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ABSTRACT

PRICING PERPETUAL AMERICAN-TYPE
STRANGLE OPTION FOR MERTON’S JUMP
DIFFUSION PROCESS

Aysegiil Onat
M.S. in Industrial Engineering
Advisor: Assoc. Prof. Savag Dayanik
December, 2014

A stock price X; evolves according to jump diffusion process with certain pa-
rameters. An asset manager who holds a strangle option on that stock, wants
to maximize his/her expected payoff over the infinite time horizon. We derive
an optimal exercise rule for asset manager when the underlying stock is dividend
paying and non-dividend paying. We conclude that optimal stopping strategy
changes according to stock’s dividend rate. We also illustrate the solution on

numerical examples.

Keywords: Optimal stopping, perpetual, strangle option, Markov jump diffusion
processes.
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OZET

VADESIZ AMERIKAN TIPI STRANGLE
OPSIYONUNUN FIYATLANDIRILMASI

Aysegiil Onat
Endiistri Miithendisligi, Yiiksek Lisans
Tez Danigmani: Dog¢. Dr. Savag Dayanik
Aralik, 2014

Hissenin fiyat1 zamana bagli olarak belirli parametrelerle ve belirli araliklarla
gerceklesen ziplamalarla gelismektedir. Hisse yoneticisi bu hisse iizerine yazilmig
siiresiz bir strangle opsiyonu yonetmektedir. Hisse yoneticisi kazancini yiikselt-
mek icin en uygun durma zamanini secmek istemektedir. Ara 6demeler yapan ve
yapmayan hisse segenekleri i¢in en iyi durma zamani ve beklenen kazang hesa-
planmigtir. Durma stratejisinin hissenin ara 6deme yapan ve yapmayan olmas
durumuna gore degiskenlik gosterdigi ortaya konmustur. Coztimler sayisal érnek-

lerle de gosterilmistir.

Anahtar sézcikler: En iyl durma zamani, vadesiz, strangle opsiyonu, Markov..
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Glossary

p strike price of put option
¢ strike price of call option (p < ¢)
X, stock price process

w fixed appreciation rate of the underlying stock on which perpetual option is

written

0 fixed dividend rate of the underlying stock on which perpetual option is

written
A constant arrival rate op downward jumps
1o the fraction that stock price loses every time jumps occurs
Y, stock price process after diffusions and jumps are separated
P real world probability measure
P” risk neutral probability measure after jump frequency is changed to Ay

~ the fraction of the new arrival rate after probability change over the old

arrival rate



f(.) the payoff function of strangle option

W (.) the Wronskian function

©(.) the decreasing solution of the second order ordinary differential equation
(.) the increasing solution of the second order ordinary differential equation

ag power of the decreasing solution of the second order ordinary differential

equation (o < 0)

a1 power of the increasing solution of the second order ordinary differential

equation (o > 1)



Chapter 1

Preliminaries

Definition 1.1. (Sigma algebra) Let Q be a given set. Then a family of subsets

of w is called o-algebra F on w if it satisfies
(i) 0 e F
(ii)) A € F = A° € F, where A° = Q — A is the complement of A in Q

(ZZZ) AI,AQ, .. EF—= U;ﬁlAz e F

Definition 1.2. (Filtration) A filtration on (2, F) is a family M = {M;}i>o of
o-algebras My C F such that

O§S<t:MSCMt

which means that { My} is increasing.

Definition 1.3. (Probability measure) Let (€2, F) be a measurable space. A prob-
ability measure P on a measurable space (0, F) is a function P : F + [0, 1] such
that

(i) P(0) =0 and P(Q2) =1



(i1) If Ay, Ay, ... € F and {A;}32, is disjoint then

(00) S

Definition 1.4. (Probability space) A probability space is the triplet (Q, F,P)
which contains information about elementary outcomes in the sample space 2,
all events are collected in the o-algebra F, and the probability of all events is

described by the probability measure P.

Definition 1.5. (Risk neutral probability measure) A risk-neutral measure, (also
called an equilibrium measure, or equivalent martingale measure), is a probability
measure such that each stock price is exactly equal to the discounted expectation of
the stock price at the future time under this measure. This is heavily used in the
pricing of financial derivatives due to the fundamental theorem of asset pricing,
which implies that in a complete market a derivative’s price is the discounted

expected value of the future payoff under the unique risk-neutral measure.

Definition 1.6. (Stopping time) Let (I,<) be an ordered index set and let
(Q, F, Fi,P). A random variable T : Qv+ I is called a stopping time if

{w:T <t} e F

Definition 1.7. (Strong Markov property) Suppose that X = (X, :t > 0) is a
stochastic process on a probability space (0, F,P) with a natural filtration {F;}i>o.
Then X is said to have the strong Markov property if for each stopping time

T, conditioning on the event {7 < oo}, and for each bounded Borel function
f:R" — R we have

E[f(Xen)|F7] = E[f (Xa)|o(X7)]

for all h > 0.



Chapter 2

Introduction

In a volatile market, investors hedge their risks against the uncertainty of asset
prices by using classical instruments such as financial options. A put option gives
its holder the right to sell one asset unit for a pre-agreed strike price and a call
option grants the right to buy; they are used when expecting the asset prices to
fall and to rise, respectively. If a trader believes there will be a significant price
movement but is unsure of its direction, in general he would build a long position
on a strangle option that creates the two sided payoff as the combination of a put
payoff with a lower strike price and a call payoff at a higher strike price written
on the same underlying asset. Such a long strangle strategy is often traded in
the over-the-counter (OTC) market, and is favored by hedge fund managers,
particularly in currency and metal markets and CME, SAXO OTC contracts
(see [1]). Figure 2.1 shows a typical payoff of a strangle option for an investor
holding a long position. Mathematically, the payoff of a strangle option exercised

at stock price x > 0 is

flx)=p—a2)T+(z—0)".
The strangle option considered in this thesis is perpetual, namely, the option

never expires.

This thesis studies the optimal stopping problem of an hedge fund manager

who manages perpetual strangle option written on a continuously dividend-paying

5
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Figure 2.1: Payoff of a strangle option with put option strike price p=3 and call
option strike price ¢=5 (¢ > p)

stock at a fixed rate. At each time point, he has to take a decision between
exercising the option or waiting for future observations. He wants to come up
with the best optimal stopping strategy in order to maximize his payoff and, in
the meantime, he also has to consider downward jumps coming from stock price
at some uncertain times which reduce its value by a fixed percentage. Stock price
processes with downward jumps have very important economical meaning: In
financial market stock prices may be correlated with some other prices. Therefore,
any bank crisis or default of a company in a related sector may lead sudden price

changes and our model is able to capture of replicating those scenarios.

The no arbitrage pricing theory of mathematical finance requires the problem
be setup under a risk-neutral probability measure. The risk-neutral probability
measure is not unique and we use one of them. Afterwards, we separate the jump
and diffusion parts similar to the ideas of Davis [2] and we introduce a dynamic
programming operator. Using this formulation, we solve the optimal stopping
problem by means of successive approximations which not only lead to accurate

and efficient numerical algorithms but also allow us to establish concretely the



form of optimal stopping strategy.

We also study the same optimal stopping problem when underlying stock is not
dividend paying and illustrate how asset manager changes his optimal behavior.
This case differs from the first one because stock price process appreciates at a
higher rate and this encourages holder of the option to wait longer compared to

the case of the dividend-paying stock.

The next chapter reviews related studies in the literature. In Chapter 4, we give
a mathematical formulation of our problem and define risk neutral probability
measure along with the dynamic programming operator. In the first section of
Chapter 5, we break the original value function into parts and apply appropriate
transformations in order to solve the optimal stopping problem via techniques of
Dayanik and Kazatzas [3]. By a back-transformation we finally obtain with the
optimal strategy and the optimal stopping time. At the end of Chapter 5, we
reconsider the problem for an underlying stock price process paying zero dividend
as a special case. Chapter 6 illustrates numeric examples. The computer code

used for examples is relegated to the appendix.



Chapter 3
Literature Review

In a recent work [4] related to our study Dayanik and Egami solve optimal stop-
ping problems of an institutional asset manager. The investors entrust their
initial funds in the amount of L to the asset manager and receive coupon pay-
ments from the asset manager on their initial funds at a fixed rate ¢ (higher than
the risk-free interest rate). The asset manager gathers dividend at a fixed rate
0 on the market value of the portfolio. At any time, the asset manager has the
right to terminate the contract and to walk away with the net terminal value of
the portfolio after the payment of the investors initial funds. However, she is not
financially responsible for any amount of shortfall. The asset managers problem
is to find a stopping rule which maximizes her expected discounted total income
which is

U(z) =supE] |7 (X, — L)" + / e "H(6X, — cL)dt
0

TES

where E” is taken under equivalent martingale measure P7 and ~ represents mar-
ket price of jump risk. Our problem mathematically differs in terms of the struc-

ture of the reward function.

Chiarella and Ziogas [5] study the pricing of the American type strangle op-

tion written on a dividend paying asset. They find the boundaries a;(t) and
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Figure 3.1: Continuation and stopping region of an American strangle option
with put and call strike prices are K; and Kj, respectively. [5]

as(t) depicted in figure 3.1 by applying Fourier transform to Black-Scholes par-
tial differential equation (PDE). Fourier transformation changes Black-Scholes
PDE into an ordinary differential equation. However, in their study, stock price
process does not contain any jumps. This means that the market has unique
risk-neutral probability measure which is highly suitable for no artbitrage pricing

theory.

