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ABSTRACT

A MULTI-MODAL DISCRETE-EVENT SIMULATION MODEL FOR
MILITARY DEPLOYMENT

Ugur Ziya Yildirim
Ph.D. in Industrial Engineering
Supervisors: Prof. Barbaros C. Tansel
Prof. Thsan Sabuncuoglu
January 2009

This study introduces a logistics and transportation simulation as a tool that can
be used to provide insights into potential outcomes of proposed military deployment
plans. More specifically, we model a large-scale real-world military Deployment
Planning Problem (DPP) that involves planning the movement of military units from
their home bases to their final destinations using different transportation assets on a
multimodal transportation network. We apply, for the first time, the Event Graph
methodology and Listener Event Graph Object framework to create a discrete event
simulation (DES) model of the DPP. We use and extend Simkit, an open-source Java
Application Programming Interface for creating DES models. The high-resolution
approach that we take in most part, allows us to estimate whether a given plan of
deployment will go as intended, and determine prospective problem areas in a
relatively short time compared to other existing simulations because of the absence of
the need to use several models of differing resolutions in succession as often done in
literature. For a typical deployment scenario for four battalions, run times are between
25 to 27 minutes for 60 runs of the model on a 1.6 GHz Pentium(R) M PC with 512 MB

RAM. That is less than 30 seconds per run.



To accurately incorporate real and detailed transportation network data into the
simulation, we use GeoKIT, a state-of-the-art, Java-based Geographical Information
System. The component-based approach adopted in development of our simulation
model enables us to easily integrate future additions to our model. The DES developed
as part of this dissertation provides a test bed for currently existing deployment
scenarios. While our DES model is not a panacea for all, it allows for testing the
feasibility and sensitivity of deployment plans under stochastic conditions prior to
committing members of the military into harm’s way.

Our main contribution is to develop a comprehensive, multi-modal, high-
resolution, loosely-coupled and modular, extendable, platform independent, state-of-
the-art GIS based simulation environment that views the deployment operations as
end-to-end processes. Such a simulation environment for multi modal deployment
planning and analysis does not exist.

Additionally, we simulate and analyze a typical real-world case study by using
conventional methods and the rather novice Nearly Orthogonal Latin Hypercube Sampling
(NOLHS) technique. We use a space-filling nearly orthogonal design of 29 factors and
257 runs to determine the factors that impact most on a deployment plan. We make 15
replications of each of the 257 runs (scenarios) to reach a total of 257x15=3855 computer
runs compared to an experiment with 29 factors, each with only 2 levels and 15
replications per run, for a complete enumeration experiment (2% x15= 8,053,063,680

computer runs!).

Keywords: discrete-event simulation; military deployment; event graphs; java;
geographical information system, nearly orthogonal latin hypercube

sampling.



OZET

ASKERI BIRLIKLERIN INTIKALI iCIN COK-MODLU BIiR KESIKLI
OLAY SIMULASYONU

Ugur Ziya Yildirim
Endiistri Mithendisligi Boliimii Doktora
Tez YOneticisi: Prof. Barbaros C. Tansel
Prof. Thsan Sabuncuoglu
Ocak 2009

Bu tezde, askeri intikal planlarinin muhtemel sonuglarina 1sik tutabilecek bir
lojistik ve ulastirma simiilasyon modeli tanitilmaktadir.  Daha detayli olarak
bahsedecek olursak, gercek hayatta karsilasilan ve ¢ok modlu bir ulastirma agini
kullanarak kislalarindan hedef bolgelerine intikal eden biiyiik ¢apl askeri birliklerin
intikal problemini modellemekteyiz. Ilk defa olarak, Event Graphs (Olay Grafikleri) ve
Listener Event Graph Objects (Dinleyen Olay Grafigi Nesneleri) altyapisini kullanarak
intikal problemininin simiilasyon modelini olusturduk. Kesikli olay simiilasyon
modelimizi gelistirirken, bir acgik kaynak Java Uygulama Programlama Arayiizii olan
Simkit'i kullandik ve ilaveler yaptik. Cogunlukla kullandigimiz ¢ok c¢oziintirli
yaklasim sayesinde, bir intikal planinin arzu edildigi sekilde yiiriiylip yiirtimeyecegini
ve muhtemel problem sahalarini ne olabilecegini, literatiirde genelde kullanilmakta
olan farkli ¢oziintirlii modellerin ardisik ¢alistirilmas: yaklasimina nazaran daha ¢abuk
bir sekilde belirleyebilmekteyiz. ~Dort taburun intikalini igeren tipik bir intikal
senaryosu modelinin 1.6 GHz Pentium(R) M o6zelliklerinde ve 512 MB RAM igeren bir
bilgisayarda 60 defa galistirilmasi 25 ile 27 dakika arasinda siirdii. Bu ¢alistirma basina

30 saniyeye tekabiil etmektedir.



Ulastirma agina ait gercek ve detayli bilgileri simiilasyon modelinde
kullanabilmek maksadiyla, teknolojinin son yeniliklerini igeren Java tabanli bir cografi
bilgi sistemi yazilimi olan GeoKIT'i kullandik. Simiilasyon modelimizi gelistirirken
kullandigimiz modiiler yaklasim gelecekte yeni modiillerin kolayca eklenmesini
saglamaktadir. Bu tezin bir parcasi olarak gelistirilen kesikli olay simiilasyonu mevcut
intikal senaryolar: igin bir test ortami yaratmaktadir. Her ne kadar gelistirdigimiz
kesikli olay simiilasyon modeli askeri intikale ait tiim sorunlarin panzehiri olmasada,
askeri personeli tehlikeye atmadan once intikal planlarmin fizibilite ve duyarlilik
analizlerini stokastik bir ortamda deneme firsat1 sunmaktadir.

En biiytik katkimiz kapsamli, cok modlu, yiiksek ¢oziintirlii, esnek ve modiiler,
gelistirilebilir, degisik donanimlar tizerinde galisabilen, teknolojinin son yeniliklerine
sahip bir cografi bilgi sistemi yazilimi {izerinde calisan ve intikali bastan sona
modelleyen bir simiilasyon ortami yaratmamizdir. Cok modlu intikal planlamas: ve
analizi i¢in boyle bir simiilasyon ortami bulunmamaktadir.

Ayrica, tipik bir gergek diinya probleminin simiilasyon modelini klasik ve heniiz
nispeten yeni ortaya konmus bir yontem olan Nearly Orthogonal Latin Hypercube
Sampling (Yaklasik Dikey Latin Hiperkiip Orneklemesini) kullanarak analiz ettik. 29 faktor
ve 257 farkl faktor seviyesi (senaryo) igeren, orneklem uzayini dolduran ve yaklasik
dikey bir tasarim kullandik. Her senaryo igin 15 tekrar yaparak modeli bilgisayarda
257x15=3855 defa calistirdik. Bunu tiim alternatifleri deneyen ve sadece ikiser seviye
iceren 29 faktorlii bir tasarimda onbeger tekrarli bir deneyle kiyaslarsak, o zaman

modeli bilgisayarda 2% x15= 8,053,063,680 defa calistirmamiz gerekecekiti.

