-order

polynomial fitting [62] based on the last three scans;
(d) each scan and its estimate adding the previous scan

to a difference estimate using a second-order Wiener
filter [62] under the assumption that the differences
between consecutive scans form a stationary random
sequence;

(e) each scan and its estimate adding the previous scan to
a difference estimate using a 1-D random walk on the
previous difference; and

(f) each scan and its estimate using a linear Kalman filter
with the constant velocity kinematic state model [63],
which is also called a polynomial filter, because the
mesh points in consecutive scans form piecewise
polynomial functions.

The implementation details of methods (a)–(f) are provided
in [64]. The average percentages of the number of nonzero
values to the total number of values in the innovations are 43.7,
92.5, 99.5, 71.5, 27.3 and 50.9%, respectively, for the 3-D scan
in Fig. 3b. On the average, we obtain the most sparse innovations
in (e), with 27.3%, but even this is not found to be sufficient.

In this study, we propose a method to generate much more
sparse innovations (6.5%). The proposed method is composed
of encoder and decoder parts, where the encoder consists of
sparsifying, measurement and reconstruction stages and the
decoder involves only the reconstruction stage, as depicted
in Fig. 4. The sparsifying model generates sparse innovations
for each scan in the sparsifying stage, and the measurement
model samples the innovations with the minimum number of
samples in the measurement stage. Finally, the reconstruction
model rebuilds each scan from the samples encoded by the
measurement model in the reconstruction stage. The following
subsections provide more details on these three models.

3.1. The sparsifying model

In the sparsifying model, we generate the innovations between
consecutive 2-D scans as follows: suppose rn is the nth 2-D scan
that is currently acquired, and rn−1 is the previous one. First,
rn−1 is generated at the encoder by employing the reconstruction
procedure in Section 3.3 that the decoder follows, to adapt the
sparsifying parameters according to the reconstruction at the
decoder. Then rn−1 is approximated to rn by shifting rn−1 along
the vertical and horizontal axes by amplitude (ε) and phase (δ)

shifts, respectively. An example illustrating ε and δ is shown in
Fig. 5a.

Assume that the individual range measurements in rn

and rn−1 are denoted by rn[i] and rn−1[i], respectively,
where i = 1, 2, . . . , N . We define an error function
E2 = ∑N

i=1[rn[i] − (rn−1[i + δ] + ε)]2 and set its partial
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FIGURE 3. (a)–(d) Sample 3-D scans collected at the University of Osnabrück AVZ building using SICK LMS200; (e)–(h) their reconstructions;
(i)–(l) point cloud representations of (a)–(d); (m)–(p) point cloud representations of (e)–(h); (q)–(t) difference sequences of (a)–(d); and (u)–(x) the
resulting distortion error.
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FIGURE 4. The operation scheme of the proposed method.

FIGURE 5. Illustration of (a) the amplitude and phase shifts and (b) the offset.

derivatives with respect to ε and δ to zero to find the optimal
values of ε and δ, respectively. First, we determine ε from

∂E2

∂ε
=

N∑
i=1

[−2rn[i] + 2(rn−1[i + δ] + ε)] = 0. (8)

When we neglect δ and assume that rn−1[i + δ] ∼= rn−1[i] in
Equation (8), we obtain the following solution for ε:

ε = 1

N

N∑
i=1

(rn[i] − rn−1[i]). (9)

In other words, ε corresponds to the average amplitude
difference between rn and rn−1. Next, we determine δ from

∂E2

∂δ
=

N∑
i=1

(
−2rn[i]∂rn−1[i + δ]

∂δ

+ 2 (rn−1[i + δ] + ε)
∂rn−1[i + δ]

∂δ

)
= 0. (10)

The rn−1[i + δ] term in Equation (10) can be expanded using
a Taylor series expansion around i, such that rn−1[i + δ] =
rn−1[i]+r ′

n−1[i]δ+( 1
2 )r ′′

n−1[i]δ2+· · · , where r ′
n−1[i] and r ′′

n−1[i]
are the first- and the second-order differences of the sequence
rn−1 at i, respectively. Assuming that δ is very small compared
with N , we use only the first two terms of the expansion and
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obtain the following first-order approximation to δ:

δ =
∑N

i=1 r ′
n−1[i](rn[i] − rn−1[i] − ε)∑N

i=1 r ′
n−1[i]2

. (11)

We investigated using a second-order approximation to δ in [64],
and have concluded that the first-order approximation is simple
and sufficiently accurate.