Having jump diffusion stock price process, we need to strip the jumps from
the diffusion process as in Dayanik and Egami [4] and define a new process as a
sequential diffusions. Dayanik and Karatzas use this approach in order to solve
the optimal stopping problems with successive approximations. The idea was
inspired by the paper of Davis [2] where he strips jumps from the deterministic

trajectories of piecewise-deterministic Markov processes between jump times.

To solve the transformed optimal stopping problems for pure diffusion pro-
cesses, we use the techniques developed by Dayanik and Karatzas [3] who char-
acterize concave excessive functions for optimal stopping problems of one di-
mensional diffusion processes. Their study is a generalization of the paper of
Dynkin and Yushkevich [6], who solve optimal stopping problems with diffusions

restricted to compact subspaces of R. However, our problem definition requires



diffusions to be defined on the interval (0, 4o00) and chapter 5.1 of [3] defines the
smallest concave majorant when left boundary is absorbing and right boundary
is natural. In order to find the smallest excessive function, we use an important
proposition of Dayanik and Karatzas which allows us to transform our reward
function into a new function whose excessive function is easier to calculate. By
back-transformation, the optimal stopping strategy and the optimal stopping

time can be found.

10



Chapter 4

Problem Descripton

Let (Q, F, P) be a probability space hosting Brownian motion B = {B;,t > 0}
and a homogenous Poisson process N = {N;,t > 0} with rate A, both adapted to
filtration F = {F;},,, satisfying the usual conditions.

Let market has a stock whose price process is driven by X = {X},t > 0} with
appreciation rate p and dividend rate . At some time points modeled by Poisson
process Ny, stock is subject to downward jumps and decreases its value by .

The stock price has the dynamics
dX;
X

for some constants p > 0,9 > 0,0 > 0 and yo € (0,1). Therefore, the stock price

= (u—0)dt + odB; — yo (AN, — Adt) ,

is modeled by the equation
1
X, = Xpexp (m S et aBt) (1= o)™,

for t > 0,. Hence, stock price process is a geometric Brownian motion subject to

downward jumps with constant relative jump sizes.

Imagine a trader holds a perpetual strangle option written on X = {X;,t > 0}
and at any time 7 € (0,00), the trader has right to exercise the option and gets
the payoff

FX) = (p— X)) + (X, — )",

11



Trader aims to choose 7 € (0, 00) so that she will obtain the maximum payoff.
To do this, we need to calculate maximum expected discounted payoft

V(z) =supE] [e_”f(XT)}

7>0

for x > 0 and over all stopping times 7 of X. E” is taken under the equivalent

martingale measure P7 for a specified market price of the jump risk ~.

No-arbitrage pricing framework claims that the value of the contract on the
asset X is the expectation of the discounted payoff of the contract under some
equivalent martingale measure. Since X has jumps, there are more than one
equivalent martingale measure. Radon-Nikodym derivative gives class of equiva-
lent martingale measures in the form

dPr|
dP . ="

where

d —5—
T B0 0B, + (v — 1) (dN, — Adt)
Ne— o

which has the solution

o 2 o

2
Ny = exp{—<f)/_ 1) M\ — M—MBt — l(u(s—r)t}f}/Nt7

t > 0. The Girsanov Theorem shows that B = “*g*’”t—l—Bt is a standard Brownian

motion under the probability measure P? defined by equation. Here the price

process given by

dXx
X—t = (r — 8)dt + 0dB] — yo (AN, — \ydt)
tf

1
Xt = XO eXp {(T — 6)t + /\’YﬁUOt - 50-21: + O'B;Y} (1 — yo)Nt

where V; is a poisson process with intensity Ay and independent of B; under the

new measure P7.

Under the probability measure P” we should solve

V(z) =supE) [e7 {(p— X;)" + (X, — )" }]. (4.1)

7>0

12



which is a discounted optimal stopping problem with reward function f(x) =
p—x)"+(x—0c)t.

Let T1,T3,... be the arrival times of process N. Observe that X,
(1 - yO) XTn+1— and

X4t L,
oS = exp { <7‘ — 0+ A\yyo — 57 t+o <B;n+t — B'Tyn>

if 0 <t< Ty —Th

Define the standard Brownian motion B/ = B}  — B for every n > 1,

t > 0 and Poisson process T, k(”) = Thyr — T, for k > 0 respectively under P and

one dimensional diffusion process

1
Y™ = yexp { (r — 0+ A\yyo — 502) t+ UBZ’”}
which has the dynamics

it o=y
ay;y"

t

X coincides with Y™™ on [T}, Tps1) and jumps to (1 — yp) YT)i o, at time

T, 11 for every n > 0. Namely,

Y, XTnn if0<t<Thy—T,
XTn“‘t - XT n .
(L =wyo)Yy, g, it =T =T

For n = 0, we write Y*? = yexp {(r—38+Myo— 30 t+0B]} where 0 <
t<T.

Let S be the collection of all stopping times of Y* or equivalently Brownian
motion B. Take arbitrary fixed stopping time 7 € Sg and consider the following

optimal strategy:

(i) on {7 < T} stop at time 7.

13



(ii) on {7 > T1} update X at time 71 to X7, = (1 —yo) Yy’ and continue
optimality thereafter.

The value of this new strategy is

E) e f(X7) Lipery + €7V (1= w0) i) Loy

T

= B e e O (1 ) v de
0

For every bounded function w : R™ — R™, we introduce the operator

T

(Jw)(z) = sup BY [e~ U7 £ (v®) + /)\’ye(”)‘”)tw (1—yo)Y?)dt| (4.2)
TESE
0

then we expect the value function V'(.) of equation 4.1 to be the unique fixed
point of the operator J, namely V(.) = (JV)(.) and V(.) is the pointwise limit of

the successive approximations
w(z) = fle)=@p-2)"+(@-0o"
vn(z) = (Jun)(x)

forx >0,n>1.

Assumption 1. Let w: R™ = R be a conver function such that f(z) < w(x) <
T+ p for every x € RT.

Assumption 2. Jw(.) is a non-increasing function up to some point x, then it

18 mon-decreasing.

Remark 4.1. For any two functions wy(.) and wsy(.) satisfying Assumption 1,

we have the inequality

||w1—w2|| <p-+tc

where ||w|| = supger+|w(x)|.

Remark 4.2. Under Assumption 1, Jw(x) < (si—%x + Ti}ﬂ{p for every x € Rt .

14



Proof. From equation 4.2 we have

T

(Ju)(@) = supE] |e 0PI f (V) / Mye Dy (1 o) Vi) dt

TESE
0

o0

E] / My (1 = o) Y + p) dt

IN

< 1 — Yo )\,Y/x —(r+Av)t (r 5+)\7y0)tE'y [ aBzfét} dt + )\7 D
- T+ Ay
0
Ay Ay
<
- 5+)\’yx+r+)\7p
< o0
O

Lemma 4.1 (Monotonicity Lemma). For any two functions wy,ws : R™ — R if
wi(.) < ws(.) then we have (Jwy) (.) < (Jws) (.). If w(.) is convex function, then

(Jw)(.) is also a convex function.

Proof. From inequality wq(.) < wsy(.), we can get

T

B | g () e (1 ) Y de
0

T

< E e 000 f (vE) 4 / Aye Dy (1= o) V) dt
0

By taking supremum of both sides over 7 € Sp we prove (Jwy) (.) < (Jws) ().

Because J is a linear operator of w(.), convexity is preserved. O]

Proposition 4.1. For any two functions wy,wy : RY — R satisfying Assumption

1, we have

Ay

| Jwy — Jws|| < [[wi — wal| < (p+o).

T+ Ay

This means that J acts as a contraction mapping on the bounded functions.

15



Proof. For every € > 0 and x > 0, there is an e—optimal stopping time 7 (e, x)

which may depend on € and z, such that
(Jun) () = e SB[ (v ) [ e 0 (1 ) ) d

so we have,

(Ju) (2) — (Jun)(x) < ¢ + E {e(”mf(“)f (V2.

7(€,x)
+ / /\’}/6_(r+>\7)tw1 ((]_ — yo) Y;Sx()) dt:|
0
- sup B2 (17)
TESE
+ /)\”)/6(T+)\’Y)tU)2 ((1 — o) Y;XO) dt}
0

<+ Byt (v, )

7(€,x)
+ / Mye” Ay (1 — o) YVE) dt}
0
—E? {e—(rJrM)T(w)f ( Tx(w))
7(€,x)
+ / Mye” A, (1 — yo) YVE) dt}
0
7(€,x)
<erBr| [ et (- ) ¥P)
0

(1= ) V7t

16



Therefore,

(Jwy) () = (Jwa)(z) < e+ |Jwr —ws| /)\,ye(w,\y)dt
0
Ay
= €+ ||UJ1 - UJQHT_'_)\PY
< et o2
€ c
B PO
Taking supremum of both sides over x > 0 completes the proof. []

Lemma 4.2. The sequence (Un)nzo 1s monotonically nondecreasing. Therefore
the pointwise limit voo(x) = lim, o v, (2), © > 0, exists. Every v,(.), n > 0 and

Uso(.) are finite and convex functions.