Anahtar sozciikler:  kesikli olay simiilasyonu; askeri intikal; olay grafikleri; java; cografi

bilgi sistemi; yaklasik dikey latin hiperkiip 6rneklemesi.
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1. INTRODUCTION

In this chapter, we give an overview of the problem, define the problem and the
system, present the background information, and give the purpose and rationale behind
our work.

1.1. OVERVIEW

Regional and asymmetric threats and the increase in worldwide terrorist activity
have made logistics and mobility increasingly important in our rapidly changing world.
This study focuses on logistics and transportation simulations or computer-based
planning tools that are used to provide insight into the potential outcomes of proposed
logistical courses of actions prior to and after committing members of the military into
harm’s way. Specifically, we deal with the Deployment Planning Problem (DPP),
defined and thoroughly described first by Akgiin and Tansel (2007). DPP involves
positioning of many military units to carry out a mission. During peace time, military
units move from their home bases to their designated destinations using different
transportation assets. This movement usually takes place on a multimodal (land, rail,
sea, air, and inland waterways) transportation network. During a crisis, where time is
of essence, it becomes critical to move troops and equipment with limited resources and
on a short notice. The movement of the units must conform to a preplanned time-table
called time-phased force deployment data (TPFDD). The TPFDD describes, among

other things, the initial departure times of military units from their home bases, and



their earliest and latest arrival times at their designated destinations. When many units
need to deploy, the TPFDD is intended to coordinate their movement in order to
efficiently use the existing transportation assets and network. It is also meant to
prevent congestion at destinations and transfer points, where mode changes are
necessary. Yet, creating TPFDD requires joint work of well-trained logistical and
operational planners, and is very time consuming. Military deployment planners need
a fast and accurate tool that takes into account the stochastic nature of events to analyze
a military deployment plan.

A deployment plan may not always go as initially planned. Unexpected
breakdown of transportation assets, road traffic accidents, and congestion at transfer
points are some of the events that may disrupt a plan. A deployment involves
simultaneous movement and utilization of many entities, resources, and transportation
assets. Thus, a stochastic model is more suitable for analyzing this truly hard real-
world problem that deals with expensive military hardware and irreplaceable human
life.

Existing models and simulations are of varying resolutions. Most of the time,
higher-resolution models provide input to the lower-resolution models. This makes it
necessary to run several models in succession for analysis. But such a set-up takes a
long time. Almost all of the deployment related models require a specific hardware

system to run on. Yet, military usually employs different hardware systems, and thus it



would be useful to have models or simulations which can run on multiple platforms. A
detailed and accurate representation of the transportation network and infrastructure is
necessary for realistic analysis. Thus, there is a need for a geographical information
system to be used with deployment models or simulations. Currently existing models
or simulations either do not have this capability or have a limited representation of
geographical information. Furthermore, not all transportation modes are modeled in all
deployment models or simulations, which makes it necessary to run at least two models
in succession for a large deployment scenario. This again increases set-up and run
times. Thus, it is desirable to have a multi-modal simulation model.

For these reasons, we have decided to develop a multi-modal, platform-
independent, discrete-event simulation model of military deployment with accurate
transportation network and infrastructure data, and a high-resolution except at transfer
points, allowing planners to develop and analyze plans in a relatively short time.

1.2. PROBLEM AND SYSTEM DEFINITION

The DPP is fully described in Akgiin and Tansel (2007). Most of the following is
borrowed from their description and rephrased as necessary.

The DPP deals with the movement of many military units from their Areas of
Responsibilities (home bases) to their Tactical Assembly Areas (final destinations). The
movement could be either an intra-theater or an inter-theater type. Intra-theater

movement can be regarded as the movement of units using different modes of



transportation (e.g., land, sea, air, and rail) inside a country’s borders. Inter-theater
movement refers to the movement of units between countries using air and sea assets
(strategic deployment). Once the units reach the destination country, then other
available modes of transportation can be utilized inside that country. In this context,
the terms “theater” and “country” are used synonymously.

During intra-theater movement, a unit may go directly from its home base to its
final destination throughout the entire journey using a single mode of transportation
assets (TAs) on a given mode of transportation network that supports the movement of
the TAs under consideration. It may also use in succession any of land, rail, sea, or air
transportation networks and the TAs dedicated to them, making mode changes as
necessary along the way. However, the fewer the mode changes are at transfer points,
the easier is the deployment. If a transfer is necessary, the initial movement from home
bases is by ground transportation to a transfer point (a location where the movement
switches from one mode of transportation to another). Main transfer points are harbors,
train stations, and airports. At these locations, the pax (troops) and cargo (weapon
systems, material, equipment, and supplies) of a unit are transferred from one set of
TAs to another set that operate on a different network. This location is also called a Port
of Embarkation (POE). The next mode change location, where the items are offloaded
and loaded onto another set of TAs is called a Port of Debarkation (POD). These may

be sea, rail, and air POEs or PODs. Inter-theater movement differs from intra-theater



movement only by its use of strategic lift (air and sea) assets to reach the next theater of
operations (Akgiin and Tansel, 2007).

At transfer points, units usually queue up before being loaded on vessels. This
location is called a staging area where units wait and prepare for shipment. A staging
area can be regarded as a service point, i.e. one with a certain capacity of material
handling equipment and load/unload docks. When there is not enough capacity at a
staging area to hold large number of deploying units, a marshalling area is operated. A
marshalling area can be regarded as a waiting/parking place prior to entering the
staging area. It helps provide an uninterrupted flow of items through their transfer
points. Staging/Marshalling areas are also operated at home bases and destinations
(Akgiin and Tansel, 2007).

A unit may be divided into three components (forward party, pax party, and
cargo party) during deployment. Ground movement is usually conducted in convoys
to maintain the unity of the component, and the size of the convoys may vary
depending on operational/tactical objectives and limitations. The synchronization of
departures of these components from their home bases and their arrival at their
designated destinations is dictated by operational requirements, threat level,
availability and capacity (lanemeter, seat, volume, weight) of lift assets, and the current

conditions of transportation infrastructure (Akgtin and Tansel, 2007).



A unit will usually use its own (organic) TAs to conduct a deployment.
However, for heavy lift requirements (for example tanks and artillery pieces) over long
distances, TAs of other military transportation units may have to be used. In addition,
outsourcing of TAs from national civilian companies or other nations may be required
depending on the distances and numbers and sizes of units involved in the deployment.

