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ABSTRACT

PRICING PERPETUAL AMERICAN-TYPE
STRANGLE OPTION FOR MERTON’S JUMP

DIFFUSION PROCESS

Ayşegül Onat

M.S. in Industrial Engineering

Advisor: Assoc. Prof. Savaş Dayanık

December, 2014

A stock price Xt evolves according to jump diffusion process with certain pa-

rameters. An asset manager who holds a strangle option on that stock, wants

to maximize his/her expected payoff over the infinite time horizon. We derive

an optimal exercise rule for asset manager when the underlying stock is dividend

paying and non-dividend paying. We conclude that optimal stopping strategy

changes according to stock’s dividend rate. We also illustrate the solution on

numerical examples.

Keywords: Optimal stopping, perpetual, strangle option, Markov jump diffusion

processes.
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ÖZET

VADESIZ AMERIKAN TIPI STRANGLE
OPSIYONUNUN FIYATLANDIRILMASI

Ayşegül Onat

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Doç. Dr. Savaş Dayanık

Aralık, 2014

Hissenin fiyatı zamana bağlı olarak belirli parametrelerle ve belirli aralıklarla

gerçekleşen zıplamalarla gelişmektedir. Hisse yöneticisi bu hisse üzerine yazılmış

süresiz bir strangle opsiyonu yönetmektedir. Hisse yöneticisi kazancını yükselt-

mek için en uygun durma zamanını seçmek istemektedir. Ara ödemeler yapan ve

yapmayan hisse seçenekleri için en iyi durma zamanı ve beklenen kazanç hesa-

planmıştır. Durma stratejisinin hissenin ara ödeme yapan ve yapmayan olmas

durumuna göre değişkenlik gösterdiği ortaya konmuştur. Çözümler sayısal örnek-

lerle de gösterilmiştir.

Anahtar sözcükler : En iyi durma zamanı, vadesız, strangle opsiyonu, Markov..
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Glossary

.

p strike price of put option

c strike price of call option (p < c)

Xt stock price process

µ fixed appreciation rate of the underlying stock on which perpetual option is

written

δ fixed dividend rate of the underlying stock on which perpetual option is

written

λ constant arrival rate op downward jumps

y0 the fraction that stock price loses every time jumps occurs

Yt stock price process after diffusions and jumps are separated

P real world probability measure

Pγ risk neutral probability measure after jump frequency is changed to λγ

γ the fraction of the new arrival rate after probability change over the old

arrival rate

1



f(.) the payoff function of strangle option

W (.) the Wronskian function

ϕ(.) the decreasing solution of the second order ordinary differential equation

ψ(.) the increasing solution of the second order ordinary differential equation

α0 power of the decreasing solution of the second order ordinary differential

equation (α0 < 0)

α1 power of the increasing solution of the second order ordinary differential

equation (α1 > 1)
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Chapter 1

Preliminaries

Definition 1.1. (Sigma algebra) Let Ω be a given set. Then a family of subsets

of ω is called σ-algebra F on ω if it satisfies

(i) ∅ ∈ F

(ii) A ∈ F =⇒ Ac ∈ F , where Ac = Ω− A is the complement of A in Ω

(iii) A1, A2, ... ∈ F =⇒ ∪∞i=1Ai ∈ F

Definition 1.2. (Filtration) A filtration on (Ω,F) is a family M = {Mt}t≥0 of

σ-algebras Mt ⊂ F such that

0 ≤ s < t =⇒Ms ⊂Mt

which means that {Mt} is increasing.

Definition 1.3. (Probability measure) Let (Ω,F) be a measurable space. A prob-

ability measure P on a measurable space (Ω,F) is a function P : F 7→ [0, 1] such

that

(i) P(∅) = 0 and P(Ω) = 1

3



(ii) If A1, A2, ... ∈ F and {Ai}∞i=1 is disjoint then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai)

Definition 1.4. (Probability space) A probability space is the triplet (Ω,F ,P)

which contains information about elementary outcomes in the sample space Ω,

all events are collected in the σ-algebra F , and the probability of all events is

described by the probability measure P.

Definition 1.5. (Risk neutral probability measure) A risk-neutral measure, (also

called an equilibrium measure, or equivalent martingale measure), is a probability

measure such that each stock price is exactly equal to the discounted expectation of

the stock price at the future time under this measure. This is heavily used in the

pricing of financial derivatives due to the fundamental theorem of asset pricing,

which implies that in a complete market a derivative’s price is the discounted

expected value of the future payoff under the unique risk-neutral measure.

Definition 1.6. (Stopping time) Let (I,≤) be an ordered index set and let

(Ω,F ,Ft,P). A random variable τ : Ω 7→ I is called a stopping time if

{ω : τ ≤ t} ∈ Ft

Definition 1.7. (Strong Markov property) Suppose that X = (Xt : t ≥ 0) is a

stochastic process on a probability space (Ω,F ,P) with a natural filtration {Ft}t≥0.

Then X is said to have the strong Markov property if for each stopping time

τ , conditioning on the event {τ < ∞}, and for each bounded Borel function

f : Rn 7→ R we have

E[f(Xτ+h)|Fτ ] = E[f(Xh)|σ(Xτ )]

for all h ≥ 0.
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Chapter 2

Introduction

In a volatile market, investors hedge their risks against the uncertainty of asset

prices by using classical instruments such as financial options. A put option gives

its holder the right to sell one asset unit for a pre-agreed strike price and a call

option grants the right to buy; they are used when expecting the asset prices to

fall and to rise, respectively. If a trader believes there will be a significant price

movement but is unsure of its direction, in general he would build a long position

on a strangle option that creates the two sided payoff as the combination of a put

payoff with a lower strike price and a call payoff at a higher strike price written

on the same underlying asset. Such a long strangle strategy is often traded in

the over-the-counter (OTC) market, and is favored by hedge fund managers,

particularly in currency and metal markets and CME, SAXO OTC contracts

(see [1]). Figure 2.1 shows a typical payoff of a strangle option for an investor

holding a long position. Mathematically, the payoff of a strangle option exercised

at stock price x > 0 is

f(x) = (p− x)+ + (x− c)+.

The strangle option considered in this thesis is perpetual, namely, the option

never expires.

This thesis studies the optimal stopping problem of an hedge fund manager

who manages perpetual strangle option written on a continuously dividend-paying

5



Figure 2.1: Payoff of a strangle option with put option strike price p=3 and call
option strike price c=5 (c > p)

stock at a fixed rate. At each time point, he has to take a decision between

exercising the option or waiting for future observations. He wants to come up

with the best optimal stopping strategy in order to maximize his payoff and, in

the meantime, he also has to consider downward jumps coming from stock price

at some uncertain times which reduce its value by a fixed percentage. Stock price

processes with downward jumps have very important economical meaning: In

financial market stock prices may be correlated with some other prices. Therefore,

any bank crisis or default of a company in a related sector may lead sudden price

changes and our model is able to capture of replicating those scenarios.

The no arbitrage pricing theory of mathematical finance requires the problem

be setup under a risk-neutral probability measure. The risk-neutral probability

measure is not unique and we use one of them. Afterwards, we separate the jump

and diffusion parts similar to the ideas of Davis [2] and we introduce a dynamic

programming operator. Using this formulation, we solve the optimal stopping

problem by means of successive approximations which not only lead to accurate

and efficient numerical algorithms but also allow us to establish concretely the
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form of optimal stopping strategy.

We also study the same optimal stopping problem when underlying stock is not

dividend paying and illustrate how asset manager changes his optimal behavior.

This case differs from the first one because stock price process appreciates at a

higher rate and this encourages holder of the option to wait longer compared to

the case of the dividend-paying stock.

The next chapter reviews related studies in the literature. In Chapter 4, we give

a mathematical formulation of our problem and define risk neutral probability

measure along with the dynamic programming operator. In the first section of

Chapter 5, we break the original value function into parts and apply appropriate

transformations in order to solve the optimal stopping problem via techniques of

Dayanik and Kazatzas [3]. By a back-transformation we finally obtain with the

optimal strategy and the optimal stopping time. At the end of Chapter 5, we

reconsider the problem for an underlying stock price process paying zero dividend

as a special case. Chapter 6 illustrates numeric examples. The computer code

used for examples is relegated to the appendix.
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Chapter 3

Literature Review

In a recent work [4] related to our study Dayanik and Egami solve optimal stop-

ping problems of an institutional asset manager. The investors entrust their

initial funds in the amount of L to the asset manager and receive coupon pay-

ments from the asset manager on their initial funds at a fixed rate c (higher than

the risk-free interest rate). The asset manager gathers dividend at a fixed rate

δ on the market value of the portfolio. At any time, the asset manager has the

right to terminate the contract and to walk away with the net terminal value of

the portfolio after the payment of the investors initial funds. However, she is not

financially responsible for any amount of shortfall. The asset managers problem

is to find a stopping rule which maximizes her expected discounted total income

which is

U(x) = sup
τ∈S

Eγx
[
e−rτ (Xτ − L)+ +

∫ τ

0

e−rt(δXt − cL)dt

]
where Eγ is taken under equivalent martingale measure Pγ and γ represents mar-

ket price of jump risk. Our problem mathematically differs in terms of the struc-

ture of the reward function.

Chiarella and Ziogas [5] study the pricing of the American type strangle op-

tion written on a dividend paying asset. They find the boundaries a1(t) and

8



Figure 3.1: Continuation and stopping region of an American strangle option
with put and call strike prices are K1 and K2, respectively. [5]

a2(t) depicted in figure 3.1 by applying Fourier transform to Black-Scholes par-

tial differential equation (PDE). Fourier transformation changes Black-Scholes

PDE into an ordinary differential equation. However, in their study, stock price

process does not contain any jumps. This means that the market has unique

risk-neutral probability measure which is highly suitable for no artbitrage pricing

theory.

Having jump diffusion stock price process, we need to strip the jumps from

the diffusion process as in Dayanik and Egami [4] and define a new process as a

sequential diffusions. Dayanik and Karatzas use this approach in order to solve

the optimal stopping problems with successive approximations. The idea was

inspired by the paper of Davis [2] where he strips jumps from the deterministic

trajectories of piecewise-deterministic Markov processes between jump times.

To solve the transformed optimal stopping problems for pure diffusion pro-

cesses, we use the techniques developed by Dayanik and Karatzas [3] who char-

acterize concave excessive functions for optimal stopping problems of one di-

mensional diffusion processes. Their study is a generalization of the paper of

Dynkin and Yushkevich [6], who solve optimal stopping problems with diffusions

restricted to compact subspaces of R. However, our problem definition requires

9



diffusions to be defined on the interval (0,+∞) and chapter 5.1 of [3] defines the

smallest concave majorant when left boundary is absorbing and right boundary

is natural. In order to find the smallest excessive function, we use an important

proposition of Dayanik and Karatzas which allows us to transform our reward

function into a new function whose excessive function is easier to calculate. By

back-transformation, the optimal stopping strategy and the optimal stopping

time can be found.
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Chapter 4

Problem Descripton

Let (Ω,F , P ) be a probability space hosting Brownian motion B = {Bt, t ≥ 0}
and a homogenous Poisson process N = {Nt, t ≥ 0} with rate λ, both adapted to

filtration F = {Ft}t≥0 satisfying the usual conditions.

Let market has a stock whose price process is driven by X = {Xt, t ≥ 0} with

appreciation rate µ and dividend rate δ. At some time points modeled by Poisson

process Nt, stock is subject to downward jumps and decreases its value by y0.