Proof. (By induction) For n = 1, we have

v(z) = (Ju)(2)

T

= sup B | O (V) 4 [age 0 (1 ) V)
TESE
0

> f(Y7)
= v (x).

Base holds. Assume v, (.) > v,-1(.) is true. We must show that v,+1(.) > v,(.)
holds as well. By taking the operator J of both sides, we get (Juv,)(.) >
(Jvn-1) (-) = vnt1(.) > va(.). This implies that the sequence (vy,),,-, is monoton-
ically nondecreasing. We also know from Assumption 1, v,(x) < x + p, Vn > 0,
Va > 0. Therefore, the limit ve(z) = lim, oo v, (), > 0, exists. O

Proposition 4.2. The limit vs(.) = limy_o0 Uy (.) = SUp, 5o vn(.) is the unique
bounded fized point operator of (Jv)(.) and

0<unle) — ) < (p+0) (%)

holds for every x > 0.

17



Proof. For any x > 0 and n > 0, we have v,(z) / vo(x) as n — oo and 0 <

v, () < x + p. Hence, the monotone convergence theorem implies that

Voo (2)

sup vy ()
n>0

sup lim EY |e A7 ¢ (y2) 4 /)\76(”’\7)%”_1 (1 —yo)Y,")dt
0

TESE n—o0

TGSB

sup B} |07 F (1) e 00 (1 o) Vi)
0

(Juso) ().

Therefore, v (.) is the bounded fixed point operator of (Jv)(.)

Ay

o = tnll = W = Jonal| < o = sl 20 < ) ()

for every n > 1.

18



Chapter 5

The Optimal Exercise Policy for
the Strangle Option

In this chapter, we are going to define an optimal exercise policy for the problem

T

(Ju)(e) = sup B |40 (v2) 4 [ dge 00 (1 o) V7
TESB
0

using the methodology of Dayanik and Karatzas [3]. Afterwards, we examine the

special case when the underlying asset is non-dividend paying.

For every fixed w : RT — R satisfying Assumption 1, we are now ready to
solve the optimal stopping problem (Jw)(.). We know that for fixed = < oo, w(z)

is bounded from above. See that

o o

E] / e~V s (1= yo) V7)) dt | < E / e~V (1 ) Y+ p) dt
0 0

P (A (r— 4\ vy0)t [ aB”—ﬁt]
< 1 _ Y YYo ]E'Y t 3 dt
< o T -w) /956 g 2 le

0

I
TO0+ Ny T+ Ay

< 00

19



for x > 0. The strong Markov property of Y, implies that

o0

(Hw)(z) = E] / e~y (1 — yo) Vi) dt

T

_m / e~y (1 — o) ) dt | + B [ T (Hu) (V)]

T

LO A
for every stopping time 7 > 0. The above equality becomes

o / ey (1 - o) V) | = (Huw)(x) — BT [ 7 (Hu) (V)]

xT

0

which shows

E] |e-tH0f (v) / Aye Dy (1 o) Vi) dt
0

= My (Hw)(w) + E} [e”T7(f — My(Hw)) (V)]
for every 7 > 0 and x > 0. Let us define

(Gw) (x) = sup E [e"HI7(f — Ay(Hw))(Y,")] (5.1)

7>0

and let’s rewrite value function in equation 4.2 as
(Jw) (2) = Ay(Hw)(z) + (Gw) ()
for x > 0.

Let 9(.) and ¢(.) be increasing and decreasing solutions of (Agf) (y) —
(r+Ay) fly) = 0, y > 0 with respect to boundary conditions ¥ (0+) = 0
and ¢(400) = 0 where Ay is the infinitesimal generator of the diffusion process
Y* =Y*% We have

22

5 ')+ (r =0+ y)yf'(y) — (r+ X)) fly) =0

which has two linearly independent solutions (.) and ¢(.) in the form of y* for

7 = 0,1. One can explicitly find ag and a; from the roots of the characteristic

20



function g(a) = a(a—1) + 3 [(r — 6 + Ayyo)a — (r 4+ Ay)] of the above ordinary
differential equation. Now we have two solutions ¥ (y) = y** and ¢(y) = y*° for
every y > 0 and note that

ap<0<1<a

because both ¢g(0) < 0 and g(1) < 0. Also note that

2
agtar=1——(r—37+ M)
o

2
Qo0 = _§<T + )\’Y)
Define the Wronskian

for y > 0.

Define the hitting and exit time of the diffusion process Y* as

7. = inf{t>0:Y" =a}
Ty = If{t>0:Y" ¢ (a,b)}

for 0 <a<b<oo.

Define the operator

Tab
(Hapw)(z) = E; / ™ (1= o) YVi¥) + Lppeonye” T f (V)
0
Lemma 5.1. For every x > 0, we have
(Ho)(x) = E] / e (1= o) YY)
0

= Jm (Hyw)(z)




where p?(x) = o222 It is twice continuously differentiable on R™ and satisfies the

ordinary differential equation (Aof) (z) — (r + Ny) f(x) + w ((1 — o) x) = 0.
Proof. Proof can be found in Taylor and Karlin [7]. O

We now solve the optimal stopping problem (Gw)(.) in equation 5.1 with the

payoff function

(f = M(Hw))(z) = (p—2)" + (z — )t — My [go(x) / 29w (1 - ?/0)§)d5

PEOW(E)
[ 20(©)w (1= 99) &)
““”“")x/ e |

=p-2)"+(@—0"

- { /5 20~y (1 — o) €) de

o2 Oél—OéO
0o

v [ -we df}

T

<(p-a) + (o

_ 2)\—7 {xao /g—ao—l ((1 _ yo)g _ C) df
0

0'2<041 — Oéo)

+ 75“11 (1 =wo)€—c) dé}

S(p—ﬂf)*Jr(:c—c)*—QM{x( L~ % — C}

o2 1— CKQ)(OQ — 1) (6751051

+ + (1 —yo)z ¢
sp-2)+@-9g" - M [5+M(1—yo)+r+>\7}

For sufficiently large values of z, we have

dx c(r 4+ 2\y)

and for small enough values of x, we have
(f = My (Hw))(z) < p.
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The above inequalities together with boundary conditions 1(+00) = p(0+) =

+o00 give the limits

i sup AV HW)) (@) i sy A (H W) ()
oo p() 0 foe = limsup 0(@)

= 0.

Therefore, according to Proposition 5.2 of Dayanik [3], value function is finite
and optimal stopping strategy exists.

Proposition 5.3 of Dayanik [3] claims that G(.) is the smallest nonnegative ma-
jorant of (f — Ay(Hw))(.) and by Proposition 5.7 of Dayanik [3],

Tlw] =inf {t > 0:Y;" € T'[w]} (5.2)
is an optimal stopping time in the optimal stopping region

Mw] =A{z > 0: (Gw)(z) = (f = \y(Hw))(x)} = {z > 0: (Jw)(z) = f(z)} .

According to Proposition 5.5 of Dayanik [3], we have function (Mw)(.) which

is the smallest nonnegative concave majorant of the function

L2l o p1(¢) i ¢ >0

0 if C=0 (5:3)

UMMOZ{

where F(x) = igig and (Gw)(z) = ¢(z)(Mw)(F(x)) for z > 0. Furthermore,

(Mw)(0) = 0 and (Mw)(.) is continuous at 0.

In order to explicitly define (Mw)(.), we should observe some important prop-

erties of the function (Lw)(.). First, we identify the limiting behavior of (Lw)(z)
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for large x values. Let us check

(b =)+ o= " = MEg | e (1 o) V)
lim(Lw)(F~!(x)) = lim 0

ztoo xtoo o

Tr—c— )\’}/E; |:f e_(T-F)\'Y)t ((1 _ y(]) )/;$ + p) dt:|
0

> lim

xtoo x*o

x—c—M(1—yo)x 706_(”+’\7)t6(r_5+)‘w°)tE; [e”Bg—ét} dt — \y—L

0 r+Ay
> lim
xtoo x>

i 1 c P
> lim g~ %™ S S
= atoo <5+ (I—w)A\y = w(T+M)>
—= +OO
because of ap < 0. So we see that (Lw)(400) = +o0.