While time is of essence during a crisis, cost may be of main concern during
peace time. The source of TAs used affects the cost and timing issues of unit
movements. For example, outsourced TAs may not be available on time and leasing
costs are associated with them. In addition, unpredictable stochastic events
(breakdowns,  accidents, delays etc.), load/unload/idle times at home
bases/destinations/transfer points, convoy speeds, and speeds of transportation assets
need to be taken into account to determine if a plan of deployment may be realized in
actuality.

The planning for a particular deployment may take place beforehand. This is
called deliberate planning when time is not a critical factor. When the time available for
planning for actual deployment of armed forces is short, this is called crisis planning or
time-sensitive planning where the planning process must be quick and flexible to adapt
to changing situations. Deliberate planning may contribute to time-sensitive planning.
Whether deliberate or not, each deployment plan has a TPFDD which at least includes

units’ transportation requirements by type and quantity, and movement data by mode,



earliest times of departures from home bases, and earliest and latest times of arrivals at
POEs / PODs / destinations. It divides a unit’s components by transportation mode,
ports of embarkation or debarkation, and movement dates.
1.3. BACKGROUND, PURPOSE, AND RATIONALE

There exist deployment planning models and simulations with varying levels of
detail and purpose. For a more comprehensive survey of military planning systems
and a review of strategic mobility models supporting the defense transportation system,
the interested reader is referred to Boukhtouta et al. (2004) and McKinzie and Barnes
(2003). It is possible to classify military deployment models and simulations into two
groups depending on their level of resolution and the purpose of use.

The first group includes relatively low-resolution models and simulations that
may be used to model deployment of military units between theaters of operation (e.g.,
from Turkey to Afghanistan) or inside a theater of operation (e.g., inside Turkey).
Deployments between different theaters of operation using only air and sea
transportation assets are referred to as strategic deployment. The most frequently used
modeling tools (software) for modeling strategic deployments are NATO’s ADAMS
(Allied Deployment and Movement System) and U.S. Military’s JFAST (The Joint Flow and
Analysis System for Transportation). A technical guide for ADAMS is provided by Heal

and Garnett (2001) and general information for JFAST is available at

<http://www jfast.org> An example of simulations modeling deployment inside a



theater of operation is ELIST (The Enhanced Logistics Intra-Theater Support Tool,
Groningen et al., 2005).

The second group includes higher-resolution models and simulations that may
also be used to provide input to the models in the first group. Examples of these
models and simulations are TLoaDS (The Tactical Logistics Distribution System, 1999) and
PORTSIM (The Port Simulation, 2004). Other important examples of such models are
TRANSCAP (Transportation System Capability, 2006), SIMULOGS (Simulation of
Logistics Systems, 2006), and Simulation of Transportation Logistics (2002). Table 1
gives a comparison of the aforementioned models in terms of their characteristics for
multi-modality, platform independence, GIS-support, input/output analyzer module,
and discrete-event simulation modeling capability.

TABLE 1. Mobility planning, logistics and transportation models and simulations
commonly used by military planners.

Simulations/ Multi Air (A), Platform GIS Input/ Discrete Comments
Models Modal Rail (R), | Independence | Support | Output Event
(Yes/No) | Sea(S), (Yes/No) Analyzer | Simulation
Land(L) Module (Yes/No)

ADAMS Yes AS No Limited None No A NATO model for strategic deployment

JEAST Yes AS Yes Limited Both Both A classified, joint US model for strategic
deployment

ELIST Yes ARSL Yes Limited Both Yes For intra-theater support planning

TLoaDS Yes ARSL No Limited Both Yes Built Using EXTEND™ and SDI Industry Pro

PORTSIM Yes RSL No Limited Both Yes Simulates seaport operations and determines
throughput at the port

TRANSCAP Yes LR Partially No None Yes Models deployment from US Army
installations

SIMULOGS No L Partially Limited None Yes Runs on Sun Unix Workstation and PCs with
Windows NT

Simulation of Yes AS No No Both Yes Based on ARENA, uses VBA and Excel

Transp.

Logistics

The Simulation Yes ARSL Yes Yes None Yes Written in Java and uses GeoKIT for GIS

Model support.

proposed in

this thesis




Except for the input/output analyzer module, none of the models or simulations
relevant to this study in Table 1 meets all of the other four criteria fully. Our proposed
simulation model is listed at the bottom of Table 1. We have developed a simulation
model of military deployment that meets all of these four criteria and has a high-
resolution except at transfer points. The modeling level of detail at transfer points for
infrastructure is low resolution in that, we use aggregate capacities for each individual
transfer point and time delays at these locations for problems such as maintenance
breakdowns etc. Even though the level of resolution at transfer points can be increased,
we refrained in the dissertation from doing so as the detailed modeling at each transfer
point can be separately done without significantly affecting the overall structure of the
deployment simulation. The detailed model at a transfer point determines the overall
delay induced at that location, which in our case is reflected into our model by
appropriate distributions. We use high-resolution modeling for the modeling of
transportation assets, cargo, and resources, which includes specific dimensions of cargo,
and capacities, speeds, and dimensions of resources and transportation assets.
Furthermore, the GIS data we use in the simulation is also of high-resolution. It
specifies, among other things, the capacities and classifications of bridges, roads, and
other detailed data of related transportation infrastructure. As for the input/output

analyzer modules, an input analyzer may be obtained through commercial-off-the-shelf



products. An output analyzer module is in development and left as future work to the
study at hand.

Our high-resolution except-at-transfer-points approach to modeling the DPP
allows us to obtain quick first-cut insights into potential outcomes of a deployment plan
without compromising reality. For example, for a typical deployment scenario for four
battalions, run times are between 25 to 27 minutes for 60 runs of the model on a 1.6 GHz
Pentium(R) M PC with 512 MB RAM. That is less than 30 seconds per run. While our
high-resolution except-at-transfer-points simulation model is not a panacea for all, it
provides a realistic and quick litmus test for the applicability of existing deployment
plans and allows a quick construction of contingency deployment plans. It is an all-
encompassing model for all modes of transportation. Yet, our model’s extendable
architecture is flexible enough to accommodate future addition of higher-resolution
sub-modules intended especially for detailed modeling at transfer points. Moreover,
our model is generic enough to be used in commercial logistics applications after some
problem-specific modifications.

The aim of this dissertation is to develop a logistics and transportation
simulation for use in the analysis of military DPP. We apply, for the first time, the event
graph (EG) methodology and listener event graph object (LEGO) framework to create a
multi-modal discrete-event simulation model of the DPP. EGs and LEGOs provide a

simple yet powerful and elegant way of representing discrete event simulation (DES)
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model of deployment, and enable easy creation of component-based models of a real-
world military problem. The high-resolution approach that we take in most part,
allows us to estimate whether a given plan of deployment will go as intended, and
determine prospective problem areas in a relatively short time compared to other
existing simulations because of the absence of the need to use several models of
differing resolutions in succession. The short run times achieved demonstrate this. The
very accurate and detailed GIS data, and the detailed data used in modeling of entities,
resources, and military equipment in the simulation permit us not to exchange reality in
favor of shorter run times. We extend Simkit by writing additional Java classes that are
specific to military deployment. The component-based approach adopted in
development of our simulation model enables us to easily integrate future additions to
our model. The DES developed as part of this dissertation provides a test bed for
currently existing deployment scenarios.