The stock price has the dynamics

dXt

Xt−
= (µ− δ)dt+ σdBt − y0 (dNt − λdt) ,

for some constants µ > 0, δ ≥ 0, σ > 0 and y0 ∈ (0, 1). Therefore, the stock price

is modeled by the equation

Xt = X0 exp

(
(µ− δ + λy0)t−

1

2
σ2t+ σBt

)
(1− y0)Nt ,

for t ≥ 0,. Hence, stock price process is a geometric Brownian motion subject to

downward jumps with constant relative jump sizes.

Imagine a trader holds a perpetual strangle option written on X = {Xt, t ≥ 0}
and at any time τ ∈ (0,∞), the trader has right to exercise the option and gets

the payoff

f(Xτ ) = (p−Xτ )
+ + (Xτ − c)+.

11



Trader aims to choose τ ∈ (0,∞) so that she will obtain the maximum payoff.

To do this, we need to calculate maximum expected discounted payoff

V (x) = sup
τ>0

Eγx
[
e−rτf(Xτ )

]
for x ≥ 0 and over all stopping times τ of X. Eγ is taken under the equivalent

martingale measure Pγ for a specified market price of the jump risk γ.

No-arbitrage pricing framework claims that the value of the contract on the

asset X is the expectation of the discounted payoff of the contract under some

equivalent martingale measure. Since X has jumps, there are more than one

equivalent martingale measure. Radon-Nikodym derivative gives class of equiva-

lent martingale measures in the form

dPγ

dP

∣∣∣∣
Ft

= ηt

where
dηt
ηt−

= −µ− δ − r
σ

dBt + (γ − 1) (dNt − λdt)

which has the solution

ηt = exp

{
− (γ − 1)λt− µ− δ − r

σ
Bt −

1

2

(µ− δ − r)2

σ2
t

}
γNt ,

t ≥ 0. The Girsanov Theorem shows thatBγ
t = µ−δ−r

σ
t+Bt is a standard Brownian

motion under the probability measure Pγ defined by equation. Here the price

process given by

dXt

Xt−
= (r − δ)dt+ σdBγ

t − y0 (dNt − λγdt)

Xt = X0 exp

{
(r − δ)t+ λγy0t−

1

2
σ2t+ σBγ

t

}
(1− y0)Nt

where Nt is a poisson process with intensity λγ and independent of Bγ
t under the

new measure Pγ.

Under the probability measure Pγ we should solve

V (x) = sup
τ>0

Eγx
[
e−rτ

{
(p−Xτ )

+ + (Xτ − c)+
}]
. (4.1)

12



which is a discounted optimal stopping problem with reward function f(x) =

(p− x)+ + (x− c)+.

Let T1, T2, ... be the arrival times of process N . Observe that XTn+1 =

(1− y0)XTn+1− and

XTn+t

XTn

= exp

{(
r − δ + λγy0 −

1

2
σ2

)
t+ σ

(
Bγ
Tn+t
−Bγ

Tn

)}
if 0 ≤ t < Tn+1 − Tn.

Define the standard Brownian motion Bγ,n
t = Bγ

Tn+t
− Bγ

Tn
for every n ≥ 1,

t ≥ 0 and Poisson process T
(n)
k = Tn+k − Tn for k ≥ 0 respectively under Pγ and

one dimensional diffusion process

Y y,n
t = y exp

{(
r − δ + λγy0 −

1

2
σ2

)
t+ σBγ,n

t

}
which has the dynamics

Y y,n
0 = y

dY y,n
t

Y y,n
t

= (r − δ + λγy0) dt+ σBγ,n
t .

X coincides with Y
XTn ,n
t on [Tn, Tn+1) and jumps to (1− y0)Y

XTn ,n
Tn+1−Tn at time

Tn+1 for every n ≥ 0. Namely,

XTn+t =

{
Yt
XTn,n if 0 ≤ t < Tn+1 − Tn

(1− y0)Y
XTn,n
Tn+1−Tn if t = Tn+1 − Tn

For n = 0, we write Y y,0
t = y exp

{(
r − δ + λγy0 − 1

2
σ2
)
t+ σBγ

t

}
where 0 ≤

t < T1.

Let SB be the collection of all stopping times of Y x or equivalently Brownian

motion B. Take arbitrary fixed stopping time τ ∈ SB and consider the following

optimal strategy:

(i) on {τ < T1} stop at time τ.

13



(ii) on {τ ≥ T1} update X at time T1 to XT1 = (1− y0)Y x0
T1

and continue

optimality thereafter.

The value of this new strategy is

Eγx
[
e−rτf (Xτ ) 1{τ<T1} + e−rT1V

(
(1− y0)Y x

T1

)
1{τ≥T1}

]
= Eγx

e−(r+λγ)τf (Y x0
τ ) +

τ∫
0

λγe−(r+λγ)tV ((1− y0)Y x
t ) dt

 .
For every bounded function w : R+ → R+, we introduce the operator

(Jw)(x) = sup
τ∈SB

Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tw ((1− y0)Y x
t ) dt

 (4.2)

then we expect the value function V (.) of equation 4.1 to be the unique fixed

point of the operator J, namely V (.) = (JV )(.) and V (.) is the pointwise limit of

the successive approximations

v0(x) = f(x) = (p− x)+ + (x− c)+

vn(x) = (Jvn−1)(x)

for x ≥ 0, n ≥ 1.

Assumption 1. Let w : R+ → R be a convex function such that f(x) ≤ w(x) ≤
x+ p for every x ∈ R+.

Assumption 2. Jw(.) is a non-increasing function up to some point x, then it

is non-decreasing.

Remark 4.1. For any two functions w1(.) and w2(.) satisfying Assumption 1,

we have the inequality

‖w1 − w2‖ ≤ p+ c

where ‖w‖ = supx∈R+|w(x)|.

Remark 4.2. Under Assumption 1, Jw(x) ≤ λγ
δ+λγ

x+ λγ
r+λγ

p for every x ∈ R+ .
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Proof. From equation 4.2 we have

(Jw)(x) = sup
τ∈SB

Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tw ((1− y0)Y x
t ) dt


≤ Eγx

 ∞∫
0

λγe−(r+λγ)t ((1− y0)Y x
t + p) dt


≤ (1− y0)λγ

∞∫
0

xe−(r+λγ)te(r−δ+λγy0)tEγx
[
eσB

γ
t −

σ2

2
t
]
dt+

λγ

r + λγ
p

≤ λγ

δ + λγ
x+

λγ

r + λγ
p

< ∞

Lemma 4.1 (Monotonicity Lemma). For any two functions w1, w2 : R+ → R if

w1(.) ≤ w2(.) then we have (Jw1) (.) ≤ (Jw2) (.). If w(.) is convex function, then

(Jw)(.) is also a convex function.

Proof. From inequality w1(.) ≤ w2(.), we can get

Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tw1 ((1− y0)Y x
t ) dt


≤ Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tw2 ((1− y0)Y x
t ) dt

 .
By taking supremum of both sides over τ ∈ SB we prove (Jw1) (.) ≤ (Jw2) (.).

Because J is a linear operator of w(.), convexity is preserved.

Proposition 4.1. For any two functions w1, w2 : R+ → R satisfying Assumption

1, we have

‖Jw1 − Jw2‖ ≤
λγ

r + λγ
‖w1 − w2‖ ≤

λγ

r + λγ
(p+ c).

This means that J acts as a contraction mapping on the bounded functions.
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Proof. For every ε > 0 and x > 0, there is an ε−optimal stopping time τ(ε, x)

which may depend on ε and x, such that

(Jw1) (x)− ε ≤ Eγx

e−(r+λγ)τ(ε,x)f (Y x
τ(ε,x)

)
+

τ(ε,x)∫
0

λγe−(r+λγ)tw1 ((1− y0)Y x
t ) dt


so we have,

(Jw1) (x)− (Jw2)(x) ≤ ε+ Eγx
[
e−(r+λγ)τ(ε,x)f

(
Y x
τ(ε,x)

)
+

τ(ε,x)∫
0

λγe−(r+λγ)tw1 ((1− y0)Y x0
t ) dt

]

− sup
τ∈SB

Eγx
[
e−(r+λγ)τf (Y x

τ )

+

τ∫
0

λγe−(r+λγ)tw2

(
(1− y0)Y X0

t

)
dt

]

≤ε+ Eγx
[
e−(r+λγ)τ(ε,x)f

(
Y x
τ(ε,x)

)
+

τ(ε,x)∫
0

λγe−(r+λγ)tw1 ((1− y0)Y x
t ) dt

]

− Eγx
[
e−(r+λγ)τ(ε,x)f

(
Y x
τ(ε,x)

)
+

τ(ε,x)∫
0

λγe−(r+λγ)tw2 ((1− y0)Y x
t ) dt

]

≤ ε+ Eγx
[ τ(ε,x)∫

0

λγe−(r+λγ)t[w1 ((1− y0)Y x
t )

− w2 ((1− y0)Y x
t )]dt

]
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Therefore,

(Jw1) (x)− (Jw2)(x) ≤ ε+ ‖w1 − w2‖
∞∫
0

λγe−(r+λγ)dt

= ε+ ‖w1 − w2‖
λγ

r + λγ

≤ ε+ (p+ c)
λγ

r + λγ

Taking supremum of both sides over x ≥ 0 completes the proof.

Lemma 4.2. The sequence (vn)n≥0 is monotonically nondecreasing. Therefore

the pointwise limit v∞(x) = limn→∞ vn(x), x ≥ 0, exists. Every vn(.), n ≥ 0 and

v∞(.) are finite and convex functions.

Proof. (By induction) For n = 1, we have

v1(x) = (Jv0) (x)

= sup
τ∈SB

Eγx

e−(r+λγ)τf (Y X0
τ

)
+

τ∫
0

λγe−(r+λγ)tv0 ((1− y0)Y x
t ) dt


≥ f (Y x)

= v0 (x) .

Base holds. Assume vn(.) ≥ vn−1(.) is true. We must show that vn+1(.) ≥ vn(.)

holds as well. By taking the operator J of both sides, we get (Jvn) (.) ≥
(Jvn−1) (.)⇒ vn+1(.) ≥ vn(.). This implies that the sequence (vn)n≥0 is monoton-

ically nondecreasing. We also know from Assumption 1, vn(x) < x + p, ∀n ≥ 0,

∀x ≥ 0. Therefore, the limit v∞(x) = limn→∞ vn(x), x ≥ 0, exists.

Proposition 4.2. The limit v∞(.) = limn→∞ vn(.) = supn≥0 vn(.) is the unique

bounded fixed point operator of (Jv)(.) and

0 ≤ v∞(x)− vn(x) ≤ (p+ c)

(
λγ

r + λγ

)n
holds for every x ≥ 0.
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Proof. For any x > 0 and n ≥ 0, we have vn(x) ↗ v∞(x) as n → ∞ and 0 ≤
vn(x) ≤ x+ p. Hence, the monotone convergence theorem implies that

v∞(x) = sup
n≥0

vn(x)

= sup
τ∈SB

lim
n→∞

Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tvn−1 ((1− y0)Y x
t ) dt


= sup

τ∈SB
Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tv∞ ((1− y0)Y x
t ) dt


= (Jv∞) (x).

Therefore, v∞(.) is the bounded fixed point operator of (Jv)(.)

‖v∞ − vn‖ = ‖Jv∞ − Jvn−1‖ ≤ ‖v∞ − vn−1‖
λγ

r + λγ
≤ . . . ≤ (p+ c)

(
λγ

r + λγ

)n
for every n ≥ 1.
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Chapter 5

The Optimal Exercise Policy for

the Strangle Option

In this chapter, we are going to define an optimal exercise policy for the problem

(Jw)(x) = sup
τ∈SB

Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tw ((1− y0)Y x
t ) dt


using the methodology of Dayanik and Karatzas [3]. Afterwards, we examine the

special case when the underlying asset is non-dividend paying.