Let us examine the sign of the first derivative of (Lw)(x)

o)) = 4 (P21 )

/
_ |:i (f_ )\’V(HU))) :| OF_I(:L')
F’ ©
as r tends to 0, which is

lim [% (M)l] (F~'(2)) = lim —— {— 2”‘2&1 /OO ¢ (1= o) €) dC

z)0 @ o T

+ (=2 = ao(p = ) jaep) + (& = 0(7 = €)1 (>}

because of lim, o2z [ ¢ w (1 —yo) ¢) d¢ = %J;O) = L2 «a; > 1 and the

a1’

positive sign appears due to —apa; = %(r + Av).
Proposition 5.1. The inequality

(Lw) (F~!(p-)) < (Lw)'(p+) < (Lw)'(c—) < (Lw)'(c+)
holds.
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Proof. Direct computations give

1—1 _2)‘7 11y, _ (p—)—
(L) (F ) ~ o s [ ) Q) - L
—2)\7

(Lw) (F\(p+)) ~ / (- m O

0'2(061 — CK[))

which gives (Lw)'(F~(p—)) < (Lw)'(F~(p+)) since =37 fppj ¢l (1 —yo) Q) dC <
0 < (p—)'71. Also we have

=10\ ~o —2\y a1—1 —
(L) (P (e=) g [ o (1= ) O
(L) (P ) w2 [~ ot (= i+ 22

which gives (Lw)'(F~'(c—)) < (Lw)'(F~'(c+)) since =2 [“7 ¢=17 Ly (1 — yp) ¢) d¢ <
0 < (ep)' and (Lw)(F'(p+)) < (Lw)(F '(c—)) because of
oy dye T (1= 90) € dC 0. =

Remark 5.1. (7)(Lw)' (F~'(p—)) <0

(it)(Lw)' (F~'(p+)) <0
(iti)(Lw)' (F~'(c=)) <0
Proof. Since we have (Lw) (F~'(p—)) < (Lw) (F~(p+)) < (Lw) (F~!(c—)), it
is enough to prove that (Lw) (F~'(c—)) < 0 holds. From Assumption 1, we have
0 < f(z) <w(z) <x+pthen
(L) (F (e=) oy 20

o?(ay — ap)

/ ¢ N (1= o) Q) dC < 0

since < 0. O

2(04 ao)

We should also analyze the sign of the second derivative of (Lw)(F(x)), which

(L)' (P (@) = e (o = (-4 ) = M (Ho)(e)

as Dayanik and Karatzas show. We see that

sgn[(Lw)"(F~!(z))] = sgn[(Ao — (r + M) (f = My(Hw))(w)]
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and recall from Lemma 0.3 that Ay — (r + A\y))(Hw)(x) = —w((1 — yo)x. So we
have that

Ao — (r+ M) (f = My (Hw)) (@) =[(6 + Ay(1 = yo)) x — (r + My)p
+ Ayw((1 = yo)o)] Lz<p)
+ My ((1 = y0)2) L p<acey
+ =+ M (1 —yo))z+ (r+ My)e
+ Ayw((1 = yo)7)] Lzse)

Remark 5.2. ¢ can be turning point if (1 — yo)c > p holds. In this case
(Lw) (F~(c+)) > 0.

Proof. We have

(Lw)"(F~'(¢)) = Myw((1 = yo)e) > My f((1 —wo)e) > My f(p) =0

and for w(.) = 0 we have (Lw)' (F~(c+)) = )~ 0 shows that c is a turning

Q1 —Qo

point. On the other hand, if we have (1 — yy)c < p, then

(Lw)"(F~H(c)) = Myw((1 = yo)e) = My f((1 = yo)e) > Xy(p — (1 = yo)c) > 0.

This case sgn[(Lw)"”(F~(z))] # 0, therefore it implies that (Lw) (F~!(c+)) <
0. [

Remark 5.3. The function (Lw)(F(x)) is a concave function in some open neigh-

borhood of 0 and +o0.

Proof. Using Lemma 5.1 we have

lim(Ag — (r + M) (f = My (Hw))(z) < lm[(6+ A y(1 —yo)) 2 —

x0 zl0
(r+ 2 M)p + M ((1 = yo)x + p)]

IN

< 0
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Muw
(Muw)(C) (Muw)(C)

(Zw)(<)
(Lw)(C)

! F(o)

Gi[w]Fp)F(c) Calw] ¢ 1 [w]F(p) | (2

Figure 5.1: Two possible forms of (Lw)(.) and its smallest concave majorant
(Mw)(.) when § >0

and
lim (Ao — (r+ M) (f — Ay(Hw))(z) < lm[= (0 +Ay(1—yo)) = +

(r+Av)e + M ((1 = o)z + p)]
lim[—dx + rc + Ay(c + p)]

zToo

< 0

IN

The information that we observe so far lead us the following conclusion: there
are unique two points ¢;[w] and (;[w] such that 0 < (;[w] < F71(p) < F~Y(c) <
Go[w] < 400 satisfy

Ge[w] = Gi[w]
and the smallest nonnegative concave majorant (Mw)(.) of (Lw)(.) coincides with
(Lw)(.) on (0, ¢;[w]) U (Gw], +00) and straight line which is tangent to (Lw)(()

27



exactly at ¢ = (;[w] and (w] on [(1[w], (a[w]]. More precisely,

(Lw)(C) if ¢ € ((0, Gi[w]) U (G2[w], +00))
(Mw)(¢) = A=t (Lw) (Glw))+
ﬁ@w)(@[w]) if ¢ € [Ci[w], Go[w]].

Let us define z;[w] = F~1((;[w]) and z3[w] = F~'({3[w]). Then by Proposition
5.5 of Dayanik [3], the value function of the optimal stopping problem in 5.1 equals

(Gu)(z) = @) (Mw)(F(z))
[ (f — M(Hw))(x) if 2 € ((0, 1 [w]) U (wa[w], +00))

((52[11)])0‘1_‘:'0 — %1 a0
(@alw))™1 =50~ (@ [w])7 150
= 9 (f = M(Huw)) (@1 [w])
29100 — (2 w])*1 ~20

T )7 1=50 — (a1 [w])71=50

( (= M (Hw))(@s[w])  if w € [21[w], alw].

Optimal stopping time in equation 5.2 becomes
Tlw] = inf{t = 0: ;" € (0,21 [w]) U (z2fw], +00)}
in the optimal stopping region
Plw] = {z > 0: (Gw)(z) = (f = M (Hw))(x)} = (0, 21[w]) U (z2]w], +00).

Proposition 5.2. The value function (Gw)(.) satisfies

(i) (Ao — (r + A7) (Gw)(z) = 0, for x € (z:1[w], x2[w])
(it) (Gw)(z) > f(z) — My (Hw)(z), for z € (z:1[w], z2[w])
(11) (Ao — (r + X\7))(Gw)(z) < 0, for x € (0, x1[w]] U [x2[w], +00)

(i) (Gw)(x) = f(x) = My(Hw)(x), for z € (0,21 [w]] U [z5[w], +00)

Proof. By definition of value function

(Gw) (x) = sup E [e""7(f — Ay (Hw))(Y{")] -

TESB
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For 7 = 0, we have
(Gw) (z) = (f = My(Hw))(z)

and for every small A > 0

(Gw) (z) > Ele” "M (Gw) (V)]

= ]E[(l—(r+/\fy)h+0 ) + (Y)Y,

O\..:

h
+ / (Gw)" (V) < dY; > +0(h)1
0

1
2
= ]E[ (1 —=(r+M)h+o(h)((Gw)(x)

/ o(Gu) (V) (r — 6 — Myyo)dt + / 1o (G (Y?)dB]

h
1

+3 / (z)?0*(Gw)"(Y/")dt + o(h)}

= E {(1 — (r+ A)h+o(h)((Gw)(z) + 2(Gw) (x)(r — 8§ — AMyyo)h

500G (@)h + ofn)

there are no remaining stochastic terms, so we can safely remove expectation and

ignore the terms whose are in order of h?. After doing this, we get

(Gw)(z) > (Gw)(z)+ z0(Gw) (z)(r — 6 — AMyyo)h
—i—%(m)zaz(Gw)”(x)h — (r+ M)h(Gw)(x) 4+ o(h)

dividing both sides by A and taking the limits as h | 0 we will have
1
0> 2(Gw)'(x)(r =0 = Myyo) + 5(2)°0*(Gw)" (@) = (r + Xy)(Guw)(x)
which equals to

0> Ao(Guw)(x) = (r + A7) (Gw)(x)
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The solutions of the above term when it equals to zero are 1(.) and ¢(.). We

have

0 = (f = W(Hw))(z) - (Gw)(z)
0 = A(Gw)(x) — (r+ M) (Guw)(x)

and only one of the above inequalities can be zero. Thus,
0 = max{(f — My(Hw))(z) — (Gw)(x), (Ao = (r + 7)) (Gw)(z)}.
On the waiting region (z;[w], x2[w]) we will have

(Ao = (r + X)) (Gw)(z) = 0
(Gu)(x) > f(z) = My(Hw)(z)

and on the stopping region (0, z1[w]] U [z2]w], +00) we will have

(Ao — (r + M) (Guw)(z) < 0
(Gu)(z) = [f(z) = M(Hw)(z)

This completes the proof. n

Proposition 5.3. The value function (Jw)(.) satisfies

(i) (Ao — (r + A7) (Jw)(z) + Myw((1 — yo)z) = 0, for z € (z1|w], z2[w])
(it) (Jw)(z) > f(x), for x € (21][w], x2[w])
(111) (Ao— (r+y))(Jw)(z)+Myw((1—yo)z) < 0, for x € (0, z1[w]]U[z2[w], +00)

(i) (Jw)(x) = f(x), for x € (0, z1[w]] U [22[w], +00)

Proof. By Lemma 5.1
(Ao(Hw))(z) = (r + M) (Hw)(x) = —w((1 = yo))

and by definition
(Jw)(z) = Ay(Hw)(z) + (Gw)(x).