Our main contribution is to develop a comprehensive, multi-modal, high-
resolution, loosely-coupled and modular, extendable, platform independent, state-of-
the-art GIS based simulation environment that views the deployment operations as
end-to-end processes. To the extent of our knowledge, such a simulation environment
for multi modal deployment planning and analysis does not exist in the literature.

The rest of this dissertation is organized as follows: Chapter II gives background

on terminology and basics of deployment planning. Chapter III provides information
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on the programming language of choice, Java2™, the simulation library written in
Java2™ called Simkit, and the Geographical Information System, GeoKIT, used with the
transportation simulation. Chapter IV provides the event graphs (the conceptual and
logical models) of the simulation software and its modules developed. Verification and
Validation issues are discussed in Chapter V and analysis of a typical real-world case-

study scenario is explained and analyzed in Chapter VI.
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2. BACKGROUND

This chapter provides basic and necessary background information about
deployment planning.

Our aim here is two folds: The first one is to acquaint the reader with military-
specific terminology used in deployment of military units. The second is to lay out
some of the requirements modeled by the transportation simulation being developed as
part of this dissertation to assist in planning of military deployments. The concepts and
material contained in this chapter is a summary of relevant parts of Field Manual (FM)
4-01-11, FM 55-10, FM 55-65, FM 100-17, FM 100-17-3. For further details on military-
specific terminology, the interested reader is referred to these references which most of
the material contained here follows. The reader familiar with military-specific
terminology used in transportation and deployment may skip to Chapter 3.

21. DEPLOYMENT

2.1.1. Mobilization, Deployment, Redeployment, Employment, and Demobilization
Processes

Force projection involves mobilization, deployment, redeployment, employment of

forces, and demobilization.

Mobilization is the process by which all or parts of the Armed Forces are brought
to a state of readiness for war or other national emergencies such as natural disasters.
Deployment means preparing and moving the force and its supplies to the area of

operations in response to a crisis or natural disaster.
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Redeployment is the preparation for and movement of the force and its material
deployed from an area of operation to another or to its designated home base.

Employment is the use of forces in their areas of operations to carry out the
mission.

Demobilization is the act of returning the force and materiel to a premobilization

posture or to some other approved posture.
2.2.1. Deployment Phases

Military units may be deployed between theaters of operation (e.g., from Turkey
to Afghanistan) or inside a theater of operation (e.g., inside Turkey). Deployments
between different theaters of operation (inter-theater) using only air and sea
transportation assets are referred to as strategic deployment. The phases of a strategic
(inter-theater) deployment process are:

e Predeployment activities

e« Movement to the Port of Embarkation (POE)

o Strategic lift

e Reception at the Port of Debarkation (POD)

e Theater onward movement

If the deployment is inside a theater of operation, it is referred to as an intra-
theater deployment which may involve all modes of transportation. The following two

tigures show possible intra-theater and inter-theater movement steps of a unit from an
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origin location to a tactical assembly area (TAA - i.e., the final destination), respectively.
Intra-theater movement can be regarded as the movement of units using different
modes of transportation (land, sea, air, and rail) inside a country (theater) as shown in
Figure 1. On the other hand, inter-theater movement of units can be regarded as the
movement of units using only air and sea assets (strategic lift) between countries
(theaters). Once the units reach the destination country (theater), then other available
modes of transportation can be utilized inside that country (theater) as depicted in

Figure 2.
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2.2.1.1. Predeployment Activities

Predeployment activities are those that units carry out based on initial
notification, warning orders, and alert orders for operations. They are aimed at
preparing forces for deployment. Those that are relevant to the simulation model being
developed include echeloning (organizing units for movement, i.e., dividing echelons
into advance party, pax party, and cargo party), tailoring (adding or subtracting units
to/from a planned task organization based on the mission and available lift),
deployment planning, and equipment maintenance.
2.2.1.2. Movement to the POE

The movement to the POE is initiated upon receipt of a movement directive.
Units are validated and configured for movement. Units may move from their home
stations to the POE using ground and/or rail transportation. If ground transportation is
used, movement is carried out in convoys. Convoy is the preferred method of moving
wheeled vehicles to ports and other facilities that are within one day’s distance while
rail is the preferred method for moving all wheeled vehicles over one day’s driving
distance from the port. The accepted deployment method for rotary wing aircraft is by
self-deployment to the POE. Fixed wing aircraft are normally self-deployable to the
area of operation. There are two types of POE, sea and aerial. Figures 3 and 4 depict a
notional seaport of embarkation SPOE and an aerial port of embarkation APOE,

respectively.
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Units that use a SPOE are held in the port staging area to prepare for shipment
before being loaded on vessels. However, in many cases, there is not enough room at
the sea terminal to stage the entire unit or large numbers of units scheduled to move at
the same time. In such cases, a marshaling area is operated. Figure 5 shows a notional
marshaling area at a SPOE. The primary purpose of a marshaling area is to provide a
location to receive unit personnel, equipment and supplies, and configure them for
overseas movement by sea prior to entering the staging area. As the vessel gets ready,
the units are called from the marshaling area to the staging area based on a call forward
plan.

The two areas, staging area and marshaling area, serve much the same service.
The distinction between them is that the owning command retains responsibility and
accountability for the shipment in the marshaling area while port commander assumes

the custody of equipment and supplies in the staging area.
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2.2.1.3. Strategic Lift

Strategic lift begins with departure from the POE and ends with arrival at the
POD, which is an APOD or a SPOD. Normally troops are deployed by air and
equipment by sea. The estimated arrival of equipment at the SPOD normally dictates
when personnel are airlifted to the theater. Synchronizing the arrival by air or sea into
the area of responsibility at the SPOD and personnel arriving at the APOD is necessary.

Sealift capability involves a variety of vessels, such as RoRo (Roll on \ Roll off)
ships, fast sealift ships, ready reserve ships, and chartered ships. Airlift is used
primarily to transport personnel, selected vehicles, and unit equipment.
2.2.1.4. Reception at the POD

This implies the arrival of forces at the POD in the area of operation and ends
with the departure of the forces from the POD.

Figure 6 shows a notional seaport of debarkation. At SPODs, discharged unit
equipment, materiel, and supplies are held in the staging area which is established for
the transshipment and accounting of equipment. Figure 7 depicts a notional aerial port
of debarkation. At APODs, units go through off-load ramp area, holding area, and
marshaling area to prepare for onward movement.
2.2.1.5. Theater Onward Movement

Figure 8 shows the relationship between reception and onward movement

processes. During this critical phase of deployment, the availability of transportation
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again takes an important role to keep units and supplies moving forward directly to the
area of employment.