For every fixed w : R+ 7→ R satisfying Assumption 1, we are now ready to

solve the optimal stopping problem (Jw)(.). We know that for fixed x <∞, w(x)

is bounded from above. See that

Eγx

 ∞∫
0

e−(r+λγ)t |w ((1− y0)Y x
t )| dt

 ≤ Eγx

 ∞∫
0

e−(r+λγ)t ((1− y0)Y x
t + p) dt


≤ p

r + λγ
+ (1− y0)

∞∫
0

xe−(r+λγ)te(r−δ+λγy0)tEγx
[
eσB

γ
t −

σ2

2
t
]
dt

≤ x

δ + λγ
+

p

r + λγ

<∞
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for x ≥ 0. The strong Markov property of Y x0
t implies that

(Hw)(x) = Eγx

 ∞∫
0

e−(r+λγ)tw ((1− y0)Y x
t ) dt


= Eγx

 τ∫
0

e−(r+λγ)tw ((1− y0)Y x
t ) dt

+ Eγx
[
e−(r+λγ)τ (Hw)(Y x

τ )
]

for every stopping time τ > 0. The above equality becomes

Eγx

 τ∫
0

e−(r+λγ)tw ((1− y0)Y x
t )

 = (Hw)(x)− Eγx
[
e−(r+λγ)τ (Hw)(Y x

t )
]

which shows

Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tw ((1− y0)Y x
t ) dt


= λγ(Hw)(x) + Eγx

[
e−(r+λγ)τ (f − λγ(Hw))(Y x

t )
]

for every τ > 0 and x ≥ 0. Let us define

(Gw) (x) = sup
τ>0

Eγx
[
e−(r+λγ)τ (f − λγ(Hw))(Y x

t )
]

(5.1)

and let’s rewrite value function in equation 4.2 as

(Jw) (x) = λγ(Hw)(x) + (Gw) (x)

for x ≥ 0.

Let ψ(.) and ϕ(.) be increasing and decreasing solutions of (A0f) (y) −
(r + λγ) f(y) = 0, y > 0 with respect to boundary conditions ψ(0+) = 0

and ϕ(+∞) = 0 where A0 is the infinitesimal generator of the diffusion process

Y x = Y x,0. We have

σ2y2

2
f ′′(y) + (r − δ + λγy0)yf

′(y)− (r + λγ) f(y) = 0

which has two linearly independent solutions ψ(.) and ϕ(.) in the form of yαi for

i = 0, 1. One can explicitly find α0 and α1 from the roots of the characteristic

20



function g(α) = α(α− 1) + 2
σ2 [(r − δ + λγy0)α− (r + λγ)] of the above ordinary

differential equation. Now we have two solutions ψ(y) = yα1 and ϕ(y) = yα0 for

every y > 0 and note that

α0 < 0 < 1 < α1

because both g(0) < 0 and g(1) < 0. Also note that

α0 + α1 = 1− 2

σ2
(r − δ + λγy0)

α0α1 = − 2

σ2
(r + λγ).

Define the Wronskian

W (y) = ψ′(y)ϕ(y)− ψ(y)ϕ′(y) = (α1 − α0)y
α0+α1−1

for y > 0.

Define the hitting and exit time of the diffusion process Y x as

τa = inf {t ≥ 0 : Y x0
t = a}

τab = inf {t ≥ 0 : Y x0
t /∈ (a, b)}

for 0 < a < b <∞.

Define the operator

(Habw)(x) = Eγx

 τab∫
0

e−(r+λγ)tw ((1− y0)Y x
t ) + 1{τab<∞}e

−(r+λγ)τabf
(
Y x
Tab

) .
Lemma 5.1. For every x > 0, we have

(Hw)(x) = Eγx

 ∞∫
0

e−(r+λγ)tw ((1− y0)Y x
t )


= lim

a↓0,b↑∞
(Habw)(x)

= ϕ(x)

x∫
0

2ψ(ξ)w ((1− y0) ξ)
p2(ξ)W (ξ)

dξ +

ψ(x)

∞∫
x

2ϕ(ξ)w ((1− y0) ξ)
p2(ξ)W (ξ)

dξ
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where p2(x) = σ2x2. It is twice continuously differentiable on R+ and satisfies the

ordinary differential equation (A0f) (x)− (r + λγ) f(x) + w ((1− y0)x) = 0.

Proof. Proof can be found in Taylor and Karlin [7].

We now solve the optimal stopping problem (Gw)(.) in equation 5.1 with the

payoff function

(f − λγ(Hw))(x) = (p− x)+ + (x− c)+ − λγ
[
ϕ(x)

x∫
0

2ψ(ξ)w ((1− y0) ξ)
p2(ξ)W (ξ)

dξ

+ ψ(x)

∞∫
x

2ϕ(ξ)w ((1− y0) ξ)
p2(ξ)W (ξ)

dξ

]
= (p− x)+ + (x− c)+

− 2λγ

σ2(α1 − α0)

[
xα0

x∫
0

ξ−α0−1w ((1− y0) ξ) dξ

+ xα1

∞∫
x

ξ−α1−1w ((1− y0) ξ) dξ
]

≤ (p− x)+ + (x− c)+

− 2λγ

σ2(α1 − α0)

[
xα0

x∫
0

ξ−α0−1 ((1− y0) ξ − c) dξ

+ xα1

∞∫
x

ξ−α1−1 ((1− y0) ξ − c) dξ
]

≤ (p− x)+ + (x− c)+ − 2λγ

σ2

[
x

1− y0
(1− α0)(α1 − 1)

− c

α0α1

]
≤ (p− x)+ + (x− c)+ − λγ

[
(1− y0)x

δ + λγ(1− y0)
+

c

r + λγ

]
For sufficiently large values of x, we have

(f − λγ(Hw))(x) ≤ δx

δ + λγ(1− y0)
− c(r + 2λγ)

r + λγ

and for small enough values of x, we have

(f − λγ(Hw))(x) ≤ p.
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The above inequalities together with boundary conditions ψ(+∞) = ϕ(0+) =

+∞ give the limits

l0 = lim sup
x→0

(f − λγ(Hw))+(x)

ϕ(x)
= 0 l∞ = lim sup

x→∞

(f − λγ(Hw))+(x)

ψ(x)
= 0.

Therefore, according to Proposition 5.2 of Dayanık [3], value function is finite

and optimal stopping strategy exists.

Proposition 5.3 of Dayanık [3] claims that G(.) is the smallest nonnegative ma-

jorant of (f − λγ(Hw))(.) and by Proposition 5.7 of Dayanık [3],

τ [w] = inf {t ≥ 0 : Y x
t ∈ Γ[w]} (5.2)

is an optimal stopping time in the optimal stopping region

Γ[w] = {x > 0 : (Gw)(x) = (f − λγ(Hw))(x)} = {x > 0 : (Jw)(x) = f(x)} .

According to Proposition 5.5 of Dayanık [3], we have function (Mw)(.) which

is the smallest nonnegative concave majorant of the function

(Lw)(ζ) =

{
f−λγ(Hw)

ϕ
◦ F−1(ζ) if ζ > 0

0 if ζ = 0
(5.3)

where F (x) = ψ(x)
ϕ(x)

and (Gw)(x) = ϕ(x)(Mw)(F (x)) for x ≥ 0. Furthermore,

(Mw)(0) = 0 and (Mw)(.) is continuous at 0.

In order to explicitly define (Mw)(.), we should observe some important prop-

erties of the function (Lw)(.). First, we identify the limiting behavior of (Lw)(x)
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for large x values. Let us check

lim
x↑∞

(Lw)(F−1(x)) = lim
x↑∞

(p− x)+ + (x− c)+ − λγEγx
[∞∫
0

e−(r+λγ)tw ((1− y0)Y x
t ) dt

]
xα0

≥ lim
x↑∞

x− c− λγEγx
[∞∫
0

e−(r+λγ)t ((1− y0)Y x
t + p) dt

]
xα0

≥ lim
x↑∞

x− c− λγ(1− y0)x
∞∫
0

e−(r+λγ)te(r−δ+λγy0)tEγ
x

[
eσB

γ
t −

σ2

2
t
]
dt− λγ p

r+λγ

xα0

≥ lim
x↑∞

x−α0+1

(
1

δ + (1− y0)λγ
− c

x
− p

x(r + λγ)

)
= +∞

because of α0 < 0. So we see that (Lw)(+∞) = +∞.
Let us examine the sign of the first derivative of (Lw)(x)

(Lw)′(x) =
d

dx

(
f − λγ(Hw)

ϕ
◦ F−1(x)

)
=

[
1

F ′

(
f − λγ(Hw)

ϕ

)′]
◦ F−1(x)

as x tends to 0, which is

lim
x↓0

[
1

F ′

(
f − λγ(Hw)

ϕ

)′]
(F−1(x)) = lim

x↓0

x−α1

α1 − α0

[
− 2

λγxα1

σ2

∫ ∞
x

ζ−α1−1w ((1− y0) ζ) dζ

+ (−x− α0(p− x))1{x<p} + (x− α0(x− c))1{x>c}
]

= lim
x↓0

x−α1

α1 − α0

[
− 2

λγxα1

σ2

∫ ∞
x

ζ−α1−1w ((1− y0) ζ) dζ

+ (−x(1− α0)− α0p)

]
= +∞.

because of limx↓0 x
α1
∫∞
x
ζ−α1−1w ((1− y0) ζ) dζ = w(+0)

α1
= p

α1
, α1 > 1 and the

positive sign appears due to −α0α1 = 2
σ2 (r + λγ).

Proposition 5.1. The inequality

(Lw)′(F−1(p−)) < (Lw)′(p+) < (Lw)′(c−) < (Lw)′(c+)

holds.
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Proof. Direct computations give

(Lw)′(F−1(p−)) ≈ −2λγ

σ2(α1 − α0)

∫ ∞
p−

ζ−α1−1w ((1− y0) ζ) dζ − (p−)1−α1

α1 − α0

(Lw)′(F−1(p+)) ≈ −2λγ

σ2(α1 − α0)

∫ ∞
p+

ζ−α1−1w ((1− y0) ζ) dζ

which gives (Lw)′(F−1(p−)) < (Lw)′(F−1(p+)) since −2λγ
σ2

∫ p+
p− ζ

−α1−1w ((1− y0) ζ) dζ ≤
0 < (p−)1−α1 . Also we have

(Lw)′(F−1(c−)) ≈ −2λγ

σ2(α1 − α0)

∫ ∞
c−

ζ−α1−1w ((1− y0) ζ) dζ

(Lw)′(F−1(c+)) ≈ −2λγ

σ2(α1 − α0)

∫ ∞
c+

ζ−α1−1w ((1− y0) ζ) dζ +
(c+)1−α1

α1 − α0

which gives (Lw)′(F−1(c−)) < (Lw)′(F−1(c+)) since −2λγ
σ2

∫ c+
c− ζ

−α1−1w ((1− y0) ζ) dζ ≤
0 < (c+)1−α1 and (Lw)′(F−1(p+)) < (Lw)′(F−1(c−)) because of
−2λγ

σ2(α1−α0)

∫ c−
p+
ζ−α1−1w ((1− y0) ζ) dζ ≤ 0.