These equations and Proposition 5.2 complete the proof. O
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Theorem 1. The function x — v (x) = (Jus)(x) satisfies the following varia-

tional inequalities

(i) (Ao = (1 + A7))vso () + M0ao((1 = go)x) = 0, for z € (21[w], z2[w])
(i1) voo () > [ (), for x € (z1[w], xalw])
(111) (Ao — (r+ A7) Voo () + MY (1 —yo)z) < 0, for z € (0, z1 [w]]U[z2[w], +00)
(i) voo() = f(2), for z € (0, 21 [w]] U [25[w], +00)
Proof. Every v,(x), n > 0 and v (z) are convex and bounded for every fixed

x > 0. Therefore, Proposition 5.3, applied to w = v, completes the proof of

theorem. []

Theorem 2. For every x > 0, the expected reward of asset manager is V(x) =
Voo() = EY [e_”[”‘”]f (XT[UOO])] and T[vso] s an optimal stopping time for equa-
tion 4.2.

Proof. Define 7, = inf{t < 0: X; € (0,a] U[b,00)} for every 0 < a < b < oc.
Ito’s rule gives
e—r(t/\T/\Tab)voo (Xt/\r/\rab) = U (XO)
tATATab
+ / e (Ao — (r + A7) Vo0 (Xs) + Moo (1 — y0) Xs)ds
Ot/\T/\Tab
+ / e (Ao — (1 + X))o (Xs) + Maa((1 — y0) X, )0 X (dB]
0

n / e (1 ) X)) — e (Xu ) (dN, — Ayds)

for every t > 0, 7> 0 and 0 < a < b < co. We know that v, (.) is continuous
and bounded on every compact subintervals of (0,00), so stochastic integrals of

above equation are martingales and if we take the expectation of both sides we
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get

E[e ")y (Xinrnry,)] = voo(®)

ENTATap
+ E} [/ e " (Ay — (1 4+ A7) veo(Xs)
0

b M1 g0 X))
From the variational inequalities (i) and (iii) of Theorem 1 if we have
(Ao — (1 4+ M7))tso () + Mo (I —yo)z) < 0
then it means
Ee™ ) v (Xonrnra)] < Vo) (5.4)

for every t > 0, 7 > 0 and 0 < a < b < co. Because lim, o ptoo Tap = 00 and f(z)
is continuous and bounded for every fixed x > 0, we can take the limits of both
sides of equation 5.4 as t 1 0o, a | 0, b T oo and use the bounded convergence

theorem to get
B e 6o (X7)] < voo(x)
. By taking supremum of both sides we complete the proof of the first inequality

sup E[e™ 0o (X7)] < veo(2)
>0

EZ[e‘TT[”“]UOO(XT[UOO])] < Uso().

. We should also prove the reverse inequality and to do this we replace 7 and 7

with 7[vy]. By variational inequality (i) of Theorem 1 we have
(Ao = (1 + A7))Jveo () + Ayve (1 = go)) = 0
so we have
El[e™ Do (Xinrpon))] = oo ()

for every ¢ > 0. Because v, (z) is bounded and continuous for every z > 0
taking limits as t T oo and the bounded convergence theorem together with (iv)

of Theorem 1 gives
]EZI:eiTT[UOO]UOO(XT[UOQ])] = Uoo(x)
V(e) 2 Elle ™ f(Xop)] = vao(2)

which completes the proof. n
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Special Case: When The Stock is Non-dividend
Paying

We consider the underlying asset with 6 = 0 and we will see choosing the un-
derlying asset non-dividend paying changes the optimal stopping strategy. The

stock price has the dynamics

dxX
X—t = pdt + odB, — yo (AN, — Adt) .
tf

The stock price is modeled by the equation
1 2 N
Xe=xzexp | (u+ Ayo)t — 50 t+oB; ) (1—y)",
for t > 0.

The stock price process X has jumps which gives more than one equivalent
martingale measure. Radon-Nikodym derivative gives class of equivalent martin-

gale measures in the form
dp
- — nt
dP | 1,

where

d _
T~ _EZTaB, + (v — 1) (AN, — Adt)
Nt— o

which has the solution

p—r o 1=\ x
m=exp{—(y—1)A— By —5—=—t¢7",

o 2 o2

t > 0. The Girsanov Theorem shows that B] = L=t + B, is a standard Brownian

o

motion under the probability measure P? defined by equation. Here the price

process given by

dX
X—t = rdt + 0dB; — yo (AN, — \ydt)
t_

1
Xy =zexp {rt + \yyot — Eazt + UB?} (1- yo)Nt

where N, is a poisson process with intensity Ay and independent of B, under the

new measure P7.
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Under the probability measure P7 we should solve
V(z) =sup E] [6_” {(p - X))+ (X, — c)+H .
>0
which is a discounted optimal stopping problem with reward function f(x) =

(p—2)" +(z - )"

Let Ti,T5,... be the arrival times of process N. Observe that Xr, ., =
(1 —-yo) Xr,,,— and

X 1
% = exp { (r + Myyo — 502) t+o (B;nﬂ — B;’n>}

n

if0<t< Ty —Th

Define the standard Brownian motion B} = BY

— BY for every n > 1,
Tntt T

t > 0 and Poisson process T, ,5”) =Ty — T, for k > 0 respectively under P7 and

one dimensional diffusion process

1
YV = yexp { (T + Myyo — 502> t+ JB]’"}

which has the dynamics

Yyt o=y
dyym .
W = (r+Myo)dt+oB/".
t

X coincides with Y,\™" on [T}, T,s1) and jumps to (1 — yo) YT)i i’;an at time

T+, for every n > 0. Namely,
Y, XTnn if0<t<Tpy —T,
XTn+t = X1 n .
(]_ — yo)YTn+Ti’_Tn ift = Tn+1 -1,
For an arbitrary but fixed stopping time 7 € Sp the strategy is
(i) on {7 < T} stop at time 7.

(ii) on {7 > T1} update X at time T} to Xy, = (1 —yo) Y} and continue
optimality thereafter.
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The value of this new strategy is

E) [e77f (X2) Lrery + €7V (1 = 40) YE) Liromy]

= B eI+ e O (L ) )
0
Let #(.) and ¢(.) be increasing and decreasing solutions of (Agf) (y) —
(r+Xy) fly) = 0, y > 0 with respect to boundary conditions ¥(0+) = 0
and ¢(+00) = 0 where Ay is the infinitesimal generator of the diffusion process
Yz = y@.0 We have
022

5 ")+ (r+ Mwo)yf' (y) — (r+ Xy) fly) =0

which has two linearly independent solutions (.) and ¢(.) in the form of y* for
1 = 0,1. One can explicitly find oy and a; from the roots of the characteristic
function g(a) = a(a — 1) + & [(r + AMyyo)ar — (r + Ay)] of the above ordinary
differential equation. Now we have two solutions ¢ (y) = y* and ¢(y) = y* for
every y > 0 and note that

aqp<0<l<o

because both ¢g(0) < 0 and g(1) < 0. Also note that

2
ag+a; =1— ;(r—l— AYYo)
2
gy = —FO‘—F)\V).

Define the Wronskian

35



for y > 0.

T

(f =M (Hw)(z)=(p—2)"+(x—c)" = \y [go(:z:) / 2¢(&w (1 — yo)f)dé

| AOWE
[ 20(&)w (1= ) ©)

“W)x/ FOWE) dﬁ}

—(p-2) + (-0

aol _
e i /5 (1~ ) €)de

g / e (1) e

<(p-a) +@-oF
e [t - o

721 — ag)
+ 75“11 (1 =90)&—0) df}

<Sp-2)"+@—c" -

2y 11— c
o? {x(l —ap)(ar — 1) apay
Aye

T+ Ay

<p-2)t+(@—o) —a-

For sufficiently enough large values of x, we have

c(r+2\y)

<0
T+ Ay

(f = M (Hw))(z) < -

and for small enough values of x, we have

(7 = (Hw)@) < pt 5

Above inequalities together with the boundary conditions ¥ (+00) = ¢(0+) =

+oo give the limits

U MH) @) (= () @)
lo = limsup =——225 0l =lmsup = &)

=0
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which will guarantee the existence of optimal stopping strategy.

By using proposition 5.5 of Dayanik, we have function (Mw)(.) which is the

smallest nonnegative concave majorant of the function

f22a(Hw) *M@(H“’) o F7H¢) if ¢ >0

@M@%={O oo

where F(x) = Zég and (Gw)(z) = ¢(z)(Mw)(F(x)) for z > 0. Furthermore,

(Mw)(0) = 0 and (Mw)(.) is continuous at 0.

In order to explicitly define (Mw)(.), we should observe some important prop-
erties of the function (Lw)(.) First, let’s identify the limiting behavior of (Lw)(z)

for large x values. Let us check

(b= ) + (@ — )" — ME] | [ e H D (1 - yo) V) de
0

. 1 .
lim(Lw)(F~(z)) = lim o
_c(r+2X2y)
< lim — A
Ne'S) Lo
< -
because of ap < 0. So we see that (Lw)(400) = —o0.

Let us examine the sign of the first derivative as x tends to zero and infinity.

(L)) = 4 (F21E o i)

T dr 0
[ ()]

and because limgjoz® [7° ¢ w ((1 — yo) ¢) d¢ = w(+0)/a; = p/ay and oy >

1, we have

lim [i (M)] (F'(2) =2 [—2Mmal / T e (1 o) € de

zlo | B’ ) Q1 — Qo o?