Theater onward movement takes place utilizing a movement program that
incorporates convoy, rail, and contracted assets to ensure the forward and concurrent
movement of troops and supplies. Truck terminal and trailer transfer points are
established for use in line-haul or relay operations. Rail transport, when available, will
also be used to transport heavy tracked vehicles and other large items of equipment as
far forward as possible. From those points on, heavy equipment transporters complete

the movement to destination.
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2.3.1. Deployment Planning

The planning for a particular deployment contingency may take place
beforehand. This is called deliberate planning when time is not a critical factor. When
the time available for planning for actual deployment or employment of armed forces is
short, the planner uses crisis-action procedures. The overall process of crisis-action
planning mimics that of deliberate planning, but is much more flexible to accommodate
requirements to respond to changing events.
2.3.1.1. Deliberate and Crisis-Action Planning

The highest military commands (the services or general staffs) develop deliberate
plans during peace time, for potential contingencies within their areas of responsibility.
The following definitions are relevant to the work at hand in terms of deliberate and
crisis-action planning:

Each plan has time-phased force and deployment data (TPFDD) which includes
personnel requirements, equipment requirements by type and quantity, and movement
data by mode. It divides the unit by transportation mode, ports of embarkation or
debarkation, and movement dates. For example, it identifies the advance party of a unit
going by air when the unit’s main body and equipment are going by sealift. During a
crisis, the responsible command may update the plan with current information and in

conjunction with supporting organizations and create operations orders for execution.
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Following are the definitions of dates that are used to time-phase the movement
plans according to the TPFDD.
Ready-to-load date (RLD): The RLD is the TPFDD date when the unit must be
prepared to depart its origin.
Available-to-load date (ALD): The ALD is the TPFDD date when the unit must be
ready to load on an aircraft or ship at the POE.
Earliest arrival date (EAD): The EAD is the earliest date that a unit, a re-supply
shipment, or replacement personnel can be accepted at a POD during a deployment.
The supported combatant commander specifies the EAD.
Latest arrival date (LAD): The LAD is the latest date when a unit, a re-supply shipment,
or replacement personnel can be accepted at a POD to support the concept of
operations. The EAD and LAD are used to describe a delivery window for
transportation planning.
Required delivery date (RDD): The RDD is the date when a unit, a re-supply shipment,
or replacement personnel must arrive at a POD and complete off-loading to support the
current of operations.

Responsible command, transportation planners and the deploying forces use the
RDD to determine critical interim dates, such as the date the unit must do the following;:

e Depart the origin installation or home station.

e Arrive at the POE.
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e Arrive at intermediate support bases if necessary.

e Arrive at the POD.

For crisis-action planning, where time is a critical factor, the above definitions are
still valid. However, the planning could involve plan development from scratch or
modifiying an existing deliberate plan already developed. In either case, the
requirement for a quick analysis methodology that can generate a feasible TPFDD is
crucial.

Before closing this chapter, we should note that for inter-theater operations, the
concepts of a rail port of embarkation (RPOE) and a rail port of debarkation (RPOD)
need to be added to POEs and PODs already mentioned. A RPOE and a RPOD are
simply railyards where a mode change occurs between land and rail transportation
modes.

Chapter III presents the tools that are used and extended to develop the DES for

deployment planning.
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3. THE MODELING ARTIFACTS

Section 3.1 of this chapter explains and justifies the reasons for using Java2™ as
the programming language of choice. Section 3.2 introduces the discrete event
simulation library, Simkit, written in Java2™. Section 3.3 introduces the reader to the
basic concepts of a GIS system and, in particular, to the GIS system of choice, GeoKIT,
used as part of the simulation.

3.1. THE PROGRAMMING LANGUAGE
The programming language of choice for the proposed dissertation is Java2™.
3.1.1. Java Features and Terms

Introductory information on Java™ features and terms can be found in Cornell
and Horstmann (1999), Lewis and Loftus (2000), Narasimhan and Winston (2001) and
Chapman (2000). More advanced material can be found in Cornell and Horstmann

(1999 and 2000) and at www.javasoft.com.

3.1.2. Why Java2™?

For use on computers connected to the Internet, Java2™ programs run on a wide
variety of hardware platforms. They can be loaded dynamically via a network and
provide features that facilitate robust behavior.

For applications that have nothing to do with networks, it is a truly completely
object-oriented programming language. One justification for our choice of Java2™ as

the programming language of choice for this dissertation is expressed plainly in (Nance
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and Rioux, 2002). That is; the “...development methodologies of simulations for the
purpose of analysis continue to transition from a procedural to an object-oriented
paradigm due to an attempt to obtain the premises of object oriented programming
such as improvements in reliability and reusability.” Object-oriented (O-O) paradigm
provides a consistent means of handling these problems by viewing the world as a set
of autonomous modules that interact to solve a complex task, where each object is
responsible for a specific part of the task. The O-O paradigm simplifies computer
programming tasks and promotes reusability (Joines and Roberts, 1999).

Another justification is that Java programs can work on multiple tasks
simultaneously and automatically recycle memory. Moreover, Java programs are
independent of the operating system (Narasimhan and Winston, 2001). The military
usually employs different hardware and operating systems, and thus it would be
useful to have models or simulations which can run on multiple platforms.
Furthermore, the geographical information system and the simulation library used as
part of this research are also both written in Java2™.

3.2. SIMKIT

Following information on Simkit is mostly adapted from Buss (2001), Buss
(2002), Buss and Sanchez (2002), Buss and Ruck (2004).

Simkit is an Application Programming Interface (API) for implementing

Discrete Event Simulation (DES) models. It is written in Java2™ and runs on any
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operating system with Java2™ installed. Simkit adopts DES as its fundamental world
view and does not directly implement other world views such as process/resource.
Although this makes certain simple models slightly more complex, a pure DES world
view provides more flexibility and modelling power than a pure process-oriented
world view. In particular, every model that can be represented in the process world
view can also be represented in a pure DES world view; the reverse is not true.

3.2.1. Event List Implementation in Simkit

All DES frameworks require an implementation of a Future Event List (FEL) to
operate. Simkit implements a FEL in a class called simkit.Schedule that consists entirely
of static methods and variables. Simkit attempts to hide the details of the FEL from the
simulation modeller. Instead of directly placing events on the FEL, the programmer
invokes the waitDelay() method on an instance of simkit.SimEntityBase.

When using Simkit as the basis for a Web Service, it becomes desirable to have
multiple simulations running independently. As of version 1.2.14, there is the
possibility of creating more than one FEL.