Shifting rn−1 along the vertical and the horizontal axes by
ε and δ, respectively, we obtain an approximation r̂n to rn.
Then the difference sequence is ṽn � rn − r̂n. Here, ṽn

is a sparse signal representing discontinuities in the scanned
environment. To illustrate this fact, the difference sequences
obtained for the 3-D scans in Fig. 3a–d are shown in Fig. 3q–t,
respectively. In these figures, the darker features correspond to
larger differences. Note that most of the dark features in these
images occur where there is a sudden change in the measured
range.

If there is any remaining offset level in ṽn, as in the example
given in Fig. 5b, ṽn is further shifted to the zero level either in
the positive or the negative vertical direction by the offset value
� to improve the sparsity. Here, −� is the most frequently
appearing value in ṽn. After shifting the amplitude of ṽn by �,
we eventually obtain a highly sparse innovation vn, where 70%
of the values computed for the first dataset are zero [64].

After we obtain the innovation sequence vn as described
above, we test whether time consecutive innovation sequences
are correlated with each other by applying a whiteness test in
the autocorrelation domain. It is shown in [64] that vn is indeed
a white sequence in time.

Consequently, rn is represented with ε, δ, � and vn. When
rn and rn−1 are highly correlated, vn becomes very small, so
rn is represented without vn in that case. On the other hand,
when rn and rn−1 are not sufficiently correlated, vn does not
become a sparse sequence. This time, rn is not encoded. The
degree of correlation between rn and rn−1 is measured by
comparing the RMSE between rn and r̂n with an experimentally
determined threshold (200 cm) that is 10 times the maximum
allowable distortion (20 cm) that can be visually tolerated in
the reconstruction of rn. (When the distortion is above 20 cm,
it is difficult to visually recognize objects in the reconstructed
3-D scans.) Where rn is encoded, the flowchart of the algorithm
followed in the sparsifying model is briefly delineated in Fig. 6a.

Finally, the performance of the sparsifying model under
additive white Gaussian noise is investigated. The 2-D scans
in the 3-D scan illustrated in Fig. 3b are sparsified after zero
mean white Gaussian noise is added to them. When noise is not
added to the 2-D scan, 6.5% of the values in the representations
are nonzero on the average. When the standard deviations of the
noise are 1, 2, 3, 4, 5, 10, 20 and 30 cm, the average percentages
of nonzero values are 5.1, 4.5, 7.3, 11.8, 13.7, 20.3, 73.7
and 81.9%, respectively. As the sparsity of the representations
mentioned above are compared with each other, it is observed
that, under the presence of noise with a standard deviation

up to 3 cm, the sparsifying model maintains the performance
observed in the case without any added noise. In addition to that,
the model provides representations with acceptable sparsity
under the presence of noise with a standard deviation as much
as 10 cm. Beyond this level of noise, the representations can
no longer be considered sparse. Thus, we conclude that the
proposed method has reasonably good noise tolerance.

Note that the method proposed here has some similarities with
optical flow techniques used for motion estimation in image and
video processing [65, 66]. In optical flow, spatial and temporal
shifts are used to estimate the relative motion between the scene
and the camera (the observer). The solution of the following
partial differential equation is required:

∂I

∂x
Vx + ∂I

∂y
Vy + ∂I

∂t
= 0, (12)

where Vx and Vy are the x and y components, respectively, of
the velocity of the optical flow of the image intensity I (x, y, t),
and ∂I/∂x, ∂I/∂y and ∂I/∂t are the partial derivatives of the
image at (x, y, t) in the corresponding directions. In our method,
two spatial shifts, δ and ε (and �), are involved, whose time
derivatives correspond to Vx and Vy in the optical flow equation,
respectively.

3.2. The measurement model

The measurement model gets the minimum number of samples
from vn by using either simple coding (SC) or CS. Simple
coding encodes vn with the pairs of location and amplitude of
the nonzero values in vn. The measurement size M in this case
increases proportionately with the number of nonzero values
K , where M = 2K . Despite this, the reconstruction error is
zero when vn is rebuilt from the measurements taken with SC.
Compressive sampling measures arbitrary linear combinations
of the values in vn. In this case, the measurement model is
determined as described in Section 2.2, and M is calculated
using Equation (7). Then vn is encoded by using the product
�vn. Furthermore, the resulting reconstruction error, which
arises when vn is rebuilt from the measurements taken with
CS, increases with K .