+ (—:E - aO(p - x))l{:c<p} + (ZE - 050(56 - c>>1{x>c}

=+ oC.
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For large x values, first derivative becomes

lim [F (M)}w—l(gg)) - {—2M;§m /:OC‘al‘lw(ﬂ—yo)C)dc

zl0 © a1 — Qg

(e — oolp — )1 geay)
(= ol — c))l{m}}
= 0

We should also analyze the sign of the second derivative of (Lw)(F(x)), which is

(L) (P a)) = et o= 4+ ) = M (Hw)(e)

as Dayanik and Karatzas show. We see that
sgn[(Lw)"(F(x))] = sgn[(Ao — (r + A7) (f = Ay(Hw))(x)]

and recall from Lemma 5.1 that Ay — (r + A\y))(Hw)(x) = —w((1 — yo)z. So we
have that

Ao = (4 29)(h = My (Hw) () = (1 = o) = (r+ M)p
+ My w((1 = y0)x)] L {zep)

+ M w((1 — yo)z)Lip<a<e)

(
( )
+ =1 —yo)z + (r+ M)e
+ 27w ((1 = 50)2)| Lzse)

Remark 5.4. The function (Lw)(F(x)) is a concave function in some open neigh-

borhood of 0 and convex function in some open neighborhood of +oc.

Proof. Using Lemma 5.1, we get
lim(Ap — (r+ A7) (h — Ay(Hw))(z) < lmAy(l —yo)z — (r+ Ay)p +
A (1= yo)z + p)]
< —rp<0
and

lim(4y — (r + A7) (h = M(Hw))(@) > Lm[-M(L - goa + (r + M)e+

xToo xToo
M (1 =yo)x — )]
rc >0

v
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(Mw)(C)

(Lw)(C)

G[w]F() Fle) ¢

T

Figure 5.2: Possible form of (Lw)(.) and its smallest concave majorant (Mw)(.)
when § = 0.

The results that are obtained so far concludes that there is a unique number
0 < (1[w] < F(p) < oo such that

(Lw)'(G[w]) = 0.
The smallest concave majorant (Mw)(.) becomes

(Lw)(¢) it ¢ e (0, Glw])

Muw =
) { (Lw)(Giw]) if ¢ € [G[w], +00).

Let us define x;[w] = F~1({;[w]). By Proposition 5.5 of Dayanik [3], the value
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function 5.1 of the optimal stopping problem equals

(Gu)(@) = @(z)(Muw)(F(z))
_ { (f = M(Hw)(@) it o e (0,21[uw])
(f = My(Hw))(z[w]) if z € a1 w], +00).

Optimal stopping time in equation 5.2 becomes
Tlw] =inf{t >0:Y" € (0,z1[w])}
in the optimal stopping region
Pw] ={z > 0: (Guw)(z) = (f = \y(Hw))(x)} = (0,21 [w]).

Proposition 5.4. The value function (Gw)(.) satisfies

(1) (Ao — (r + A7) (Gw)(z) = 0, for x € (z1[w], +00)
(it) (Gw)(z) > f(z) — My (Hw)(z), for x € (z:1]w], +00)
(117) (Ao — (r + A7) (Gw)(z) < 0, for x € (0, x1[w]]

(iv) (Gw)(z) = f(x) = My(Hw)(z), for z € (0,2 [w]]

Proof. Proof is similar to the proof of Proposition 5.2

Proposition 5.5. The value function (Jw)(.) satisfies

(i) (Ao — (r + \))(Jw)(x) + Myw((1 — yo)z) =0, for x € (x1[w], +00)
(i1) (Jw)(z) > f(x), for x € (x1]w], +00)
(111) (Ag — (r + A7) (Jw)(x) + Myw((1 — yo)z) < 0, for z € (0, z1[w]]

(iv) (Jw)(z) = f(x), for z € (0,21 w]

Proof. By Lemma 5.1

(Ao(Hw))(x) = (r+ M) (Hw)(z) = —w((1 - yo)x)
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and by definition
(Jw)(z) = Ay(Hw)(z) + (Gw)(x).

These equations and Proposition 5.4 complete the proof. O]

Theorem 3. The function x +— vy (x) = (Jus) () satisfies the following varia-

tional inequalities

(1) (Ao — (1 + AY)) Voo () + Mo ((1 — yo)x) = 0, for x € (x1[w], +00)
(11) voo () > f(2), for z € (x1[w], +00)
(111) (Ag — (1 + AY)) Voo () + Mo ((1 — yo)x) < 0, for x € (0, 21 [w]]
(i) voo(x) = f(2), for x € (0, z1[w]]
Proof. Every v,(x), n > 0 and vy (z) are convex and bounded for every fixed

x > 0. Therefore, Proposition 5.5, applied to w = v, completes the proof of

theorem. O]

Theorem 4. For every x > 0, the expected reward of asset manager is V(x) =
Uoo(z) = EY [e7 ™ f (X1 ())] and T[v] is an optimal stopping time for equa-
tion 4.2.

Proof. Define 7, = inf{t < 0: X; € (0,a]} for every 0 < a < co. Ito’s rule gives

e_T(t/\T/\Ta)Uoo (Xt/\T/\Ta) = Vo (XO)

tATNATq
+ / e (Ao = (1 + X))o (Xs) + Myvoo (1 = 10) X ) ds
0
tATNTg
+ / e (Ao = (1 4+ A7)0 (X)) + Moo (1 = 90) Xs )0 X d B
Ot/\‘r/\‘l‘a
+ / € " [0oo (1 = 90) Xs—) = Voo (Xs2)](dNs — Ayds)
0

for every t > 0, 7 > 0 and 0 < a < co. We know that v, (.) is continuous and

bounded on every compact subintervals of (0, 00), so stochastic integrals of above
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equation are martingales and if we take the expectation of both sides we get
E;[e_r(tATATa)UOO(Xt/\T/\Ta)} = V()

tATAT,
+ EJ {/ e (A — (r+ A7)V (Xs)
0

+ Ayeo((1 = yo)Xs)dS]
From the variational inequalities (i) and (iii) of Theorem 1 if we have
(Ao = (1 + A7))veo () + X70eo (1 = o)) < 0
then it means
E)[e" ") v (Xinrnr,)] < Uso() (5.5)

for every ¢ > 0, 7 > 0 and 0 < a < oo. Because lim,o7, = oo and f(z) is
continuous and bounded for every fixed x > 0, we can take the limits of both
sides of equation 5.5 as t 1 0o, a | 0 and use the bounded convergence theorem
to get

Elle™ v (X7)] < veo(2)
. By taking supremum of both sides we complete the proof of the first inequality

sup E)[e™ 00 (X,)] < vso(2)
7>0

EZ[@’TT[”“]UOO(XT[%O])] < Uso(T).

. We should also prove the reverse inequality and to do this we replace 7 and 7,

with 7[vy]. By variational inequality (i) of Theorem 1 we have
(Ao = (1 + A7))vso () + A0 ((1 = o) z) = 0
so we have
Bl e Do (Xinrpon))] = vec ()

for every ¢ > 0. Because v, (x) is bounded and continuous for every z > 0
taking limits as t 7 oo and the bounded convergence theorem together with (iv)

of Theorem 3 gives
E;[eirT[’UOO]UOO(XT[Uoo])] — Uoo(x)
V(.T) > ]Ez[e—rT[voo}f(XT[voo])] — ’Uoo(x)

which completes the proof. n
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Chapter 6

Numerical Illustrations

In this chapter we present several examples to illustrate the structure of the
solution. As we already see, the dividend rate plays an essential role in the optimal
exercise strategy and the shape of (Lv)(.) function depends on this parameter.
We proved that when 6 > 0, the behavior of the (Lv)(.) function is concave for
large = values and goes to plus infinity as x tends to infinity with decreasing
slope. On the other hand, when ¢ = 0, the function (Lv)(x) is convex for large x

values and decreases to —oo as x tends to +oo with decreasing slope.

As we implement our solution method to calculate value functions with com-
puter, we use linear approximation technique to achieve computable integrals.
After each iteration, v(.) increases monotonically as expected and behaves as a
convex function with extremely steep line near 0. This makes integrals impossi-
ble to calculate hence we approximate this function near 0 linearly. Even using
linear approximation does not change the expected behavior of (Lv)(.) and the
smallest concave majorants (Mv)(.). In the implementation of the successive ap-
proximations, we decided to stop the iterations as soon as the maximum absolute

difference between the last two approximations is less than 0.01.

The following four examples are obtained with different parameters. First

figure shows the successive value functions v(.), the second figure shows function
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Figure 1 | Figure 2 | Figure 3 | Figure 4
x 1 1 4 5)
p 1 1 1 1
¢ 2 2 5 5
r 0.1 0.15 0.05 0.2
) 0.05 0.1 0.0 0.0
o 0.275 0.275 0.275 0.275
Ay 0.1 0.2 0.1 0.5
Yo 0.3 0.1 0.3 0.1

Table 6.1: Parameter values used for the illustrations

(Lw)(.) and the third figure shows the smallest concave majorants (Mw)(.) of
(Lw)(.) with tangent lines. For illustrations we used the parameter sets provided
in the table 6.1.
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Figure 6.5 and figure 6.6 show the changes in z;[w] and xs[w] respectively as
0 changes. The exponential behavior of x;[w] and z3[w] is observed easily. Other
parameters used to produce the figure are fixed and they are x =5, p=1, ¢ = 2,
r=20.15, 0 = 0.275, Ay = 0.2, yo = 0.1.