3.2.2. Starting and Stopping

The simulation run is controlled by the Schedule class, which also houses the
FEL. Schedule initiates the run when there is a call to its startSimulation() method,
which executes the FEL. Simulation continues executing until the FEL is empty. There

are essentially four ways in Simkit by which this can occur:
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(1)The FEL empties naturally of its own accord;

(2)There is an explicit call to Schedule.stopAtTime(double) before
Schedule.startSimulation() is invoked;

(3)There is a call to Schedule.stopOnEvent(String, Class[], int) before
Schedule.startSimulation() is invoked; and

(4)There is a call to Schedule.stopSimulation() anywhere in the program.
3.2.3. Tasks in Running a Simkit Model

There are mainly 7 tasks involved in running a Simkit model: (1) Instantiate
desired  objects, (2) Register = SimEventListener  objects, (3) Register
PropertyChangeListener objects for statistics collection purposes, (4) Set stopping time
or stopping criteria, (5) Set the mode of the run (verbose/quiet, single-
step/continuously running), (6) Reset all SimEntityBase instances to initialize statistics
collecting variables, and (7) Start the simulation
3.2.4. Listener Patterns

Simkit uses two “Listener” patterns, SimEventListener and
PropertyChangeListener, to implement its component interoperability. The
SimEventListener pattern is used to connect simulation components in a loosely
coupled manner.

The listener design pattern is extensively used in modern software design, e.g.

the graphical user interface design using Java’s Swing components. The event source,
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the event listener and the event are the three actors of the listener design. Event
listener objects register interest in an event source’s events. When the source object
fires the event, all registered listeners are notified and a reference to the event is passed
to the listeners. The listener pattern inherently has loose coupling, thus allowing a
generic design and implementation of both the listener and the source (e.g. using
interfaces in Java, or an equivalent construct in other object-oriented languages). As a
result, neither the source nor the listener need to be “aware” of the other in their
design. Note that this is in contrast to the so-called Observer pattern, in which a
callback is made from the listener to the source, a pattern that couples the two more
tightly than the listener pattern.

In Simkit, a special kind of listener pattern called SimEventListener is the
driving mechanism for creating simulation components. In the SimEventListener
pattern, the event is in fact a SimEvent that had been previously scheduled by a
SimEventSource object. When the scheduled event occurs, the scheduling object is
notified by the Event List and is passed a reference to the SimEvent in question. A
SimEventListener processes a heard SimEvent as if it had scheduled it itself. This is
implemented in Simkit using Java’s reflection. The SimEventListener pattern is shown
in Figure 9. Any number of SimEventListeners may be registered for a given

SimEventSource.
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SimEvent SimEvent

Source Listener

Figure 9. SimEventListener pattern.
3.2.5. PropertyChangeListener Pattern

This is used whenever a state variable changes value. In that case, a
PropertyChangeEvent is dispatched to registered PropertyChangeListener objects. The
purpose of PropertyChangeEvents is to support the generic observation of the
simulation state trajectories, as well as any function thereof.

3.2.6. Collecting Statistics

Simkit uses the PropertyChangeListener pattern for collecting statistics from a
simulation model. This pattern provides a great deal of flexibility for what gets
collected, how it is collected, and which measures of performance are estimated.

This approach also enables a clean separation between implementing the
dynamics of the model and gathering data. Thus, the model can be created without
any concern over which statistics are to be estimated, and the model classes themselves
will not contain any code involved with statistics. All a model class has to do is make

sure it fires a PropertyChangeEvent whenever a state variable changes its value.
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3.2.7. Generating Random Numbers and Variates

The available random number types include Antithetic, Congruential,
MersenneTwister, Mother, NSSrng, PooledXORGenerator, PooledGeneratorBase,
Sequential, and Tausworthe.

Random  number  generation  for  random  variates,  through
RandomVariateFactory class, uses the MersenneTwister as the deafult random number
type. Also, by default, a single instance of random number is used to give each
RandomVariate its Uniform(0,1) random numbers.

Simkit’s design permits much flexibility for generating random variates used in
the simulation models. It enables the modeller to change any random variate in a
model to any desired probability distribution without having to recompile the model.

Simkit uses a combination of a RandomVariate interface and an abstract factory
that is called to produce instances of the desired implementation using only “generic”
data-that is, Strings, Objects, and numbers. More detailed information on this is
available in Simkit documentation.

3.2.8. Obtaining Simkit
The latest version of Simkit can be downloaded from the World Wide Web, free

of charge, and with its source code at http://diana.gl.nps.navy.edu/Simkit/
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3.2.9. The Reasons for Selecting Simkit and Event Graphs

There are many practical reasons for selecting Simkit. Simkit is an object-
oriented, component-based API that can be used to create discrete event simulation
models using the Event Graph (EG) methodology. Event graphs were first introduced
by Schruben (1983). Schruben (1995), Sargent (1988) and Seila, Ceric and Tadikamalla
(2003) give a more detailed discussion of event graph modeling. In the EG
methodology, nodes represent events and directed arcs represent the scheduling
relationships between events. A tilde in an arc represents the conditional scheduling of
the event at the head of the arc whenever the stated Boolean condition is satisfied.
Dashed arcs represent canceling relationships. A special event, referred to as “Run”, is
used to initially populate the event list as well as to initialize the state variables. In a
given module, the Run event may be connected to another event via a directed arc or
may appear as an isolated event. In the former case, it performs both of its functions
(i.e., scheduling the initial event as well as initializing the state variables). In the latter
case, the only function performed by the Run event is initialization of the state
variables. EGs can be used to, simply and elegantly, represent any DES model. There
are no theoretical limitations to the DES models that can be implemented in Simkit.

The relationship between event graphs and Simkit can be seen in Table 2.
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Event Graph

Simkit

State Variables

Class instance variable (protected)

Simulation Parameters

Class instance variable (private)

Events

Class “do” method

Event Parameters

Parameter of a “do” method

Event Actions

Code lines of a “do” method

Scheduling Edges “waitDelay” call

Canceling Edges “interrupt” call

Edge Delay Times Time argument of “waitDelay” call

Edge Conditions “if condition block”, wrapping a
“waitDelay” or “interrupt” call

Edge Arguments “waitDelay” or “interrupt” call arguments

Table 2. Relationship between Event Graphs and Simkit (Adapted from (Jose, 2001)).

In the EG methodology, state variables are a collection of variables that do

change (or have the possibility of changing) in a single simulation run. Simulation

parameters are a collection of variables each of which stays fixed throughout a given

simulation run. Nodes represent the (instantaneous) state transitions or events and the

edges represent scheduling and cancelling relationships between events.

Event Graph methodology is sufficiently powerful by itself to represent any

model that can be captured by the DES framework.
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Figure 10. Event scheduling using event graphs.
Figure 10 implies the following: “When event A occurs, then if boolean condition (i) is
true, then event B is placed in the future event list with a delay of time t. When event B
occurs, its formal arguments, denoted by k, are passed the values in the expression
denoted by j on the scheduling edge.” (Buss and Ruck, 2004)

(i)
i —

Figure 11. Event cancelling using event graphs.
Figure 11 implies the following: “When event A occurs, then the first scheduled event
named B whose parameters exactly match the expression j is removed from the Future
Event List. If no such event is scheduled when A occurs, then nothing happens and
there is no error.” (Buss and Ruck, 2004)

A more complicated event graph is as follows:
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t {S>0}
Start
Service
{0=0, S=K} {Q++}
{Q-, S-}

{Q>0}

Figure 12. Event graph for multiple-server queue.