When a 2-D scan with N range measurements is received, we
first determine the number of nonzero elements K of the scan,
as an indication of sparsity. The size M of the measurement
vector m acquired by using either SC or CS is illustrated in
Fig. 7. The K∗ is the value of K at which the two curves
intersect and the number of measurements M for SC and CS
are equal. If the equation M = 2K for SC and Equation (7) for
CS, corresponding to the two curves, are solved simultaneously
for K , we find K∗ = N/e2 that only depends on the number
of range measurements N in a 2-D scan. When K ≤ K∗,
using SC is advantageous over CS because of the smaller M

and the reconstruction error. Consequently, we employ SC
when K ≤ K∗, and use CS, otherwise. We include a special
character (i.e. π ) at the beginning of m when SC is applied
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FIGURE 6. The flowcharts of the (a) sparsifying, (b) measurement and (c) reconstruction models.

to inform the decoder that we are using SC instead of CS.
Besides, when K > N/2 such that more than half of the values
in vn are nonzero, vn cannot be considered sparse, since the
reconstruction error would be very high if vn were sampled
using CS. In that case, rn is not encoded. When rn is encoded,
the flowchart of the algorithm followed in the measurement
model is given in Fig. 6b.

If rn is encoded, it is represented by {ε, δ, �, m} at the output
of the measurement model. If rn is not encoded, the length of
the representation remains as N . We investigate whether it is
possible to achieve measurements with shorter lengths using
a simpler method, such as run length encoding (RLE) [67].
This simple method is commonly used for encoding fax images
of typical office documents. RLE first determines the sets in
the input data, each of which is formed by the repetition of

a single character. Then it encodes each set with its length and
the character repeated in the set. The proposed method provides
more efficient measurements than RLE, since the size of the first
dataset is reduced, on the average, by 51% using RLE and by
89.1% on the average using the proposed method.

3.3. The reconstruction model

The reconstruction model rebuilds rn from the output generated
by the encoder. When rn is encoded, the output is composed
of {ε, δ, �, m}, and its length is (M + 3), which is less than
N . If rn is not encoded, the output is rn with length N .
Therefore, the reconstruction process begins by checking the
length of the encoder output. If the length is N , the output is
stored directly as the reconstruction of rn. If not, the output is
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FIGURE 7. The measurement size M in SC and CS with respect to
the number of nonzero values K of a signal. In drawing the logarithmic
curve for CS, the value of N = 361 is used.

decomposed into ε, δ, � and m. After this step, rn−1, which has
been previously reconstructed, is shifted along the vertical and
horizontal axes by ε and δ, respectively. The resultant signal r̂n is
the approximation to rn. Then ṽn is rebuilt from m and �. In this
step, if the first value of m is π , then vn is rebuilt, decoding the
rest of m with respect to the SC scheme, which involves filling an
empty signal in �N with the values of location and amplitude
pairs provided in the measurements. Otherwise, vn is rebuilt,
decoding m with respect to the CS scheme, which involves
solving Equation (5), where y = m, � = � and ŝ = vn,
following the procedure in [52]. In our implementation, vn is
determined using the MATLAB function perform_l1_recovery
written by Peyre [68]. Then ṽn is obtained by shifting the
amplitude of vn by −�. Eventually, rn is reconstructed by
adding ṽn to r̂n. The algorithm followed in the reconstruction
process is summarized in Fig. 6c.

The reconstruction model is used at the decoder, as well as at
the encoder to estimate the input reconstructed by the decoder.

4. COMPARING THE COMPRESSION
PERFORMANCE OF THE PROPOSED METHOD
WITH SOME WELL-KNOWN COMPRESSION
TECHNIQUES

Three different experimental datasets are used for benchmark-
ing in this study. The datasets are composed of numerous 3-D
scans. The first two datasets contain 3-D scans of indoor envi-
ronments acquired using the SICK LMS200 LRF. The 3-D scans
are acquired by collecting 2-D scans from a sensor on board a
mobile robot. The sensor is rotated in small steps around a hori-
zontal axis above the ground level while the position of the robot
is fixed. Each 2-D scan in the datasets is obtained as the laser
beam emitted by the sensor is swept within the sensor’s field