We see that optimal behavior of the hedge fund manager changes with the
dividend rate. Specifically, 7[w] = inf{t > 0 : Y* > z3w]} approaches to
+o00 as 6 | 0. This result follows from that xs[w] increases exponentially as
dividend rate ¢ decreases linearly. Therefore, even though decreasing dividend
rate results in higher appreciation rate for stock price process, it will take very
large amount of time for stock price process to catch those large values. For the
left critical boundary z;[w], increasing § also increases z[w]. These figures show
that there are two values x3[w] and z}[w] such that as 6 — r, z1[w]| — z[w] and
xolw] — aiw]. If we define Rs as the optimal stopping region for a specific ¢

when all other variables are constant, we have
R51 C R52

for any 0 < 01 < 09 < r. Therefore, optimal stopping regions have nested

structure as  increases.
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Chapter 7

Conclusion

Strangle options are widely used against the significant price movements when
the holder of the option is unsure of the direction of the movement. Holding a
long position on strangle option is a classical way of building a volatility strat-
egy. In this thesis, we develop an optimal stopping strategy for an hedge fund
manager who is holding a long position on a perpetual strangle option. During
the solution we used the methodology of Dayanik and Karatzas [3] which decom-
poses the initial value problem into appropriate processes and aims to find the
smallest concave majorant functions to find the boundaries of the continuation

and stopping regions.

Dividend rate has a key role in developing the optimal stopping strategy as
we see that as the dividend rate approaches to the risk free interest rate, we find

bigger optimal stopping region which gives higher chance to exercise the option.

Perpetuality of the strangle option is also an important factor in finding the
exercise time. It is known that American call option on a non dividend paying
stock should never be exercised early. When American call is perpetual i.e when
the maturity time 7' 1 oo, it will not be exercised ever. (see [8]) For perpetual
strangles, things are different because these contracts contain both a put side and

a call side. Holders of strangles have another reason to exercise early due to the
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put side in addition to dividend rate. The optionality to exercise the call side is

forfeited if the lower exercise boundary is hit first.
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Appendix A

Parameters and Code

A.1 Parameters and Functions

We present the R code used for obtaining the graphics in Chapter 6 when § > 0

and § = 0. The parameters used in this code are

x0: Initial endowment

r: Risk-free interest rate

sigma: Volatility of portfolio rate of return

delta: Dividend rate

p: Strike price of put option

c: Strike price of call option

1g: Lambda times gamma, the frequency of jumps after probability measure
change

y0: The fraction of value that portfolio losses at each jump times

The functions used in this code are
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phi. fun (x): Computes z°

psi.fun (x): Computes x™

F.fun (x): Computes %

invF. fun (y): Computes the inverse function F~!(y) = yﬁ
f.fun (x): Computes the payoff of the strangle option (p — z)* + (z — ¢)"

H.op (w): This function computes (Hw)(z) = #) z® [ ¢ow((1 -

o?(a1—ag

Yo)Q)dC + [ ¢ rw((1 — yo)C)dC

L.op (w): This function computes (Lw)(z) = W(F_l(x))
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V]

A.2 Code

rm(list=1s())
setwd (7 /Users/aysegulonat /Desktop/ThesisTemplate /code”)

; library (fdrtool)

5 psi.fun

writepdf=c (TRUE,FALSE) [1]

##Parameters

x0 = 1 #initial endowment

r = 0.15 #risk—free interest rate

sigma = 0.275 # volatility of portfolio rate of return
delta = 0.1 # dividend rate

>op =1 # strike price of put option

¢ = 2 # strike price of call option
lg = 0.2 # lambda times gamma

5 y0 = 0.1 # percentage loss upon jump

a=sigma "2
b=(r—delta+lgxy0)*2—sigma "2
cc=—2x(r+lg)

alpha0= (—b—sqrt (b "2—4xaxcc))/(2+*a)
alphal= (—b+sqrt (b "2—4xaxcc))/(2+a)
phi.fun = function (x) x"alpha0
= function (x) x"alphal
F.fun = function(x){x"(alphal—alpha0)}
invF . fun = function(y) y“(1/(alphal—alpha0))
f.fun = function (x) pmax(p—x,0)-+pmax(x—c,0)
tolerance = 1/100

max.iter = 5

## Place grids on x— and zeta—axes

33 ub.x = 10%xx0

ub.zeta = F.fun (ub.x)

5 number. of . grid . points. before.F.of.p = 1000

number. of . grid . points . between.F.of .p.and.c = 1000
number. of . grid . points . after .F.of.c = 1000

grid .on.zeta = unique(c(
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seq (from=0,to=F.fun(p),length.out=
number. of . grid . points. before .F.of.p),
seq (from=F.fun(p),,to=F.fun(c),length.out=

> number. of . grid . points.between.F.of .p.and.c),

seq(from=F.fun(c), to=ub.zeta,length.out=
number. of . grid . points. after .F.of.c)))

5 grid.on.zeta = tail(grid.on.zeta,—1)

grid.on.x = invF.fun(grid.on.zeta)

## H operator defined
H.op = function (w) {
function (x) {
f = function (zeta,alpha) (zeta"{—l—alpha})*w((1—y0)x*zeta)
res = c()
for (i in(1l:length(x))) {
it (x[i]==0) {
res = c(res, p/(r+lg))
} else {

res=c(res,
(2/((sigma”2)*(alphal—alpha0)))x
((x[i] " alpha0)«integrate (f=f,lower=0,upper=x[i],
alpha=alpha0 , subdivisions =2000)$value+
(x[i1] " alphal)xintegrate (f=f,lower=x[i],upper=Inf,
alpha=alphal , subdivisions =2000)$value
)
)

}

return (res)

L.op = function (w) {
function (zeta) { (f.fun(invF.fun(zeta))—lg«+H.op(w) (invF.fun(zeta)

))

/phi.fun(invF . fun(zeta))}
}

filename = sprintf(” deltal —2” delta)

save.image (paste (filename ,” .RData” ,sep=""))
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90

library (grid)

library (gridBase)
if (writepdf)
pdf(paste(filename ,”.pdf” ;sep=""),paper="adr” ,width=0,height=0)

2 upp=>5
; par (mfrow=c (1,1) ,mar=c(3,3,0,0) ,cex=1.05)

legend . text = c(expression(italic(v[0](x)%=h(x))))

_»»

5 plot (f.fun , xlim=c (0 ,upp) ,ylim=c (0,upp) ,ylab="" xlab="",

lwd=2)

title (xlab=expression(italic(x)),line=1.5)

old.w.on.grid = f.fun(grid.on.x)

list .of.obstacles = list ()

list .of.concave.majorants = list ()

i 1

5 print (1)

; stop.iteration = FALSE

L.fun.on.grid =

(f.fun(grid.on.x)—lg*H.op(f.fun)(grid.on.x))/phi.fun(grid.on.x)

list .of.obstacles = c(list.of.obstacles ,
list (list (

fun=approxfun(grid.on.zeta ,L.fun.on.grid ,rule=2:2)

##fun=splinefun (grid .on.zeta ,L.fun.on.grid ,

method="natural”)

)))

res.lecm = gemlem (grid.on. zeta

L.fun.on.grid ,type="lcm”)

M.x =
M.y =
lem . fu
zetal

zeta?2

res.lecm$x.knots

res.lem$y. knots

n

= approxfun (x=M.x,y=M.y, rule=2:2)
max(res.lecm$x.knots[res.lem$x.knots < F.fun(x0)])

min(res.lem$x. knots[res.lem$x. knots > F.fun(x0)])

print (invF . fun (zetal))

5 print (invF . fun (zeta2))

list .of.concave. majorants = c(list.of.concave.majorants,

list (list (fun=lem. fun
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boundaries=c(zetal ,zeta2))))
t = function (x) pmax(p—x,0)

z = approxfun(grid.on.x,
lg«H.op(f.fun) (grid.on.x)+phi.fun(grid.on.x)*lcm.fun (F.fun(grid.
on.x)),
rule=2:2)

s w=function (x) pmax(f.fun(x),z(x))

_n»

s plot (w, xlim=c (0 ,upp) ,ylim=c (0,upp) ,ylab="" xlab="",

lwd=2, col=i+1, add=TRUE)
abline (v=invF .fun(c(zetal ,zeta2)),lty="dashed”,col=i+1,
lwd=2)
list .of.approximations = list (
list (fun=w,
boundaries=c (NA,NA)))

list .of . approximations [[i]] $boundaries = invF.fun(c(zetal ,zeta2))

list .of.approximations = c¢(list.of.approximations,
list (list (fun=w,

boundaries=c(NA,NA))))

while (!stop.iteration) {

i=1i+1
print (i)

L.fun.on.grid = (f.fun(grid.on.x)—lg+H.op(w) (grid.on.x))/
phi.fun(grid.on.x)

list .of.obstacles = c(list.of.obstacles,
list (list (
fun=approxfun (grid.on.zeta ,L.fun.on.grid ,rule=2:2)