Remark 5.1. (i)(Lw)′(F−1(p−)) < 0

(ii)(Lw)′(F−1(p+)) < 0

(iii)(Lw)′(F−1(c−)) ≤ 0

Proof. Since we have (Lw)′(F−1(p−)) < (Lw)′(F−1(p+)) < (Lw)′(F−1(c−)), it

is enough to prove that (Lw)′(F−1(c−)) < 0 holds. From Assumption 1, we have

0 ≤ f(x) ≤ w(x) ≤ x+ p then

(Lw)′(F−1(c−)) ≈ −2λγ

σ2(α1 − α0)

∫ ∞
c−

ζ−α1−1w ((1− y0) ζ) dζ ≤ 0

since −2λγ
σ2(α1−α0)

< 0.

We should also analyze the sign of the second derivative of (Lw)(F (x)), which

is

(Lw)′′(F−1(x)) =
2ϕ(x)

p2(x)W (x)F ′(x)
(A0 − (r + λγ))(f − λγ(Hw))(x)

as Dayanık and Karatzas show. We see that

sgn[(Lw)′′(F−1(x))] = sgn[(A0 − (r + λγ))(f − λγ(Hw))(x)]
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and recall from Lemma 0.3 that A0 − (r + λγ))(Hw)(x) = −w((1− y0)x. So we

have that

A0 − (r + λγ))(f − λγ(Hw))(x) =[(δ + λγ(1− y0))x− (r + λγ)p

+ λγw((1− y0)x)]1{x<p}

+ λγw((1− y0)x)1{p≤x≤c}

+ [− (δ + λγ(1− y0))x+ (r + λγ)c

+ λγw((1− y0)x)]1{x>c}

Remark 5.2. c can be turning point if (1 − y0)c > p holds. In this case

(Lw)′(F−1(c+)) > 0.

Proof. We have

(Lw)′′(F−1(c)) = λγw((1− y0)c) ≥ λγf((1− y0)c) > λγf(p) = 0

and for w(.) = 0 we have (Lw)′(F−1(c+)) = (c+)1−α1

α1−α0
> 0 shows that c is a turning

point. On the other hand, if we have (1− y0)c < p, then

(Lw)′′(F−1(c)) = λγw((1− y0)c) ≥ λγf((1− y0)c) > λγ(p− (1− y0)c) > 0.

This case sgn[(Lw)′′(F−1(x))] 6= 0, therefore it implies that (Lw)′(F−1(c+)) <

0.

Remark 5.3. The function (Lw)(F (x)) is a concave function in some open neigh-

borhood of 0 and +∞.

Proof. Using Lemma 5.1 we have

lim
x↓0

(A0 − (r + λγ))(f − λγ(Hw))(x) ≤ lim
x↓0

[(δ + λγ(1− y0))x−

(r + λγ)p+ λγ((1− y0)x+ p)]

≤ −rp

< 0
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Figure 5.1: Two possible forms of (Lw)(.) and its smallest concave majorant
(Mw)(.) when δ > 0

and

lim
x↑∞

(A0 − (r + λγ))(f − λγ(Hw))(x) ≤ lim
x↑∞

[− (δ + λγ(1− y0))x+

(r + λγ)c+ λγ((1− y0)x+ p)]

≤ lim
x↑∞

[−δx+ rc+ λγ(c+ p)]

< 0

The information that we observe so far lead us the following conclusion: there

are unique two points ζ1[w] and ζ2[w] such that 0 < ζ1[w] < F−1(p) < F−1(c) <

ζ2[w] < +∞ satisfy

(Lw)′(ζ1[w]) = (Lw)′(ζ2[w]) =
(Lw)(ζ2[w])− (Lw)(ζ1[w])

ζ2[w]− ζ1[w]

and the smallest nonnegative concave majorant (Mw)(.) of (Lw)(.) coincides with

(Lw)(.) on (0, ζ1[w]) ∪ (ζ2[w],+∞) and straight line which is tangent to (Lw)(ζ)
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exactly at ζ = ζ1[w] and ζ2[w] on [ζ1[w], ζ2[w]]. More precisely,

(Mw)(ζ) =


(Lw)(ζ) if ζ ∈ ((0, ζ1[w]) ∪ (ζ2[w],+∞))
ζ2[w]−ζ

ζ2[w]−ζ1[w](Lw)(ζ1[w])+
ζ−ζ1[w]

ζ2[w]−ζ1[w](Lw)(ζ2[w]) if ζ ∈ [ζ1[w], ζ2[w]].

Let us define x1[w] = F−1(ζ1[w]) and x2[w] = F−1(ζ2[w]). Then by Proposition

5.5 of Dayanık [3], the value function of the optimal stopping problem in 5.1 equals

(Gw)(x) = ϕ(x)(Mw)(F (x))

=



(f − λγ(Hw))(x) if x ∈ ((0, x1[w]) ∪ (x2[w],+∞))
(x2[w])α1−α0−xα1−α0

(x2[w])α1−α0−(x1[w])α1−α0

(f − λγ(Hw))(x1[w])

+ xα1−α0−(x1[w])α1−α0
(x2[w])α1−α0−(x1[w])α1−α0

(f − λγ(Hw))(x2[w]) if x ∈ [x1[w], x2[w]].

Optimal stopping time in equation 5.2 becomes

τ [w] = inf{t ≥ 0 : Y x
t ∈ (0, x1[w]) ∪ (x2[w],+∞)}

in the optimal stopping region

Γ[w] = {x > 0 : (Gw)(x) = (f − λγ(Hw))(x)} = (0, x1[w]) ∪ (x2[w],+∞).

Proposition 5.2. The value function (Gw)(.) satisfies

(i) (A0 − (r + λγ))(Gw)(x) = 0, for x ∈ (x1[w], x2[w])

(ii) (Gw)(x) > f(x)− λγ(Hw)(x), for x ∈ (x1[w], x2[w])

(ii) (A0 − (r + λγ))(Gw)(x) < 0, for x ∈ (0, x1[w]] ∪ [x2[w],+∞)

(iv) (Gw)(x) = f(x)− λγ(Hw)(x), for x ∈ (0, x1[w]] ∪ [x2[w],+∞)

Proof. By definition of value function

(Gw) (x) = sup
τ∈SB

E
[
e−(r+λγ)τ (f − λγ(Hw))(Y x

t )
]
.
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For τ = 0, we have

(Gw) (x) ≥ (f − λγ(Hw))(x)

and for every small h > 0

(Gw) (x) ≥ E[e−(r+λγ)h(Gw)(Y x
h )]

= E
[
(1− (r + λγ)h+ o(h))((Gw)(x) +

h∫
0

(Gw)′(Y x
t )dYt

+
1

2

h∫
0

(Gw)′′(Y x
t ) < dYt > +o(h)

]

= E
[
(1− (r + λγ)h+ o(h))((Gw)(x)

+

h∫
0

x0(Gw)′(Y x
t )(r − δ − λγy0)dt+

h∫
0

xσ(Gw)′(Y x
t )dBγ

t

+
1

2

h∫
0

(x)2σ2(Gw)′′(Y x
t )dt+ o(h)

]

= E
[
(1− (r + λγ)h+ o(h))((Gw)(x) + x(Gw)′(x)(r − δ − λγy0)h

+
1

2
(x)2σ2(Gw)′′(x)h+ o(h)

]

there are no remaining stochastic terms, so we can safely remove expectation and

ignore the terms whose are in order of h2. After doing this, we get

(Gw)(x) ≥ (Gw)(x) + x0(Gw)′(x)(r − δ − λγy0)h

+
1

2
(x)2σ2(Gw)′′(x)h− (r + λγ)h(Gw)(x) + o(h)

dividing both sides by h and taking the limits as h ↓ 0 we will have

0 ≥ x(Gw)′(x)(r − δ − λγy0) +
1

2
(x)2σ2(Gw)′′(x)− (r + λγ)(Gw)(x)

which equals to

0 ≥ A0(Gw)(x)− (r + λγ)(Gw)(x)
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The solutions of the above term when it equals to zero are ψ(.) and ϕ(.). We

have

0 ≥ (f − λγ(Hw))(x)− (Gw)(x)

0 ≥ A0(Gw)(x)− (r + λγ)(Gw)(x)

and only one of the above inequalities can be zero. Thus,

0 = max{(f − λγ(Hw))(x)− (Gw)(x), (A0 − (r + λγ))(Gw)(x)}.

On the waiting region (x1[w], x2[w]) we will have

(A0 − (r + λγ))(Gw)(x) = 0

(Gw)(x) > f(x)− λγ(Hw)(x)

and on the stopping region (0, x1[w]] ∪ [x2[w],+∞) we will have

(A0 − (r + λγ))(Gw)(x) < 0

(Gw)(x) = f(x)− λγ(Hw)(x)

This completes the proof.

Proposition 5.3. The value function (Jw)(.) satisfies

(i) (A0 − (r + λγ))(Jw)(x) + λγw((1− y0)x) = 0, for x ∈ (x1[w], x2[w])

(ii) (Jw)(x) > f(x), for x ∈ (x1[w], x2[w])

(iii) (A0−(r+λγ))(Jw)(x)+λγw((1−y0)x) < 0, for x ∈ (0, x1[w]]∪[x2[w],+∞)

(iv) (Jw)(x) = f(x), for x ∈ (0, x1[w]] ∪ [x2[w],+∞)

Proof. By Lemma 5.1

(A0(Hw))(x)− (r + λγ)(Hw)(x) = −w((1− y0)x)

and by definition

(Jw)(x) = λγ(Hw)(x) + (Gw)(x).

These equations and Proposition 5.2 complete the proof.
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Theorem 1. The function x 7→ v∞(x) = (Jv∞)(x) satisfies the following varia-

tional inequalities

(i) (A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) = 0, for x ∈ (x1[w], x2[w])

(ii) v∞(x) > f(x), for x ∈ (x1[w], x2[w])

(iii) (A0−(r+λγ))v∞(x)+λγv∞((1−y0)x) < 0, for x ∈ (0, x1[w]]∪ [x2[w],+∞)

(iv) v∞(x) = f(x), for x ∈ (0, x1[w]] ∪ [x2[w],+∞)

Proof. Every vn(x), n ≥ 0 and v∞(x) are convex and bounded for every fixed

x > 0. Therefore, Proposition 5.3, applied to w = v∞ completes the proof of

theorem.

Theorem 2. For every x > 0, the expected reward of asset manager is V (x) =

v∞(x) = Eγx
[
e−rτ [v∞]f

(
Xτ [v∞]

)]
and τ [v∞] is an optimal stopping time for equa-

tion 4.2.

Proof. Define τab = inf{t ≤ 0 : Xt ∈ (0, a] ∪ [b,∞)} for every 0 < a < b < ∞.

Ito’s rule gives

e−r(t∧τ∧τab)v∞(Xt∧τ∧τab) = v∞(X0)

+

∫ t∧τ∧τab

0

e−rs(A0 − (r + λγ))v∞(Xs) + λγv∞((1− y0)Xs)ds

+

∫ t∧τ∧τab

0

e−rs(A0 − (r + λγ))v∞(Xs) + λγv∞((1− y0)Xs)σXsdB
γ
s

+

∫ t∧τ∧τab

0

e−rs[v∞((1− y0)Xs−)− v∞(Xs−)(dNs − λγds)]

for every t ≥ 0, τ ≥ 0 and 0 < a < b < ∞. We know that v∞(.) is continuous

and bounded on every compact subintervals of (0,∞), so stochastic integrals of

above equation are martingales and if we take the expectation of both sides we
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get

Eγx[e−r(t∧τ∧τab)v∞(Xt∧τ∧τab)] = v∞(x)

+ Eγx
[ ∫ t∧τ∧τab

0

e−rs(A0 − (r + λγ))v∞(Xs)

+ λγv∞((1− y0)Xs)ds

]
From the variational inequalities (i) and (iii) of Theorem 1 if we have

(A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) ≤ 0

then it means

Eγx[e−r(t∧τ∧τab)v∞(Xt∧τ∧τab)] ≤ v∞(x) (5.4)

for every t ≥ 0, τ ≥ 0 and 0 < a < b <∞. Because lima↓0,b↑∞ τab =∞ and f(x)

is continuous and bounded for every fixed x > 0, we can take the limits of both

sides of equation 5.4 as t ↑ ∞, a ↓ 0, b ↑ ∞ and use the bounded convergence

theorem to get

Eγx[e−rτv∞(Xτ )] ≤ v∞(x)

. By taking supremum of both sides we complete the proof of the first inequality

sup
τ>0

Eγx[e−rτv∞(Xτ )] ≤ v∞(x)

Eγx[e−rτ [v∞]v∞(Xτ [v∞])] ≤ v∞(x).