of view in 0.5◦ steps. The first dataset contains 29 3-D scans
collected at different locations in the University of Osnabrück’s
AVZ building in Osnabrück, Germany [61]. The sensor rotates
471 steps to acquire the 2-D scans forming a 3-D scan in this set.
The second dataset is collected, while a mobile robot platform
equipped with SICK LMS200 follows a parallelogram-shaped
path in one of the halls of Dagstuhl Castle in Wadern, Germany.
It is composed of 82 3-D scans taken at different locations in the
hall [69]. Each 3-D scan in this set is acquired by rotating the
sensor in 225 steps. As a consequence, each 3-D scan from the
first and the second dataset constitutes 471 and 225 2-D scans,
respectively. The 2-D scans are sequentially acquired as vectors
in �361 (i.e. N = 361). The third dataset contains 3-D scans of
outdoor environments acquired using the RIEGL VZ-400 LRF.
The 3-D scans in this dataset are acquired at the city center of
Bremen. Each of the two 3-D scans used from this set contains
2250 horizontal 2-D scans, sequentially acquired as vectors in
�3000 (i.e. N = 3000) [70].

In this section, we compare the compression performance
of the proposed method with some well-known and widely
used lossless and lossy compression techniques. The 3-D scans
are compressed by applying each technique to the 2-D scans
comprising the 3-D scans individually. For each technique
in the comparison, we compare the overall CR, the average
distortion (D), that is, the average RMSE between the 2-D
scans and their reconstructions defined in Section 1, and the
time required for encoding (tenc) and decoding (tdec) the 3-D
scans. These values are found by averaging over the values
obtained for all 3-D scans, including 4 930 899 (= 29 3-D scans
×471 2-D scans ×361 measurements) range measurements in
the first dataset, 6 660 450 (= 82 3-D scans ×225 2-D scans
×361 measurements) range measurements in the second dataset
and 13 500 000 (= two 3-D scans ×2250 2-D scans ×3000
measurements) range measurements in the third dataset.

The following implementations are executed on a computer
platform with a 2 GHz Intel Core2 Duo processor and 2 GB
RAM.All executable tasks are run in the MATLAB environment
installed on a Microsoft Windows Vista operating system.

4.1. Implementation and comparison with well-known
lossless techniques

First, the 3-D scans are compressed using four different lossless
techniques, which are Huffman, arithmetic, ZLIB and GZIP
coding techniques. Huffman coding maps every character
in the input data to distinct binary patterns based on the
frequency of appearance of the characters. It is the optimal
lossless coding technique since the characters that appear more
frequently are mapped to shorter patterns than the characters
that appear less frequently, and the two characters that appear
least frequently are mapped to two different patterns having the
same length [44]. Arithmetic coding maps blocks of characters,
instead of single characters, to distinct binary patterns based on
how frequently the blocks appear. It is observed that arithmetic
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coding can sometimes be more efficient than Huffman coding,
depending on the nature of the signal to be encoded [44].
The 3-D scans are encoded by Huffman and arithmetic coding
using the huffmanenco and arithenco functions in the MATLAB
Communications Toolbox, respectively.

ZLIB and GZIP are two popular compression techniques that
are variations of LZ77 [71], which is a widely used compression
method that encodes repeated strings in the input data with
pairs of distance and length. Distance is the separation between
the beginning of the last location and the previous location
of the repeated string in the data. Length is the size of the
corresponding repeated string. Two independent Huffman trees
are used in compressing the distance and length information,
respectively. ZLIB is a general purpose coding library, and
can be used in any operating system. ZLIB is reported to
provide satisfactory compression on various types of data with
optimum use of system resources. ZLIB is also claimed to be
able to compress the input data by up to 99.9% in theory [72].
GZIP is a coding technique that is designed to be used instead
of compress, which is a compression utility used in UNIX
operating systems [73]. The 3-D scans are encoded by ZLIB
and GZIP using the functions written by Kleder [74] and
Hopkins [75], respectively.

4.2. Implementation and comparison with well-known
lossy techniques

Besides the lossless compression techniques, we also apply two
lossy compression methods to the 3-D scans: JPEG and the
wavelet transform.

Since the 2-D scans forming a 3-D scan are basically
cross-sectional intensity images of the scanned environment
where the intensity values represent depth information, JPEG
compression is applied first. JPEG refers to a family of
image compression standards including both lossless and lossy
techniques. Lossy JPEG techniques are based on the discrete
cosine transform (DCT) applied on 8×8 blocks of pixels in the
image data. The CR for lossy JPEG is claimed to be as low as
about 5% in compressing colored images, when the distortion
in the reconstructed images is not visually recognizable [76]. In
colored images, each pixel is represented with three channels,
each of which holds an 8-bit intensity value that corresponds to
an unsigned integer between 0 and 255. On the other hand, range
measurements in the 2-D scans of the experimental datasets are
represented in the binary format using 16 bits. Therefore, before
encoding a 2-D scan using JPEG, each range measurement is
encoded with three channels such that the most significant 8
bits are placed in the first channel, the least significant 8 bits are
placed in the second channel and the third channel is left blank.
Then the 2-D scan, which is now a 1 × N image with three
channels, is duplicated eight times to form an 8 × N image,
since JPEG divides the image into 8×8 blocks before applying
the DCT. Eventually, the resultant image data are encoded by
lossy JPEG using the MATLAB imwrite function. Without these

operations on the raw data prior to encoding with JPEG, the CR
and the distortion will be high [77].