)))

res.lem = gemlem (grid.on. zeta

L.fun.on.grid ,type="lem”)

M.x = res.lecm$x.knots

M.y = res.lem8y.knots
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160

161

162

163

164

165

166

167

189

190

191

192

193

194

195

lem . fun = approxfun (x=M.x,y=M.y, rule=2:2)
zetal = max(res.lem$x.knots[res.lem$x.knots < F.fun(x0)])
zeta2 = min(res.lem$x.knots[res.lem$x.knots > F.fun(x0)])
print (invF . fun (zetal))
print (invF . fun (zeta2))

list .of.concave. majorants = c(list.of.concave.majorants,
list (list (fun=lcm. fun,

boundaries=c(zetal ,zeta2))))

z = approxfun(grid.on.x, lg«H.op(w)(grid.on.x)+
phi.fun(grid.on.x)x*lcm. fun (F.fun(grid.on.x)),
rule=2:2)

w=function (x) pmax(f.fun(x),z(x))
plot (w, xlim=c (0 ,upp) ,ylim=c (0 ,upp) ,ylab="",
xlab="",col=i+1, lwd=2, add=TRUE)
abline (v=invF .fun(c(zetal ,zeta2)),lty="dashed”,
col=i+1, lwd=2)

legend . text = c(legend.text ,substitute(italic(v[s](x)),list (s=

i-1)))

list .of . approximations [[i]] $boundaries = invF.fun(c(zetal ,zeta2))
list .of . approximations = ¢
list (list (fun=w,

boundaries=c (NA,NA))))

(list .of.approximations,

new.w.on.grid = w(grid.on.x)

max. diff = max(abs(new.w.on.grid—old .w.on.grid))

if ((max.diff < tolerance) | (i > max.iter)) {
stop.iteration = TRUE

}

else

old .w.on.grid = new.w.on. grid

legend (x=0.5,y=1.6,legend=legend . text ,

col=c(1:length(list .of.approximations)),
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o lty—"solid”, Iwd=2,
197 ##lty=c (1:length(list .of.approximations)),
198 bty="n")

199

202 upper=10000

203 legend . text = c(expression (italic (Lv[0](zeta))))

205 plot (list .of.obstacles [[1]] $fun ,xlim=c (0, upper),ylab="" xlab="",
206 lwd=2)

207 title (xlab=expression(italic (zeta=—F(x))),line=2)

20s if (length (list.of.obstacles)>1) {

200 for (i in (2:length(list.of.obstacles))) {

210 plot (list .of.obstacles [[i]] $fun,xlim=c (0, upper),ylab="",xlab
211 col=i, lwd=2,

212 Hlty=i ,

218 add=TRUE)

214

215 legend . text = c(legend.text

216 substitute (italic (Lv[s](zeta)),list (s=i—1)))

221 legend (” topleft”,legend=legend . text ,

222 col=c(1:length(list.of.obstacles)),
223 lty="solid”, lwd=2,

224 ##lty=c(1l:length (list .of.obstacles)),
225 bty="n")

206 #HHHF start drawing inset

228 Vp <— baseViewports ()
220 pushViewport (vp$inner , vp$figure ,vpSplot)

231 ## push viewport that will contain the inset

232 pushViewport (viewport (x=1/3,y=0.06,width=1.95/3,
233 height=.5,just=c(” left”,” bottom”)))

62



235 grid.rect (gp=gpar (fill="white”))

236

237 ## now either define viewport to contain the whole inset figure
238 ##tpar (fig=gridFIG () ,new=T) ## or gridPLT ()

230 #H#£ ... or just the plotting are (coordinate system)

210 par (plt=gridPLT () ,new=T)

241

210 #H# draw frame around selected area (for illustration only)

213 ##tgrid . rect (gp=gpar (lwd=3,col="red”))

244

215 ## plot inset figure

216 ##plot (,xaxs="1" ;yaxs="17 ,xlab="" ylab="" cex.axis=0.7,

217 HH xaxt="n")

248

210 plot (list .of.obstacles [[1]] $fun,xlim=c(0,0.5) ,ylab="" xlab="",
250 lwd=2)

251 if (length (list.of.obstacles)>1) {

252 for (i in (2:length(list.of.obstacles))) {

253 plot (list .of.obstacles [[i]] $fun ,xlim=c (0,0.5) ,ylab="" xlab="",
254 col=i, lwd=2, cex.axis = 0.7,add=TRUE)

255 #Hlty=i ,

256}

257 }

250 ## pop all viewports from stack
260 popViewport (1)

261 par (plt=gridPLT () )

262 popViewport (3)

266 legend . text = c(expression(italic (Mv[0](zeta))))

268 plot (list .of.obstacles [[1]] $fun,xlim=c(0,upper) ,ylab="" xlab="",
269 lty="dashed” ,lwd=2)

270 plot (list . of . concave.majorants [[1]] $fun , xlim=c (0, upper) ,

- ylab="" xlab=""

- lwd=2,add=TRUE)

273 title (xlab=expression (italic (zeta=—F(x))),line=2)
214 1f (length (list .of.obstacles)>1) {
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075 for (i in (2:length(list.of.obstacles))) {

276 plot (list .of.obstacles [[i]] $fun, xlim=c (0,upper) ,ylab="" xlab="",
277 col=i, lwd=2,lty="dashed”,

278 Hlty=i ,

279 add=TRUE)

280 plot (list .of.concave.majorants [[i]] $fun ,xlim=c (0,upper) ,ylab="",
281 xlab="",

282 col=i, lwd=2,

283 HHlty=i ,

284 add=TRUE)

285 abline (v=1ist . of.concave.majorants [[i]] $boundaries , lty="dashed”,
286 col=i

287 lwd=2)

288 FH legend . text = c(legend.text ,sprintf(”suc. app. %d”,i—1))
289

200 legend . text = c(legend.text ,substitute(italic (Mv[s](zeta)),
291 list (s=i—1)))

292

93
294 }

206 mtext (text=substitute (zeta[1l] group (”[”,v[s],”]”),list (s=i-1)),
207 at=list .of.concave. majorants [[i]] $boundaries[1],

298 side=1,line=0.3,cex=.8,

209 col=i)
s00  mtext (text=substitute (zeta[2] group (”[”,v[s],”]”),list (s=i-1)),
301 at=list .of.concave. majorants [[i]] $boundaries[2],

302 side=1,line=0.3,cex=.8,

303 col=i)

305 mtext (text=expression (italic (F(1))),at=F.fun(0),side=1,
306 line=-1.0,adj=0,cex=.8)

s0s legend (" topleft”,legend=legend . text ,

309 col=c(1:length(list.of.obstacles)),
310 lty="so0lid”, lwd=2,

311 ##lty=c (1l:length (list .of.obstacles)),
312 bty="n")

313 #HHF start drawing inset

314
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315 vp <— baseViewports ()
s16 pushViewport (vp$inner , vp$figure ,vpSplot)

318 ## push viewport that will contain the inset
319 pushViewport (viewport (x=1/3,y=0.06,

320 width=1.95/3,height=.5,
321 just=c(” left”,” bottom”)
322 ))

324 grid.rect (gp=gpar (fill="white”))

326 ## now either define viewport to contain the whole inset figure
sor ##tpar (fig=gridFIG () ,new=T) +# or gridPLT ()

3208 #4£ ...or just the plotting are (coordinate system)

320 par (plt=gridPLT () ,new=T)

330

331 #4# draw frame around selected area (for illustration only)

332 ##grid . rect (gp=gpar (lwd=3,col="red”))

333

3314 ## plot inset figure

335 ##Eplot (,xaxs="1" ;yaxs="1” ,xlab="" ylab="" cex.axis=0.7,
336 #H xaxt="n")

a3z plot (list . of . obstacles [[1]] $fun ,xlim=c(0,0.5) ,ylab="" xlab="",
lty="dashed” ,lwd=2)
310 plot (list . of.concave. majorants [[1]] $fun ,xlim=c(0,0.5) ,ylab="",

341 xlab="",

342 lwd=2,add=TRUE)

s1a if (length (list.of.obstacles)>1) {
s15  for (i in (2:length(list.of.obstacles))) {

346 plot (list .of.obstacles [[i]] $fun ,xlim=c(0,0.5) ,ylab="" xlab="",
347 col=i, lwd=2,1ty="dashed”,

348 HHlty=i ,

1o add=TRUE)

350 plot (list .of.concave.majorants [[i]] $fun,

51 xlim=c (0,0.5) ,ylab="",xlab="",

352 col=i, lwd=2,add=TRUE)

353 HHlty=1)

354 abline (v=1ist . of.concave.majorants [[i]] $boundaries ,
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355 lty="dashed” ,col=i,
356 1Wd=2)

359

s60  mtext (text=substitute (zeta[l] group (”[”,v[s],”]”),list (s=i-1)),
361 at=list .of.concave. majorants [[i]] $boundaries[1],

362 side=1,line=0.1,cex=.8,

363 col=i)

364

365 ## pop all viewports from stack
366 popViewport (1)

sor par ( plt=gridPLT ())

s6s popViewport (3)

s71 par (mfrow=c (1,1))
s72 if (writepdf) dev.off ()
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