. We should also prove the reverse inequality and to do this we replace τ and τab

with τ [v∞]. By variational inequality (i) of Theorem 1 we have

(A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) = 0

so we have

Eγx[e−r(t∧τ [v∞])v∞(Xt∧τ [v∞])] = v∞(x)

for every t ≥ 0. Because v∞(x) is bounded and continuous for every x > 0

taking limits as t ↑ ∞ and the bounded convergence theorem together with (iv)

of Theorem 1 gives

Eγx[e−rτ [v∞]v∞(Xτ [v∞])] = v∞(x)

V (x) ≥ Eγx[e−rτ [v∞]f(Xτ [v∞])] = v∞(x)

which completes the proof.
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Special Case: When The Stock is Non-dividend

Paying

We consider the underlying asset with δ = 0 and we will see choosing the un-

derlying asset non-dividend paying changes the optimal stopping strategy. The

stock price has the dynamics

dXt

Xt−
= µdt+ σdBt − y0 (dNt − λdt) .

The stock price is modeled by the equation

Xt = x exp

(
(µ+ λy0)t−

1

2
σ2t+ σBt

)
(1− y0)Nt ,

for t ≥ 0.

The stock price process X has jumps which gives more than one equivalent

martingale measure. Radon-Nikodym derivative gives class of equivalent martin-

gale measures in the form
dPγ

dP

∣∣∣∣
Ft

= ηt

where
dηt
ηt−

= −µ− r
σ

dBt + (γ − 1) (dNt − λdt)

which has the solution

ηt = exp

{
− (γ − 1)λt− µ− r

σ
Bt −

1

2

(µ− r)2

σ2
t

}
γNt ,

t ≥ 0. The Girsanov Theorem shows that Bγ
t = µ−r

σ
t+Bt is a standard Brownian

motion under the probability measure Pγ defined by equation. Here the price

process given by
dXt

Xt−
= rdt+ σdBγ

t − y0 (dNt − λγdt)

Xt = x exp

{
rt+ λγy0t−

1

2
σ2t+ σBγ

t

}
(1− y0)Nt

where Nt is a poisson process with intensity λγ and independent of Bγ
t under the

new measure Pγ.
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Under the probability measure Pγ we should solve

V (x) = sup
τ>0

Eγ
x

[
e−rτ

{
(p−Xτ )

+ + (Xτ − c)+
}]
.

which is a discounted optimal stopping problem with reward function f(x) =

(p− x)+ + (x− c)+.

Let T1, T2, ... be the arrival times of process N . Observe that XTn+1 =

(1− y0)XTn+1− and

XTn+t

XTn

= exp

{(
r + λγy0 −

1

2
σ2

)
t+ σ

(
Bγ
Tn+t
−Bγ

Tn

)}
if 0 ≤ t < Tn+1 − Tn.

Define the standard Brownian motion Bγ,n
t = Bγ

Tn+t
− Bγ

Tn
for every n ≥ 1,

t ≥ 0 and Poisson process T
(n)
k = Tn+k − Tn for k ≥ 0 respectively under P γ and

one dimensional diffusion process

Y y,n
t = y exp

{(
r + λγy0 −

1

2
σ2

)
t+ σBγ,n

t

}
which has the dynamics

Y y,n
0 = y

dY y,n
t

Y y,n
t

= (r + λγy0) dt+ σBγ,n
t .

X coincides with Y
XTn ,n
t on [Tn, Tn+1) and jumps to (1− y0)Y

XTn ,n
Tn+1−Tn at time

Tn+1 for every n ≥ 0. Namely,

XTn+t =

{
Yt
XTn,n if 0 ≤ t < Tn+1 − Tn

(1− y0)Y
XTn,n
Tn+1−Tn if t = Tn+1 − Tn

For an arbitrary but fixed stopping time τ ∈ SB the strategy is

(i) on {τ < T1} stop at time τ.

(ii) on {τ ≥ T1} update X at time T1 to XT1 = (1− y0)Y x
T1

and continue

optimality thereafter.
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The value of this new strategy is

Eγx
[
e−rτf (Xτ ) 1{τ<T1} + e−rT1V

(
(1− y0)Y x

T1

)
1{τ≥T1}

]
= Eγx

e−(r+λγ)τf (Y x
τ ) +

τ∫
0

λγe−(r+λγ)tV ((1− y0)Y x
t ) dt

 .
Let ψ(.) and ϕ(.) be increasing and decreasing solutions of (A0f) (y) −
(r + λγ) f(y) = 0, y > 0 with respect to boundary conditions ψ(0+) = 0

and ϕ(+∞) = 0 where A0 is the infinitesimal generator of the diffusion process

Y x0 = Y x0,0. We have

σ2y2

2
f ′′(y) + (r + λγy0)yf

′(y)− (r + λγ) f(y) = 0

which has two linearly independent solutions ψ(.) and ϕ(.) in the form of yαi for

i = 0, 1. One can explicitly find α0 and α1 from the roots of the characteristic

function g(α) = α(α − 1) + 2
σ2 [(r + λγy0)α− (r + λγ)] of the above ordinary

differential equation. Now we have two solutions ψ(y) = yα1 and ϕ(y) = yα0 for

every y > 0 and note that

α0 < 0 < 1 < α1

because both g(0) < 0 and g(1) < 0. Also note that

α0 + α1 = 1− 2

σ2
(r + λγy0)

α0α1 = − 2

σ2
(r + λγ).

Define the Wronskian

W (y) = ψ′(y)ϕ(y)− ψ(y)ϕ′(y) = (α1 − α0)y
α0+α1−1
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for y > 0.

(f − λγ(Hw))(x) = (p− x)+ + (x− c)+ − λγ
[
ϕ(x)

x∫
0

2ψ(ξ)w ((1− y0) ξ)
p2(ξ)W (ξ)

dξ

+ ψ(x)

∞∫
x

2ϕ(ξ)w ((1− y0) ξ)
p2(ξ)W (ξ)

dξ

]
= (p− x)+ + (x− c)+

− 2λγ

σ2(α1 − α0)

[
xα0

x∫
0

ξ−α0−1w ((1− y0) ξ) dξ

+ xα1

∞∫
x

ξ−α1−1w ((1− y0) ξ) dξ
]

≤ (p− x)+ + (x− c)+

− 2λγ

σ2(α1 − α0)

[
xα0

x∫
0

ξ−α0−1 ((1− y0) ξ − c) dξ

+ xα1

∞∫
x

ξ−α1−1 ((1− y0) ξ − c) dξ
]

≤ (p− x)+ + (x− c)+ − 2λγ

σ2

[
x

1− y0
(1− α0)(α1 − 1)

− c

α0α1

]
≤ (p− x)+ + (x− c)+ − x− λγc

r + λγ

For sufficiently enough large values of x, we have

(f − λγ(Hw))(x) ≤ −c(r + 2λγ)

r + λγ
< 0

and for small enough values of x, we have

(f − λγ(Hw))(x) ≤ p+
λγc

r + λγ
.

Above inequalities together with the boundary conditions ψ(+∞) = ϕ(0+) =

+∞ give the limits

l0 = lim sup
x→0

(f − λγ(Hw))+(x)

ϕ(x)
= 0 l∞ = lim sup

x→∞

(f − λγ(Hw))+(x)

ψ(x)
= 0
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which will guarantee the existence of optimal stopping strategy.

By using proposition 5.5 of Dayanık, we have function (Mw)(.) which is the

smallest nonnegative concave majorant of the function

(Lw)(ζ) =

{
f−λγ(Hw)

ϕ
◦ F−1(ζ) if ζ > 0

0 if ζ = 0

where F (x) = ψ(x)
ϕ(x)

and (Gw)(x) = ϕ(x)(Mw)(F (x)) for x ≥ 0. Furthermore,

(Mw)(0) = 0 and (Mw)(.) is continuous at 0.

In order to explicitly define (Mw)(.), we should observe some important prop-

erties of the function (Lw)(.) First, let’s identify the limiting behavior of (Lw)(x)

for large x values. Let us check

lim
x↑∞

(Lw)(F−1(x)) = lim
x↑∞

(p− x)+ + (x− c)+ − λγEγx
[∞∫
0

e−(r+λγ)tw ((1− y0)Y x
t ) dt

]
xα0

≤ lim
x↑∞

− c(r+2λγ)
r+λγ

xα0

≤ −∞

because of α0 < 0. So we see that (Lw)(+∞) = −∞.
Let us examine the sign of the first derivative as x tends to zero and infinity.

(Lw)′(x) =
d

dx

(
f − λγ(Hw)

ϕ
◦ F−1(x)

)
=

[
1

F ′

(
f − λγ(Hw)

ϕ

)′]
◦ F−1(x)

and because limx↓0 x
α1
∫∞
x
ζ−α1−1w ((1− y0) ζ) dζ = w(+0)/α1 = p/α1 and α1 >

1, we have

lim
x↓0

[
1

F ′

(
f − λγ(Hw)

ϕ

)′]
(F−1(x)) =

x−α1

α1 − α0

[
− 2

λγxα1

σ2

∫ ∞
x

ζ−α1−1w ((1− y0) ζ) dζ

+ (−x− α0(p− x))1{x<p} + (x− α0(x− c))1{x>c}
]

= +∞.
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For large x values, first derivative becomes

lim
x↓0

[
1

F ′

(
f − λγ(Hw)

ϕ

)′]
(F−1(x)) =

x−α1

α1 − α0

[
− 2

λγxα1

σ2

∫ ∞
x

ζ−α1−1w ((1− y0) ζ) dζ

+(−x− α0(p− x))1{x<p}

+(x− α0(x− c))1{x>c}
]

= 0

We should also analyze the sign of the second derivative of (Lw)(F (x)), which is

(Lw)′′(F−1(x)) =
2ϕ(x)

p2(x)W (x)F ′(x)
(A0 − (r + λγ))(f − λγ(Hw))(x)

as Dayanık and Karatzas show. We see that

sgn[(Lw)′′(F (x))] = sgn[(A0 − (r + λγ))(f − λγ(Hw))(x)]

and recall from Lemma 5.1 that A0 − (r + λγ))(Hw)(x) = −w((1− y0)x. So we

have that

A0 − (r + λγ))(h− λγ(Hw))(x) = [λγ(1− y0)x− (r + λγ)p

+ λγw((1− y0)x)]1{x<p}

+ λγw((1− y0)x)1{p≤x≤c}

+ [−λγ(1− y0)x+ (r + λγ)c

+ λγw((1− y0)x)]1{x>c}

Remark 5.4. The function (Lw)(F (x)) is a concave function in some open neigh-

borhood of 0 and convex function in some open neighborhood of +∞.