Besides JPEG, the wavelet transform, which is also widely
used in image compression, is applied to the raw scan data.
The wavelet transform analyzes the input signal at separate
bandwidths by applying the input signal to a specific filterbank,
that is, a set of low-pass and high-pass filters connected in a
network [78]. Every 2-D scan in the 3-D scans is compressed
using up to a three-level wavelet transform with the Haar
filterbank, for which the function dwt in the MATLAB Wavelet
Toolbox is employed. The raw scan data are decomposed
into a number of frequency components, ranging from low
frequencies to high frequencies and denoted by xL and xH

in a one-level transform; xLL, xLH, xHLand xHH in a two-level
transform; and xLLL, xLLH, xLHL, xLHH, xHLL, xHLH, xHHL and
xHHH in a three-level transform. For the reconstruction, only
the lowest frequency components, which are xL, xLL, xLLL in
one-level, two-level and three-level transforms, respectively,
are used. Therefore, some distortion on the reconstructions is
expected.

4.3. Implementation and comparison with the proposed
method

Finally, the 3-D scans are encoded using the proposed method,
which is a lossy technique. In the implementation, small
fluctuations in the compression performance are observed,
such that at most ±2% variations appear in the CR, since the
measurement model in CS is determined arbitrarily in each trial.
Recall that in the proposed method, each 2-D scan in a 3-D scan
is encoded with one of the following:

(i) ε, δ, � and m acquired using CS;
(ii) ε, δ, � and m acquired using SC;

(iii) ε, δ and �;
(iv) itself (no coding).

The number of occurrences of each type of code for a given 3-D
scan is denoted by k1, k2, k3 and k4, respectively. Thus, these
numbers change as the CR fluctuates. Moreover, the distortion
also changes in this situation. Therefore, every 3-D scan is
encoded using the proposed method ten times, then the average
values of the CR, D, tenc, tdec, k1, k2, k3 and k4 are obtained.

The distortion D is dependent on the information provided
by the code of rn. At first, rn is defined with the relative vertical
and horizontal shifts (ε and δ) to r̂n. When the RMSE between
rn and r̂n is >20 cm for indoor environments and >1 m for
outdoor environments, rn is defined with additional information
provided by sampling vn through the measurement model.
Therefore, D is restricted to either 20 cm or 1 m depending on
the type of the range of measurements, which is the maximum
distortion that can be tolerated in the reconstruction. For
instance, when the 3-D scans illustrated in Fig. 3a–d from the
first dataset are compressed using the proposed method, the
resulting average distortions are about 15, 13, 14 and 11 cm,
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respectively. Their reconstructions are shown in Fig. 3e–h for
comparison with their originals. In parts (i)–(l) and (m)–(p),
the original scans and their reconstructions are, respectively,
illustrated as point clouds, where range measurements are
represented as discrete points in the 3-D Cartesian space with
the LRF located at its origin. In these figures, the point cloud
is viewed from a different perspective than that of the LRF.
These illustrations are obtained using CloudCompare, which
is a free software for 3-D point and mesh processing [79].
Difference sequences of (a)–(d) are shown in parts (q)–(t).
Furthermore, the distortion errors between these 3-D scans and
their reconstructions are illustrated in Fig. 3u–x to provide
a visual comparison. According to the figures, the distortion
becomes significant in those 2-D scans that are encoded with
only {ε, δ, �}, as indicated by the darker horizontal stripes in
the difference images.