The Q and S represent the state variables of the simulation. They stand for the
number in queue and the number of available servers respectively. At least one Run
event is necessary in every model to initialize the state variables. State variables are
updated, displayed in curly brackets, as each event is fired. Here the initial Arrival
event is scheduled by the Run event. After that, each Arrival event will schedule a
StartService event if the number of available servers S is greater than zero. A
StartService event will decrease the number in queue, Q. EndService event will trigger
a StartService event if Q is greater than zero.

The loose coupling in Simkit's component architecture facilitate a significant
degree of reusability of simulation components.

3.2.10. The Listener Event Graph Objects (LEGOs)

LEGO framework (Buss and Sanchez, 2004) is used to connect components of

our simulation. LEGOs are an extension to basic EGs which allow small models to be

encapsulated in reusable modules. These modules can be treated as components of
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other modules. This modular structure is depicted by drawing a box or rectangle
around the EG. Modules or components are linked using the listener pattern of Object
Oriented Programming which enables production of larger and more complex
modules. LEGOs register interest in other LEGOs and take appropriate actions when
they “hear” state changes. The LEGO that is listened to is not affected and is not
responsible for any actions taken. This connection is enabled by having events with the
same name and signature in both components. This “listener” and “listened”
relationship is depicted via an arc with a reversed triangle at one end, resembling a
stethoscope. The object at the end of the arc with the reversed triangle is the “listened”
object as depicted in Figure 9.

This loose-coupling of objects in the simulation allows a great amount of
flexibility. EGs and LEGOs can be programmed using Simkit. Simkit has also been
selected as the simulation engine for Combat XXI, the US Army’s next-generation
premier ground combat simulation. It integrates object-oriented design with a listener
pattern to create a truly reusable component architecture for model components. The
listener pattern implementation in Simkit is called Simulation Event Listener or
“SimEventListener” pattern using Simkit’s interface name (Buss and Sanchez, 2002),
(Buss, 2002). Simkit, utilizing the same ideas of listener patterns, has a very loose
coupling of model components. This permits a clean separation of model constructs

from data gathering. Simkit’s use of the “PropertyChangeListener” pattern for
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collecting statistics from a simulation model ensures that any Measures of Effectiveness
(MOEsS) can be estimated.

The listener patterns used to implement the loose coupling give the modeller a
great degree of flexibility in adding new features to existing models without
comprehensive changes to the source code.

Simulation models using Simkit can be built and executed on any Java2™
enabled platform.

3.3. THE GEOGRAPHICAL INFORMATION SYSTEM (GIS)

To satisfy the requirement for accurate animation based on real transportation
network data (such as the capacities of roads, railways and bridges), our simulation
model uses a state-of-the-art Java2™ based, licensed geographical information system
(GIS) named GeoKIT, as part of the transportation simulation developed. GeoKIT is an
Application Programming Interface (API) for manipulating and visualizing 2D/3D
raster and vector spatial data. It is written in the Java2™ programming language and
provides a comprehensive set of components to embed GIS functionality into the
applications. GeoKIT is open to all types of geographical data and is independent of
any particular data format. It achieves high performance mapping and precise
geodetic calculations, coordinate transformations and map projections. With its object-
oriented design in Java, it allows an intrinsically perfect interaction with Simkit and the

EG paradigm. GeoKIT and the available GIS data allow high-resolution representation

43



of transportation infrastructure (e.g., roads, railroads, bridge capacities, slope
information etc.).

GeoKIT has been designed to support distributed architectures (client-server
and 3-tier architecture) and in particular for developing stand-alone, Internet / Intranet
based applications. All GeoKIT components implement a Java2™ interface, so a
developer can customize all aspects of GeoKIT by replacing a component with a new
implementation. All GeoKIT components are JavaBean compliant. GeoKIT is
particularly well suited for distributed computing where multiple views access
multiple data sources on different servers.

GeoKIT components are full Java Bean API. Their methods and events follow
the Java Bean API standard. GeoKIT components can be manipulated graphically and
through property editors in a Java Bean compliant Integrated Development
Environment (IDE) such as JBuilder and Symantec Visual Cafe. It was developed using
Sun Java SDK 1.4, Sun JFC (Swing) GUI tools, Sun Java 3D libraries, Apache xerces
packages for (XML/GML parsing), Oracle JDBC drivers, Borland's JBuilder 7.0 and
Suse Linux 8.0. GeoKIT API supports both 3D and 2D data. GeoKIT has the following
interfaces: HTML, SQL2, XML, JDBC.

The following data sources are available in GeoKIT: Vector Formats: ESRI
Shape, MapInfo MIF/MID, MapInfo TAB, Genamap Exchange, VPF, DCW, OGC GML

2.0, INTERGRAPH DGN, AUTOCAD DXEF, ENC S-57, Oracle Spatial Extension (9.2),
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GeoKIT Overlay Format, Nato ATCCIS Baseline 2.0 V.50 Data Model Overlay Storage,
BILGI Vector Server, MS Excell CSV, ASCII, Genamap Exchange.

Raster Formats: CADRG, ADRG, CIB, TIFF, World TIFF (tfw), GeoTIFF,
IKONOS Imagery, JPG, PNG, GIF, BMP, Bilgi Raster Server.

Cell/Matrix Data Formats: DTED Level 0,1,2, 16 Bit TIFF, USGS DEM.

Web Objects: GML Objects, GeoKIT WEB Objects. More information on GeoKIT

can be found at <http://geokit.bilgigis.com>.

Our simulation model, developed using the tools briefly described above, has
three main components; Graphical User Interface (GUI), network, and model. The GUI
component allows, among other things, an accurate animation using real geospatial
transportation infrastructure data, point-and-click operations of route selection,
adding/deleting/changing Home Bases/ Destinations/ POEs/ PODs and entities, and
on-the-fly projection of the entire network from World Geodetic System (WGS) 84 to
Universal Transverse Mercator (UTM) coordinates. WGS 84, developed in 1984 and
updated in 2004, is an ellipsoidal reference frame for the earth for use in geodesy and
navigation. UTM coordinate system was developed by NATO in 1947 and is used by
most military maps in the world. The scenario information can be saved in XML

format.
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The network component allows shortest path selection in route planning. In
addition, it allows the listing and selection of all routes on land and rail networks
whose length (cost) is a user-specified percentage more than the shortest path’s.

The model component has four components; Land, Sea, Rail, and Air. Each of
these has three subcomponents. The subcomponents are connected via LEGOs and
SimEventListener frameworks.