Proof. Using Lemma 5.1, we get

lim
x↓0

(A0 − (r + λγ))(h− λγ(Hw))(x) ≤ lim
x↓0

[λγ(1− y0)x− (r + λγ)p+

λγ((1− y0)x+ p)]

≤ −rp < 0

and

lim
x↑∞

(A0 − (r + λγ))(h− λγ(Hw))(x) ≥ lim
x↑∞

[−λγ(1− y0)x+ (r + λγ)c+

λγ((1− y0)x− c)]

≥ rc > 0
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Figure 5.2: Possible form of (Lw)(.) and its smallest concave majorant (Mw)(.)
when δ = 0.

The results that are obtained so far concludes that there is a unique number

0 < ζ1[w] < F (p) <∞ such that

(Lw)′(ζ1[w]) = 0.

The smallest concave majorant (Mw)(.) becomes

(Mw)(ζ) =

{
(Lw)(ζ) if ζ ∈ (0, ζ1[w])

(Lw)(ζ1[w]) if ζ ∈ [ζ1[w],+∞).

Let us define x1[w] = F−1(ζ1[w]). By Proposition 5.5 of Dayanık [3], the value
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function 5.1 of the optimal stopping problem equals

(Gw)(x) = ϕ(x)(Mw)(F (x))

=

{
(f − λγ(Hw))(x) if x ∈ (0, x1[w])

(f − λγ(Hw))(x1[w]) if x ∈ [x1[w],+∞).

Optimal stopping time in equation 5.2 becomes

τ [w] = inf{t ≥ 0 : Y x
t ∈ (0, x1[w])}

in the optimal stopping region

Γ[w] = {x > 0 : (Gw)(x) = (f − λγ(Hw))(x)} = (0, x1[w]).

Proposition 5.4. The value function (Gw)(.) satisfies

(i) (A0 − (r + λγ))(Gw)(x) = 0, for x ∈ (x1[w],+∞)

(ii) (Gw)(x) > f(x)− λγ(Hw)(x), for x ∈ (x1[w],+∞)

(iii) (A0 − (r + λγ))(Gw)(x) < 0, for x ∈ (0, x1[w]]

(iv) (Gw)(x) = f(x)− λγ(Hw)(x), for x ∈ (0, x1[w]]

Proof. Proof is similar to the proof of Proposition 5.2

Proposition 5.5. The value function (Jw)(.) satisfies

(i) (A0 − (r + λγ))(Jw)(x) + λγw((1− y0)x) = 0, for x ∈ (x1[w],+∞)

(ii) (Jw)(x) > f(x), for x ∈ (x1[w],+∞)

(iii) (A0 − (r + λγ))(Jw)(x) + λγw((1− y0)x) < 0, for x ∈ (0, x1[w]]

(iv) (Jw)(x) = f(x), for x ∈ (0, x1[w]]

Proof. By Lemma 5.1

(A0(Hw))(x)− (r + λγ)(Hw)(x) = −w((1− y0)x)
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and by definition

(Jw)(x) = λγ(Hw)(x) + (Gw)(x).

These equations and Proposition 5.4 complete the proof.

Theorem 3. The function x 7→ v∞(x) = (Jv∞)(x) satisfies the following varia-

tional inequalities

(i) (A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) = 0, for x ∈ (x1[w],+∞)

(ii) v∞(x) > f(x), for x ∈ (x1[w],+∞)

(iii) (A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) < 0, for x ∈ (0, x1[w]]

(iv) v∞(x) = f(x), for x ∈ (0, x1[w]]

Proof. Every vn(x), n ≥ 0 and v∞(x) are convex and bounded for every fixed

x > 0. Therefore, Proposition 5.5, applied to w = v∞ completes the proof of

theorem.

Theorem 4. For every x > 0, the expected reward of asset manager is V (x) =

v∞(x) = Eγx
[
e−rτ [v∞]f

(
Xτ [v∞]

)]
and τ [v∞] is an optimal stopping time for equa-

tion 4.2.

Proof. Define τa = inf{t ≤ 0 : Xt ∈ (0, a]} for every 0 < a <∞. Ito’s rule gives

e−r(t∧τ∧τa)v∞(Xt∧τ∧τa) = v∞(X0)

+

∫ t∧τ∧τa

0

e−rs(A0 − (r + λγ))v∞(Xs) + λγv∞((1− y0)Xs)ds

+

∫ t∧τ∧τa

0

e−rs(A0 − (r + λγ))v∞(Xs) + λγv∞((1− y0)Xs)σXsdB
γ
s

+

∫ t∧τ∧τa

0

e−rs[v∞((1− y0)Xs−)− v∞(Xs−)](dNs − λγds)

for every t ≥ 0, τ ≥ 0 and 0 < a < ∞. We know that v∞(.) is continuous and

bounded on every compact subintervals of (0,∞), so stochastic integrals of above
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equation are martingales and if we take the expectation of both sides we get

Eγx[e−r(t∧τ∧τa)v∞(Xt∧τ∧τa)] = v∞(x)

+ Eγx
[ ∫ t∧τ∧τa

0

e−rs(A0 − (r + λγ))v∞(Xs)

+ λγv∞((1− y0)Xs)ds

]
From the variational inequalities (i) and (iii) of Theorem 1 if we have

(A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) ≤ 0

then it means

Eγx[e−r(t∧τ∧τa)v∞(Xt∧τ∧τa)] ≤ v∞(x) (5.5)

for every t ≥ 0, τ ≥ 0 and 0 < a < ∞. Because lima↓0 τa = ∞ and f(x) is

continuous and bounded for every fixed x > 0, we can take the limits of both

sides of equation 5.5 as t ↑ ∞, a ↓ 0 and use the bounded convergence theorem

to get

Eγx[e−rτv∞(Xτ )] ≤ v∞(x)

. By taking supremum of both sides we complete the proof of the first inequality

sup
τ>0

Eγx[e−rτv∞(Xτ )] ≤ v∞(x)

Eγx[e−rτ [v∞]v∞(Xτ [v∞])] ≤ v∞(x).

. We should also prove the reverse inequality and to do this we replace τ and τa

with τ [v∞]. By variational inequality (i) of Theorem 1 we have

(A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) = 0

so we have

Eγx[e−r(t∧τ [v∞])v∞(Xt∧τ [v∞])] = v∞(x)

for every t ≥ 0. Because v∞(x) is bounded and continuous for every x > 0

taking limits as t ↑ ∞ and the bounded convergence theorem together with (iv)

of Theorem 3 gives

Eγx[e−rτ [v∞]v∞(Xτ [v∞])] = v∞(x)

V (x) ≥ Eγx[e−rτ [v∞]f(Xτ [v∞])] = v∞(x)

which completes the proof.
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Chapter 6

Numerical Illustrations

In this chapter we present several examples to illustrate the structure of the

solution. As we already see, the dividend rate plays an essential role in the optimal

exercise strategy and the shape of (Lv)(.) function depends on this parameter.

We proved that when δ > 0, the behavior of the (Lv)(.) function is concave for

large x values and goes to plus infinity as x tends to infinity with decreasing

slope. On the other hand, when δ = 0, the function (Lv)(x) is convex for large x

values and decreases to −∞ as x tends to +∞ with decreasing slope.

As we implement our solution method to calculate value functions with com-

puter, we use linear approximation technique to achieve computable integrals.

After each iteration, v(.) increases monotonically as expected and behaves as a

convex function with extremely steep line near 0. This makes integrals impossi-

ble to calculate hence we approximate this function near 0 linearly. Even using

linear approximation does not change the expected behavior of (Lv)(.) and the

smallest concave majorants (Mv)(.). In the implementation of the successive ap-

proximations, we decided to stop the iterations as soon as the maximum absolute

difference between the last two approximations is less than 0.01.

The following four examples are obtained with different parameters. First

figure shows the successive value functions v(.), the second figure shows function
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Figure 1 Figure 2 Figure 3 Figure 4
x 1 1 4 5
p 1 1 1 1
c 2 2 5 5
r 0.1 0.15 0.05 0.2
δ 0.05 0.1 0.0 0.0
σ 0.275 0.275 0.275 0.275
λγ 0.1 0.2 0.1 0.5
y0 0.3 0.1 0.3 0.1

Table 6.1: Parameter values used for the illustrations

(Lw)(.) and the third figure shows the smallest concave majorants (Mw)(.) of

(Lw)(.) with tangent lines. For illustrations we used the parameter sets provided

in the table 6.1.
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Figure 6.1: Value function iterations, corresponding (Lv)(.) functions and their
smallest concave majorants produced with first parameter set. Optimal exercise
region is (0, 0.4925865) ∪ (6.504095,∞)
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Figure 6.2: Value function iterations, corresponding (Lv)(.) functions and their
smallest concave majorants produced with second parameter set. Optimal exer-
cise region is (0, 0.6015621) ∪ (4.46527,∞)46



Figure 6.3: Value function iterations, corresponding (Lv)(.) functions and their
smallest concave majorants produced with third parameter set. Optimal exercise
region is (0, 0.6015621) 47



Figure 6.4: Value function iterations, corresponding (Lv)(.) functions and their
smallest concave majorants produced with fourth parameter set. Optimal exercise
region is (0, 0.51053)
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Figure 6.5: Left critical boundary of optimal stopping region as dividend rate δ
changes.

Figure 6.6: Right critical boundary of optimal stopping region as dividend rate
δ changes. 49



Figure 6.5 and figure 6.6 show the changes in x1[w] and x2[w] respectively as

δ changes. The exponential behavior of x1[w] and x2[w] is observed easily. Other

parameters used to produce the figure are fixed and they are x = 5, p = 1, c = 2,

r = 0.15, σ = 0.275, λγ = 0.2, y0 = 0.1.

We see that optimal behavior of the hedge fund manager changes with the

dividend rate. Specifically, τ [w] = inf{t ≥ 0 : Y x
t ≥ x2[w]} approaches to

+∞ as δ ↓ 0. This result follows from that x2[w] increases exponentially as

dividend rate δ decreases linearly. Therefore, even though decreasing dividend

rate results in higher appreciation rate for stock price process, it will take very

large amount of time for stock price process to catch those large values. For the

left critical boundary x1[w], increasing δ also increases x1[w]. These figures show

that there are two values x∗1[w] and x∗2[w] such that as δ → r, x1[w]→ x∗1[w] and

x2[w] → x∗2[w]. If we define Rδ as the optimal stopping region for a specific δ

when all other variables are constant, we have

Rδ1 ⊂ Rδ2

for any 0 ≤ δ1 < δ2 < r. Therefore, optimal stopping regions have nested

structure as δ increases.
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Chapter 7

Conclusion

Strangle options are widely used against the significant price movements when

the holder of the option is unsure of the direction of the movement. Holding a

long position on strangle option is a classical way of building a volatility strat-

egy. In this thesis, we develop an optimal stopping strategy for an hedge fund

manager who is holding a long position on a perpetual strangle option. During

the solution we used the methodology of Dayanik and Karatzas [3] which decom-

poses the initial value problem into appropriate processes and aims to find the

smallest concave majorant functions to find the boundaries of the continuation

and stopping regions.

Dividend rate has a key role in developing the optimal stopping strategy as

we see that as the dividend rate approaches to the risk free interest rate, we find

bigger optimal stopping region which gives higher chance to exercise the option.