The average compression performances of the methods
described so far are summarized in Table 1 for the three datasets.
For the performances of the lossless methods, arithmetic coding
can be said to be efficient in terms of the CR for both datasets;
however, it is slow compared with ZLIB and GZIP. On the other
hand, these methods compress less than arithmetic coding for
the first two datasets. ZLIB and GZIP seem better than other
lossless methods for the third dataset. Despite the high average
CR and tenc when Huffman coding is applied to the raw scan
data, they can be lowered by encoding the differences between
consecutive 2-D scans, since the range of distinct characters in
the differences is narrower than in the raw scan data. However,
coding the differences instead of the raw scan data may not
lower the CR for other compression techniques because their
compression performance is not directly related to the range
of distinct characters in the input data, as in Huffman coding.
With this approach, a considerable amount of compression is
observed for the first dataset, but not for the other datasets.
For the performances of the lossy methods, JPEG can be
considered a fast and efficient technique in terms of the CR,
however, it results in intolerable distortion. As the level of the
wavelet transform increases, the CR decreases exponentially;
meanwhile, the distortion increases and becomes intolerable.
The wavelet transform is very fast; the time required for both
encoding and decoding does not exceed a few seconds. When
the proposed method is compared with the lossless methods
considered here, it is found to be faster than the variations
of Huffman and arithmetic coding, but slower than ZLIB and
GZIP for the first two datasets. On the other hand, the proposed
method compresses much more than ZLIB and GZIP. For the
third dataset, the proposed method compresses less than ZLIB
and GZIP, but is much faster than them. The performance of
the proposed method is remarkable when the lossless methods
fail in compressing, as observed for the second and the third
datasets. When the proposed method is compared with the lossy
methods, the proposed method does not provide the least CR, but
provides acceptable low CR with very low distortion and high
speed. For lossy compression, there always exists a trade-off

TABLE 1. CR, D, tenc and tdec when (a) the first, (b) the second and
(c) the third datasets are compressed by different methods.

Method CR (%) D (cm) tenc (s) tdec (s)

(a)
Lossless methods

HC on rn 41.7 0 165.6 610.6
HC on (rn − rn−1) 12.0 0 49.0 14.0
AC on rn 11.1 0 37.6 48.9
AC on (rn − rn−1) 16.4 0 45.6 58.4
ZLIB 65.3 0 0.4 0.2
GZIP 76.7 0 0.5 0.3

Lossy methods
JPEG 9.0 164.6 4.2 7.3
One-level WT 50.2 21.3 0.3 0.3
Two-level WT 25.2 29.8 0.5 0.6
Three-level WT 12.7 37.3 0.8 0.9
Proposed method 10.9 12.9 15.3 14.5

(b)
Lossless methods

HC on rn 683.3 0 101.8 363.1
HC on (rn − rn−1) 253.6 0 12.6 34.2
AC on rn 27.1 0 21.8 25.7
AC on (rn − rn−1) 35.8 0 16.4 19.1
ZLIB 140.8 0 0.3 0.1
GZIP 143.8 0 0.3 0.2

Lossy methods
JPEG 10.0 743.6 1.5 3.6
One-level WT 50.2 204.4 0.2 0.2
Two-level WT 25.2 283.0 0.4 0.3
Three-level WT 12.7 353.8 0.5 0.5
Proposed method 32.0 4.8 1.9 1.7

(c)
Lossless methods

HC on rn 427.7 0 1042.1 5820.0
HC on (rn − rn−1) 135.9 0 1862.3 2756.2
AC on rn 21.1 0 416.1 1160.8
AC on (rn − rn−1) 25.0 0 175.1 592.3
ZLIB 15.2 0 3.3 4.2
GZIP 15.4 0 4.8 5.7

Lossy methods
JPEG 4.5 8690 36.3 314.4
One-level WT 50.0 440 3.0 1.2
Two-level WT 25.0 550 4.6 3.3
Three-level WT 12.5 620 6.0 5.0
Proposed method 37.0 63 2.1 0.2

HC, Huffman coding; AC, arithmetic coding.

between reducing the size of the input data and minimizing the
distortion on the reconstructions [44]. Consequently, being a
lossy method, the proposed method provides a reasonably good
compromise between the CR, accuracy of the reconstructions
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FIGURE 8. (a)–(d) Sample 3-D scans collected at Dagstuhl Castle using SICK LMS200; (e)–(h) their reconstructions; (i)–(l) point cloud
representations of (a)–(d); (m)–(p) point cloud representations of (e)–(h); (q)–(t) difference sequences of (a)–(d); and (u)–(x) the resulting distortion
error.
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TABLE 2. The average percentages of k1, k2, k3 and k4, when the
three datasets are compressed using the proposed method.