Perpetuality of the strangle option is also an important factor in finding the

exercise time. It is known that American call option on a non dividend paying

stock should never be exercised early. When American call is perpetual i.e when

the maturity time T ↑ ∞, it will not be exercised ever. (see [8]) For perpetual

strangles, things are different because these contracts contain both a put side and

a call side. Holders of strangles have another reason to exercise early due to the
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put side in addition to dividend rate. The optionality to exercise the call side is

forfeited if the lower exercise boundary is hit first.
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Appendix A

Parameters and Code

A.1 Parameters and Functions

We present the R code used for obtaining the graphics in Chapter 6 when δ > 0

and δ = 0. The parameters used in this code are

x0: Initial endowment

r: Risk-free interest rate

sigma: Volatility of portfolio rate of return

delta: Dividend rate

p: Strike price of put option

c: Strike price of call option

lg: Lambda times gamma, the frequency of jumps after probability measure

change

y0: The fraction of value that portfolio losses at each jump times

The functions used in this code are
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phi.fun(x): Computes xα0

psi.fun(x): Computes xα1

F.fun(x): Computes xα1
xα0

invF.fun(y): Computes the inverse function F−1(y) = y
1

α1−α0

f.fun(x): Computes the payoff of the strangle option (p− x)+ + (x− c)+

H.op(w): This function computes (Hw)(x) = 2
σ2(α1−α0)

[
xα0
∫ x
0
ζ−1−α0w((1 −

y0)ζ)dζ + xα1
∫∞
x
ζ−1−α1w((1− y0)ζ)dζ

]
L.op(w): This function computes (Lw)(x) = (f−λγ(Hw))

φ
(F−1(x))
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A.2 Code

1 rm( l i s t=l s ( ) )

2 setwd (”/ Users / aysegu lonat /Desktop/ThesisTemplate / code ”)

3 l i b r a r y ( f d r t o o l )

4

5 wr i t epd f=c (TRUE,FALSE) [ 1 ]

6

7 ##Parameters

8 x0 = 1 #i n i t i a l endowment

9 r = 0 .15 #r i sk−f r e e i n t e r e s t r a t e

10 sigma = 0.275 # v o l a t i l i t y o f p o r t f o l i o r a t e o f r e turn

11 de l t a = 0 .1 # div idend ra t e

12 p = 1 # s t r i k e p r i c e o f put opt ion

13 c = 2 # s t r i k e p r i c e o f c a l l opt ion

14 l g = 0 .2 # lambda times gamma

15 y0 = 0 .1 # percentage l o s s upon jump

16

17 a=sigmaˆ2

18 b=(r−de l t a+lg ∗y0 )∗2−sigmaˆ2

19 cc=−2∗(r+l g )

20

21 alpha0= (−b−s q r t (bˆ2−4∗a∗ cc ) ) /(2∗ a )
22 alpha1= (−b+sq r t (bˆ2−4∗a∗ cc ) ) /(2∗ a )
23

24 phi . fun = func t i on (x ) xˆ alpha0

25 p s i . fun = func t i on (x ) xˆ alpha1

26 F. fun = func t i on (x ) {xˆ( alpha1−alpha0 ) }
27 invF . fun = func t i on (y ) y ˆ(1/( alpha1−alpha0 ) )
28 f . fun = func t i on (x ) pmax(p−x , 0 )+pmax(x−c , 0 )
29 t o l e r an c e = 1/100

30 max . i t e r = 5

31

32 ## Place g r i d s on x− and zeta−axes
33 ub . x = 10∗x0
34 ub . ze ta = F. fun (ub . x )

35 number . o f . g r i d . po in t s . b e f o r e .F . o f . p = 1000

36 number . o f . g r i d . po in t s . between .F . o f . p . and . c = 1000

37 number . o f . g r i d . po in t s . a f t e r .F . o f . c = 1000

38 g r id . on . ze ta = unique ( c (
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39 seq ( from=0, to=F. fun (p) , l ength . out=

40 number . o f . g r i d . po in t s . b e f o r e .F . o f . p ) ,

41 seq ( from=F. fun (p) , , to=F. fun ( c ) , l ength . out=

42 number . o f . g r i d . po in t s . between .F . o f . p . and . c ) ,

43 seq ( from=F. fun ( c ) , to=ub . zeta , l ength . out=

44 number . o f . g r i d . po in t s . a f t e r .F . o f . c ) ) )

45 g r id . on . ze ta = t a i l ( g r id . on . zeta ,−1)
46 g r id . on . x = invF . fun ( g r id . on . ze ta )

47

48 ## H operator de f ined

49 H. op = func t i on (w) {
50 f unc t i on (x ) {
51 f = func t i on ( zeta , alpha ) ( ze taˆ{−1−alpha }) ∗w((1−y0 ) ∗ ze ta )
52 r e s = c ( )

53 f o r ( i in ( 1 : l ength (x ) ) ) {
54 i f ( x [ i ]==0) {
55 r e s = c ( res , p/( r+lg ) )

56 } e l s e {
57 r e s=c ( res ,

58 ( 2/ ( ( sigma ˆ2) ∗( alpha1−alpha0 ) ) ) ∗
59 ( ( x [ i ] ˆ alpha0 ) ∗ i n t e g r a t e ( f=f , lower=0,upper=x [ i ] ,

60 alpha=alpha0 , s ubd i v i s i o n s =2000) $value+

61 ( x [ i ] ˆ alpha1 ) ∗ i n t e g r a t e ( f=f , lower=x [ i ] , upper=Inf ,

62 alpha=alpha1 , s ubd i v i s i o n s =2000) $value

63 )

64 )

65 }
66 }
67 re turn ( r e s )

68 }
69 }
70

71 L . op = func t i on (w) {
72 f unc t i on ( ze ta ) { ( f . fun ( invF . fun ( zeta ) )−l g ∗H. op (w) ( invF . fun ( zeta )

) )

73 /phi . fun ( invF . fun ( zeta ) ) }
74 }
75

76 f i l ename = s p r i n t f (” de l ta1 −2”, d e l t a )
77 save . image ( paste ( f i l ename , ” . RData” , sep=””) )
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78 l i b r a r y ( g r id )

79 l i b r a r y ( gr idBase )

80 i f ( wr i t epd f )

81 pdf ( paste ( f i l ename , ” . pdf ” , sep=””) , paper=”a4r ” , width=0, he ight=0)

82 upp=5

83 par (mfrow=c (1 , 1 ) ,mar=c (3 , 3 , 0 , 0 ) , cex =1.05)

84 l egend . t ex t = c ( expr e s s i on ( i t a l i c ( v [ 0 ] ( x )%==%h(x ) ) ) )

85 p lo t ( f . fun , xlim=c (0 , upp ) , ylim=c (0 , upp ) , ylab=””, xlab=””,

86 lwd=2)

87 t i t l e ( xlab=expr e s s i on ( i t a l i c ( x ) ) , l i n e =1.5)

88 o ld .w. on . g r id = f . fun ( g r id . on . x )

89

90 l i s t . o f . o b s t a c l e s = l i s t ( )

91 l i s t . o f . concave . majorants = l i s t ( )

92

93 stop . i t e r a t i o n = FALSE

94 i = 1

95 pr in t ( i )

96 L . fun . on . g r id =

97 ( f . fun ( g r id . on . x )−l g ∗H. op ( f . fun ) ( g r id . on . x ) ) / phi . fun ( g r id . on . x )

98

99 l i s t . o f . o b s t a c l e s = c ( l i s t . o f . ob s ta c l e s ,

100 l i s t ( l i s t (

101 fun=approxfun ( g r id . on . zeta ,L . fun . on . gr id , r u l e =2:2)

102 ##fun=sp l i n e f un ( g r id . on . zeta , L . fun . on . gr id ,

103 method=”natura l ”)

104 ) ) )

105

106 r e s . lcm = gcmlcm( gr id . on . zeta ,

107 L . fun . on . gr id , type=”lcm”)

108

109 M. x = re s . lcm$x . knots

110 M. y = re s . lcm$y . knots

111 lcm . fun = approxfun (x=M. x , y=M. y , r u l e =2:2)

112 zeta1 = max( r e s . lcm$x . knots [ r e s . lcm$x . knots < F. fun ( x0 ) ] )

113 zeta2 = min ( r e s . lcm$x . knots [ r e s . lcm$x . knots > F. fun ( x0 ) ] )

114 pr in t ( invF . fun ( zeta1 ) )

115 pr in t ( invF . fun ( zeta2 ) )

116 l i s t . o f . concave . majorants = c ( l i s t . o f . concave . majorants ,

117 l i s t ( l i s t ( fun=lcm . fun ,
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118 boundar ies=c ( zeta1 , zeta2 ) ) ) )

119

120 t = func t i on (x ) pmax(p−x , 0 )
121

122 z = approxfun ( g r id . on . x ,

123 l g ∗H. op ( f . fun ) ( g r id . on . x )+phi . fun ( g r id . on . x ) ∗ lcm . fun (F . fun ( g r id .

on . x ) ) ,

124 r u l e =2:2)

125

126 w=func t i on (x ) pmax( f . fun (x ) , z ( x ) )

127

128 p lo t (w, xlim=c (0 , upp ) , ylim=c (0 , upp ) , ylab=””, xlab=””,

129 lwd=2, c o l=i +1, add=TRUE)

130 ab l i n e ( v=invF . fun ( c ( zeta1 , zeta2 ) ) , l t y=”dashed ” , c o l=i +1,

131 lwd=2)

132 l i s t . o f . approximations = l i s t (

133 l i s t ( fun=w,

134 boundar ies=c (NA,NA) ) )

135 l i s t . o f . approximations [ [ i ] ] $boundar ies = invF . fun ( c ( zeta1 , zeta2 ) )

136 l i s t . o f . approximations = c ( l i s t . o f . approximations ,

137 l i s t ( l i s t ( fun=w,

138 boundar ies=c (NA,NA) ) ) )

139

140 whi le ( ! stop . i t e r a t i o n ) {
141

142 i = i + 1

143 pr in t ( i )

144

145 L . fun . on . g r id = ( f . fun ( g r id . on . x )−l g ∗H. op (w) ( g r id . on . x ) ) /

146 phi . fun ( g r id . on . x )

147

148 l i s t . o f . o b s t a c l e s = c ( l i s t . o f . ob s ta c l e s ,

149 l i s t ( l i s t (

150 fun=approxfun ( g r id . on . zeta ,L . fun . on . gr id , r u l e =2:2)

151 ) ) )

152 r e s . lcm = gcmlcm( gr id . on . zeta ,

153 L . fun . on . gr id , type=”lcm”)

154

155 M. x = re s . lcm$x . knots

156 M. y = re s . lcm$y . knots
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157 lcm . fun = approxfun (x=M. x , y=M. y , r u l e =2:2)

158 zeta1 = max( r e s . lcm$x . knots [ r e s . lcm$x . knots < F. fun ( x0 ) ] )

159 zeta2 = min ( r e s . lcm$x . knots [ r e s . lcm$x . knots > F. fun ( x0 ) ] )

160 pr in t ( invF . fun ( zeta1 ) )

161 pr in t ( invF . fun ( zeta2 ) )

162

163 l i s t . o f . concave . majorants = c ( l i s t . o f . concave . majorants ,

164 l i s t ( l i s t ( fun=lcm . fun ,

165 boundar ies=c ( zeta1 , zeta2 ) ) ) )

166

167 z = approxfun ( g r id . on . x , l g ∗H. op (w) ( g r id . on . x )+

168 phi . fun ( g r id . on . x ) ∗ lcm . fun (F . fun ( g r id . on . x ) ) ,

169 r u l e =2:2)

170

171 w=func t i on (x ) pmax( f . fun (x ) , z ( x ) )

172

173 p lo t (w, xlim=c (0 , upp ) , ylim=c (0 , upp ) , ylab=””,

174 xlab=””, c o l=i +1, lwd=2, add=TRUE)

175 ab l i n e ( v=invF . fun ( c ( zeta1 , zeta2 ) ) , l t y=”dashed ” ,

176 c o l=i +1, lwd=2)