Dataset k1 (%) k2 (%) k3 (%) k4 (%)

#1 (University of Osnabrück) 16.0 24.0 57.0 3.0
#2 (Dagstuhl Castle) 4.9 17.3 13.8 64.0
#3 (City Center of Bremen) 0.3 31.0 63.0 37.0

and speed when its performance is compared with the
performances of the well-known techniques considered in this
study.

In the second dataset, besides stationary features such as
furniture (also present in the first dataset), buildings outside
the hall are visible through the glass windows along both
sides of the hall, as illustrated in Fig. 8a–d. Parts (e)–(h)
depict the reconstructions of the original scans. In parts (i)–
(l) and (m)–(p) of the same figure, the original scans and their
reconstructions are represented as point clouds, respectively.
Because of the additional detailed features in this dataset,
more discontinuities appear as illustrated in the difference
sequences in Fig. 8q–t, compared with that of the first dataset.
Therefore, the complexity of the scenes in the second dataset
is higher, and the similarity between consecutive 2-D scans
in the second dataset is lower than in the first. The average
correlation coefficients of the range measurements in the first
and the second datasets are calculated as 0.9521 and 0.9102,
respectively [64]. Because of this difference in complexity
between the datasets, the compression performance of the
proposed method demonstrates variations, as indicated in
Table 2, in the average percentages of the number of the
2-D scans according to how they are encoded. The table
demonstrates how the degree of similarity between the 2-
D scans in a 3-D scan affect the compression performance
of the proposed method; the 3-D scans in the first and the
second datasets are compressed by 89.1% (Table 1a) and 68%
(Table 1b), on the average, respectively. Although the size
of the second dataset is not reduced as much, the distortion
on its reconstructions is lower, as shown in Fig. 8e–h. The
resulting distortion errors of the corresponding reconstructions
are illustrated in Fig. 8u–x.

The third dataset, acquired at the city center of Bremen,
contains 3-D scans of outdoor environments in contrast to the
first two datasets. Therefore, the upper bound on the range
measurements (350 m) and the size of the 2-D scans (N =
3000) are much larger than that of the first two datasets.
This makes compressing the third dataset more difficult, and
increases the complexity of the scenes. Two sample 3-D scans,
illustrated in Fig. 9a and b, are used in the experiments. The
average correlation coefficient of the range measurements is
calculated to be 0.9122, which is closer to that of the second
dataset. In parts (e, f) and (g, h), the original scans and their
reconstructions are represented as point clouds, respectively.

FIGURE 9. (a, b) Sample 3-D scans collected at the city center of
Bremen using RIEGL VZ-400; (c, d) their reconstructions; (e, f) point
cloud representations of (a, b); (g, h) point cloud representations of (c,
d); (i, j) difference sequences of (a, b); and (k, l) the resulting distortion
error.
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TABLE 3. The results of adding different amounts of white Gaussian noise to the first dataset.

Noise SNR CR D tenc tdec k1 k2 k3 k4

st. dev. (dB) (%) (cm) (s) (s) (c o u n t)

– – 10.9 12.9 15.3 14.5 76 113 267 15
1 52.7 10.8 12.9 12.1 10.9 74 115 268 15
2 46.6 10.8 12.9 14.6 13.5 73 115 268 14
3 43.1 10.5 12.8 11.3 10.2 70 117 270 14
4 40.6 10.3 12.6 11.1 9.9 66 120 271 14
5 38.7 10.2 12.6 10.5 9.4 64 121 272 14

10 32.7 11.2 12.5 10.2 9.1 62 117 276 16
20 26.6 20.0 13.4 23.4 22.3 147 0 286 38
30 23.1 27.5 13.5 14.2 13.3 88 0 287 96
50 18.7 88.1 6.7 2.5 0.4 0 0 56 415

100 12.7 100.0 0.0 2.9 0.4 0 0 0 471

When the third dataset is used, the majority of the 2-D scans
are encoded with {ε, δ, �} as indicated in Table 2, because
dense discontinuities do not appear all over the 3-D scans as
illustrated in Fig. 9i and j. The 3-D scans in the third dataset
are compressed by 63% (Table 1c) with a distortion of about
63 cm per measurement. The reconstructions and distortion
errors are given in Fig. 9c, d and k, l, respectively. The proposed
method maintains its performance as observed with the other
two datasets.

Finally, the compression performance of the proposed
method under the presence of additive white Gaussian noise
is investigated. In this part, the 3-D scans in the first dataset are
compressed after zero mean white Gaussian noise is added to
them. For different noise levels, each 3-D scan is compressed
ten times using the proposed method, then the average signal-
to-noise ratio (SNR), CR, D, tenc, tdec, k1, k2, k3 and k4 values
are obtained, as given in Table 3. Here, the SNR is the ratio
of the power of the 3-D scan to the noise power. According
to the table, it is observed that the proposed method maintains
its performance, with the CR around 10% and D about 13 cm,
under the presence of noise, with a standard deviation up to
10 cm. Note that the sparsifying model also performs properly
when the standard deviation of the noise is below the same
level. The method provides acceptable compression when the
standard deviation remains below 30 cm. Beyond that level, the
method cannot perform effective compression. In other words,
the method can operate with an SNR larger than 23 dB, and
works properly with an SNR larger than 30 dB.

5. CONCLUSIONS AND FUTURE WORK

In this study, we consider the task of efficient representation and
transmission of 3-D laser range scans of indoor and outdoor
environments, which has applicability in a variety of fields.
The task involves compressing 2-D range scans forming a
3-D model simultaneously with the acquisition of the scans,

to be able to use the capacity of the communication channel
or the data storage medium effectively during transmission or
storage of the scan data. From this perspective, we propose
a compression technique based on compressive sensing for
sequentially acquired 2-D scans that are correlated. Then
we demonstrate the superiority of the proposed method over
some well-known lossy and lossless compression techniques in
encoding the scan data based on the previous scans.

The proposed technique involves sampling the sparse signal
efficiently. Each sparse signal is obtained from the difference
between the current scan and its estimate, which is generated by
shifting the previous scan along the horizontal and vertical axes
by certain amounts. The amount of displacements along these
axes are formulated with respect to the current and previous
scans. In this sense, the proposed method is similar to difference
encoding. Then the amplitude of the difference signal is offset
to improve the sparsity. Compression is achieved by sampling
the sparse signal using either SC or CS.

The compression performance of the proposed method
relies on the similarity between consecutive 2-D scans in the
input data. The higher the correlation between consecutive
2-D scans and the lower the complexity and detail level of
the scanned environment, the lower is the CR. For instance,
the proposed method compresses a 3-D scan in the first
dataset that includes ∼170 000 range measurements within
15 s and by about 89% on the average, with an average
distortion of about 13 cm per measurement. This is about
1.36 MB data since the storage of each range measurement
requires 8 bytes in the MATLAB environment. Moreover,
the proposed method maintains this performance under the
presence of zero mean white Gaussian noise added to the
scan data when the SNR is larger than 30 dB. However, for
the second dataset where the similarity is somewhat lower
than in the first one, the proposed method compresses a 3-D
scan from this set that contains ∼81 000 range measurements
(about 650 KB data) within two seconds and by about 68%

The Computer Journal, Vol. 56 No. 7, 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/56/7/852/397491 by Bilkent U
niversity Library (BILK) user on 16 D

ecem
ber 2018



868 O. Dobrucali and B. Barshan

on the average, with the average distortion per measurement
being about 5 cm. A 3-D scan from the third dataset contains
6 750 000 range measurements (about 54 MB data). Using
the proposed method, such a 3-D scan is compressed within
about 2 s and by about 63% on the average, with the average
distortion per measurement being about 0.63 m. It can be
stated that distortion on the reconstructions becomes significant
when the correlation between the adjacent horizontal scans
is large, resulting in a high compression rate. The amount
of distortion can be limited in the algorithm by setting
the threshold for the maximum distortion tolerated in the
reconstructions. Therefore, the proposed method is fast and
efficient according to the criteria described in Section 1.
The proposed method is recommended for applications where
both the CR and speed are crucial. However, a lossless
compression technique, such as arithmetic coding, can be used
in applications where the accuracy of the range measurements
is more important.

In summary, the proposed method provides an acceptable
CR compared with the alternative compression techniques that
we have considered, and as it provides a reasonably good
compromise between reconstruction accuracy and speed, it can
be effectively used for 3-D representation of both indoor [80]
and outdoor environments as shown in the experimental results.
The performance of the method can be improved by further
coding the encoder output via lossless coding techniques such
as arithmetic coding or LZ77 [71], which would reduce the
CR even more. Despite the existence of several compression
techniques dedicated to bit encoding (e.g. Huffman Coding,
RLE, etc.), it would be interesting to adapt the proposed method
to compress the sequence of 2-D range measurements in binary
form. Another possible future work direction would be the
hardware implementation of the proposed method on FPGAs
so that it can be used in real-time applications. We also plan
to extend its application to other types of datasets composed of
measurement sequences, such as video data.
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