177

178 l egend . t ex t = c ( legend . text , s ub s t i t u t e ( i t a l i c ( v [ s ] ( x ) ) , l i s t ( s=

i −1) ) )
179

180 l i s t . o f . approximations [ [ i ] ] $boundar ies = invF . fun ( c ( zeta1 , zeta2 ) )

181 l i s t . o f . approximations = c ( l i s t . o f . approximations ,

182 l i s t ( l i s t ( fun=w,

183 boundar ies=c (NA,NA) ) ) )

184

185 new .w. on . g r id = w( gr id . on . x )

186 max . d i f f = max( abs (new .w. on . gr id−o ld .w. on . g r id ) )

187 i f ( (max . d i f f < t o l e r an c e ) | ( i > max . i t e r ) ) {
188 stop . i t e r a t i o n = TRUE

189 }
190 e l s e

191 o ld .w. on . g r id = new .w. on . g r id

192 }
193

194 l egend (x=0.5 ,y=1.6 , l egend=legend . text ,

195 c o l=c ( 1 : l ength ( l i s t . o f . approximations ) ) ,
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196 l t y=”s o l i d ” , lwd=2,

197 ##l t y=c ( 1 : l ength ( l i s t . o f . approximations ) ) ,

198 bty=”n”)

199

200 ##############################################

201

202 upper=10000

203 l egend . t ex t = c ( expr e s s i on ( i t a l i c (Lv [ 0 ] ( ze ta ) ) ) )

204

205 p lo t ( l i s t . o f . o b s t a c l e s [ [ 1 ] ] $fun , xl im=c (0 , upper ) , y lab=””, xlab=””,

206 lwd=2)

207 t i t l e ( xlab=expr e s s i on ( i t a l i c ( ze ta==F(x ) ) ) , l i n e =2)

208 i f ( l ength ( l i s t . o f . o b s t a c l e s )>1) {
209 f o r ( i in ( 2 : l ength ( l i s t . o f . o b s t a c l e s ) ) ) {
210 p lo t ( l i s t . o f . o b s t a c l e s [ [ i ] ] $fun , xl im=c (0 , upper ) , ylab=””, xlab

=””,

211 c o l=i , lwd=2,

212 ##l t y=i ,

213 add=TRUE)

214

215 l egend . t ex t = c ( legend . text ,

216 s ub s t i t u t e ( i t a l i c (Lv [ s ] ( ze ta ) ) , l i s t ( s=i −1) ) )
217

218 }
219 }
220

221 l egend (” t o p l e f t ” , l egend=legend . text ,

222 c o l=c ( 1 : l ength ( l i s t . o f . o b s t a c l e s ) ) ,

223 l t y=”s o l i d ” , lwd=2,

224 ##l t y=c ( 1 : l ength ( l i s t . o f . o b s t a c l e s ) ) ,

225 bty=”n”)

226 #### s t a r t drawing i n s e t

227

228 vp <− baseViewports ( )

229 pushViewport ( vp$inner , vp$ f igure , vp$plot )

230

231 ## push viewport that w i l l conta in the i n s e t

232 pushViewport ( viewport ( x=1/3 ,y=0.06 , width=1.95/3 ,

233 he ight =.5 , j u s t=c (” l e f t ” ,” bottom”) ) )

234
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235 g r id . r e c t ( gp=gpar ( f i l l =”white ”) )

236

237 ## now e i t h e r d e f i n e viewport to conta in the whole i n s e t f i g u r e

238 ##par ( f i g=gridFIG ( ) ,new=T) ## or gridPLT ( )

239 ## . . . or j u s t the p l o t t i n g are ( coord inate system )

240 par ( p l t=gridPLT ( ) ,new=T)

241

242 ## draw frame around s e l e c t e d area ( f o r i l l u s t r a t i o n only )

243 ##gr id . r e c t ( gp=gpar ( lwd=3, c o l=”red ”) )

244

245 ## plo t i n s e t f i g u r e

246 ##plo t ( , xaxs=” i ” , yaxs=” i ” , xlab=””, ylab=””, cex . ax i s =0.7 ,

247 ## xaxt=”n”)

248

249 p lo t ( l i s t . o f . o b s t a c l e s [ [ 1 ] ] $fun , xl im=c ( 0 , 0 . 5 ) , ylab=””, xlab=””,

250 lwd=2)

251 i f ( l ength ( l i s t . o f . o b s t a c l e s )>1) {
252 f o r ( i in ( 2 : l ength ( l i s t . o f . o b s t a c l e s ) ) ) {
253 p lo t ( l i s t . o f . o b s t a c l e s [ [ i ] ] $fun , xl im=c ( 0 , 0 . 5 ) , ylab=””, xlab=””,

254 c o l=i , lwd=2, cex . ax i s = 0 . 7 , add=TRUE)

255 ##l t y=i ,

256 }
257 }
258

259 ## pop a l l v iewports from stack

260 popViewport (1 )

261 par ( p l t=gridPLT ( ) )

262 popViewport (3 )

263

264 #################################################

265

266 l egend . t ex t = c ( expr e s s i on ( i t a l i c (Mv[ 0 ] ( ze ta ) ) ) )

267

268 p lo t ( l i s t . o f . o b s t a c l e s [ [ 1 ] ] $fun , xl im=c (0 , upper ) , y lab=””, xlab=””,

269 l t y=”dashed ” , lwd=2)

270 p lo t ( l i s t . o f . concave . majorants [ [ 1 ] ] $fun , xl im=c (0 , upper ) ,

271 ylab=””, xlab=””,

272 lwd=2,add=TRUE)

273 t i t l e ( xlab=expr e s s i on ( i t a l i c ( ze ta==F(x ) ) ) , l i n e =2)

274 i f ( l ength ( l i s t . o f . o b s t a c l e s )>1) {
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275 f o r ( i in ( 2 : l ength ( l i s t . o f . o b s t a c l e s ) ) ) {
276 p lo t ( l i s t . o f . o b s t a c l e s [ [ i ] ] $fun , xl im=c (0 , upper ) , ylab=””, xlab=””,

277 c o l=i , lwd=2, l t y=”dashed ” ,

278 ##l t y=i ,

279 add=TRUE)

280 p lo t ( l i s t . o f . concave . majorants [ [ i ] ] $fun , xl im=c (0 , upper ) , ylab=””,

281 xlab=””,

282 c o l=i , lwd=2,

283 ##l t y=i ,

284 add=TRUE)

285 ab l i n e ( v=l i s t . o f . concave . majorants [ [ i ] ] $boundaries , l t y=”dashed ” ,

286 c o l=i ,

287 lwd=2)

288 ## legend . t ex t = c ( legend . text , s p r i n t f (” suc . app . %d” , i −1) )
289

290 l egend . t ex t = c ( legend . text , s ub s t i t u t e ( i t a l i c (Mv[ s ] ( ze ta ) ) ,

291 l i s t ( s=i −1) ) )
292

293 }
294 }
295

296 mtext ( t ex t=sub s t i t u t e ( ze ta [ 1 ] ˜ group ( ” [ ” , v [ s ] , ” ] ” ) , l i s t ( s=i −1) ) ,
297 at=l i s t . o f . concave . majorants [ [ i ] ] $boundar ies [ 1 ] ,

298 s i d e =1, l i n e =0.3 , cex =.8 ,

299 c o l=i )

300 mtext ( t ex t=sub s t i t u t e ( ze ta [ 2 ] ˜ group ( ” [ ” , v [ s ] , ” ] ” ) , l i s t ( s=i −1) ) ,
301 at=l i s t . o f . concave . majorants [ [ i ] ] $boundar ies [ 2 ] ,

302 s i d e =1, l i n e =0.3 , cex =.8 ,

303 c o l=i )

304

305 mtext ( t ex t=expr e s s i on ( i t a l i c (F( l ) ) ) , at=F . fun (0 ) , s i d e =1,

306 l i n e =−1.0, adj=0, cex=.8)

307

308 l egend (” t o p l e f t ” , l egend=legend . text ,

309 c o l=c ( 1 : l ength ( l i s t . o f . o b s t a c l e s ) ) ,

310 l t y=”s o l i d ” , lwd=2,

311 ##l t y=c ( 1 : l ength ( l i s t . o f . o b s t a c l e s ) ) ,

312 bty=”n”)

313 #### s t a r t drawing i n s e t

314
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315 vp <− baseViewports ( )

316 pushViewport ( vp$inner , vp$ f igure , vp$plot )

317

318 ## push viewport that w i l l conta in the i n s e t

319 pushViewport ( viewport ( x=1/3 ,y=0.06 ,

320 width=1.95/3 , he ight =.5 ,

321 j u s t=c (” l e f t ” ,” bottom”)

322 ) )

323

324 g r id . r e c t ( gp=gpar ( f i l l =”white ”) )

325

326 ## now e i t h e r d e f i n e viewport to conta in the whole i n s e t f i g u r e

327 ##par ( f i g=gridFIG ( ) ,new=T) ## or gridPLT ( )

328 ## . . . or j u s t the p l o t t i n g are ( coord inate system )

329 par ( p l t=gridPLT ( ) ,new=T)

330

331 ## draw frame around s e l e c t e d area ( f o r i l l u s t r a t i o n only )

332 ##gr id . r e c t ( gp=gpar ( lwd=3, c o l=”red ”) )

333

334 ## plo t i n s e t f i g u r e

335 ##plo t ( , xaxs=” i ” , yaxs=” i ” , xlab=””, ylab=””, cex . ax i s =0.7 ,

336 ## xaxt=”n”)

337

338 p lo t ( l i s t . o f . o b s t a c l e s [ [ 1 ] ] $fun , xl im=c ( 0 , 0 . 5 ) , ylab=””, xlab=””,

339 l t y=”dashed ” , lwd=2)

340 p lo t ( l i s t . o f . concave . majorants [ [ 1 ] ] $fun , xl im=c ( 0 , 0 . 5 ) , ylab=””,

341 xlab=””,

342 lwd=2,add=TRUE)

343

344 i f ( l ength ( l i s t . o f . o b s t a c l e s )>1) {
345 f o r ( i in ( 2 : l ength ( l i s t . o f . o b s t a c l e s ) ) ) {
346 p lo t ( l i s t . o f . o b s t a c l e s [ [ i ] ] $fun , xl im=c ( 0 , 0 . 5 ) , ylab=””, xlab=””,

347 c o l=i , lwd=2, l t y=”dashed ” ,

348 ##l t y=i ,

349 add=TRUE)

350 p lo t ( l i s t . o f . concave . majorants [ [ i ] ] $fun ,

351 xlim=c ( 0 , 0 . 5 ) , y lab=””, xlab=””,

352 c o l=i , lwd=2,add=TRUE)

353 ##l t y=i )

354 ab l i n e ( v=l i s t . o f . concave . majorants [ [ i ] ] $boundaries ,
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355 l t y=”dashed ” , c o l=i ,

356 lwd=2)

357 }
358 }
359

360 mtext ( t ex t=sub s t i t u t e ( ze ta [ 1 ] ˜ group ( ” [ ” , v [ s ] , ” ] ” ) , l i s t ( s=i −1) ) ,
361 at=l i s t . o f . concave . majorants [ [ i ] ] $boundar ies [ 1 ] ,

362 s i d e =1, l i n e =0.1 , cex =.8 ,

363 c o l=i )

364

365 ## pop a l l v iewports from stack

366 popViewport (1 )

367 par ( p l t=gridPLT ( ) )

368 popViewport (3 )

369 ##############################################

370

371 par (mfrow=c (1 , 1 ) )

372 i f ( wr i t epd f ) dev . o f f ( )
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