In addition, there are components, or Java classes, modeling the transportation
assets (e.g., trucks, ships, airplanes) of different capacities and modes. The loads of
different sizes and military hardware that need to be transported (such as tanks,
generators, and field artillery guns) are also modeled. These do not exist in Simkit and

have been added as extensions.
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4. THE MODELING DETAILS

This chapter presents information on the event graphs (the conceptual and
logical models) and listening patterns between components of the simulation. Some
information on the use of animation, the graphical user interface (GUI), and additional
Java classes is also included.

41. COMPONENTS OF THE DEPLOYMENT SIMULATION

There are four main components or modules of the deployment simulation:
Land, Sea, Air, and Rail. These are described in more detail in Sections 4.2 through 4.5
The listener patterns that provide communication between the components are
explained in Section 4.6. Details of the implementation of animation and GUI are
included in Section 4.7. Explanations of some of the important Java classes used in the
simulation are provided in Section 4.8.

4.2. THE LAND COMPONENT

The Land Component consists of three classes. These are named
HomeBaseDeparture, LandMaintDelay, and Land Arrival AtDestination.

4.2.1. HomeBaseDeparture Class

Home base departure class simulates the loading of vehicles at their home bases,
forming of convoys, and their departure. The movements are conducted in convoys

either to the destination or the next mode change location (an intermediate location)
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which can be a SPOE, an APOE, or a RPOE (a rail port of embarkation). Vehicles that
do not need to make additional trips simply park at their home bases.

The simplified event graph for this class is in Figure 13. Note that the arrival
events at SPOE, RPOE, and APOE are omitted from this event graph to keep it simple
for presentation purposes. The Run event in Figure 13 is used to schedule the first
events (initial population of the event list) such as assigning movers (trucks, ships,
trains etc.) to their respective initial locations and also to specify earliest times of
departures for the movers from their home bases. All arcs in Figure 13 except two of
them are marked by a tilde indicating that the events at the head of the marked arcs are
scheduled conditionally. For example, the arc connecting “ArriveAtHomeBase” to
“StartLoadingVehicle” schedules the event “StartLoadingVehicle” in the event list only
if the Boolean condition “number of load docks available > 0” is satisfied. The Boolean
conditions are omitted from the figure for the sake of simplicity. We also omit the
parameters and state variables from the figure for the same reason. However, the
sample lists of parameters and state variables for the entire Land Component are
provided at the end of Section 4.2 in a section that presents Exogenous (Input) and
Endogenous (Output) Variables for the Land Component. The lists of parameters and
state variables are expandable depending on the statistics and measures of
performance that are desired to be calculated. The parameters and state variables are

also presented for a specific scenario in the case study in Section 6.
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The sample Java code for the home base departure class is provided in
Appendix A. The complete code for all classes is not provided here due to space
limitations and the length of the code. The simulation has a total of 97 Java classes
(modules) and over 16000 lines of code. The requests for obtaining the entire code for
research and other purposes may be considered on a case by case basis by the author

and the thesis advisors of this dissertation.

START
LOADING
VEHICLE

LAND
ARRIVAL

DEPART
HOME BASE

DESTINATION

Figure 13. Simplified Event Graph for the Land Component’s HomeBaseDeparture class.

In addition to the simplified version of the event graph above, we provide in
Section 4.2.1.1 below a more complicated version only for the home base departure

module. This is to help clarify some of the details of the event graphs (modules) used
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in the simulation. The details of the other event graphs are omitted in the following

sections for the sake of brevity.

4.2.1.1.

provid

A More Detailed Event Graph for the HomeBaseDeparture Class
A more detailed version of the event graph for HomeBaseDeparture class is

ed below. The sample Java code for this class is in Appendix A.

PARK
VEHICLE
AT
HOME BASE

DEPART
HOME BASE

Figure 14. A More Detailed Event Graph for the HomeBaseDeparture class.

Events:

Run: Initializes the state variables and also used for intial population of the event list.

Arrive at Home Base: Arrival of vehicles at a home base.
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Start Loading Vehicle: Start loading vehicles that have a carrying capacity for pax or
cargo.

End Loading Vehicle: Ends loading a vehicle after a loading time tc.

Convoy: Forms a convoy of vehicles that are finished loading or that will depart
without loading.

Depart Home Base: Departure of vehicles that have reached a user specified convoy size.
Land Arrival at Destination: Vehicles arrive at their destination after a time of tr which
may include travel time, time spent due to breakdowns and delays at blackspots.

Land Arrival at SPOE: Vehicles arrive at a SPOE after a time of tr.

Land Arrival at RPOE: Vehicles arrive at a RPOE after a time of trs.

Land Arrival at APOE: Vehicles arrive at an APOE after a time of trs.

Park Vehicles at Home Base: Vehicles park at home base if there is no need for an
additional trip.

Boolean Conditions:

There are four possibilities for A.

A: (mover type is a “Bus” & there are pax) or (mover type is a carrier, e.g. a truck, &
there are loads & number of available load docks is greater than zero) or (mover type is
a “Bus” & there are pax & this is not a first trip) or (mover type is a carrier, e.g. a truck,
& there are loads & number of available load docks is greater than zero & this is not a

first trip).
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B: (if Bus queue is not empty and if there are available pax & there is an available
loading dock) or (if loading queue is not empty and if there are available loads & there
is an available loading dock).

C: (if loading queue is empty & no more available loads) or (if bus queue is empty &
no more available pax).

D: (mover type is not a carrier & mover type is not a “Bus” & this is a first trip)

There are four possibilities for E.

E: (mover type is a “Bus” & there are no pax) or (mover type is a carrier, e.g. a truck, &
there are no loads) or (mover type is a “Bus” & there are no pax & this is not a first trip)
or (mover type is a carrier, e.g. a truck, & there are no loads & this is not a first trip).

F: (Depart when convoy size reaches a user-specified size).

G: (Arrival at destination after a travel time of tr = distance/convoy speed + delay due
to breakdown and maintenance + delays due to Blackspots (if any)).

I: (Arrival at SPOE after a travel time of tr = distance/convoy speed + delay due to
breakdown and maintenance + delays due to Blackspots (if any)).

J: (Arrival at RPOE after a travel time of tr = distance/convoy speed + delay due to
breakdowns and maintenance + delays due to Blackspots (if any)).

K: (Arrival at APOE after a travel time of tr = distance/convoy speed + delay due to

breakdowns and maintenance + delays due to Blackspots (if any)).
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State Variables:

State variables are the protected variables provided in Appendix A. They are not
shown on the event graph in Figure 14.

Parameters:

Parameters are the instance (private) variables provided in Appendix A and they are
not shown on the event graph.

4.2.2. LandMaintDelay Class

Land Maintenance Delay class simulates possible causes of delay that may take
place during the land movement of a convoy from its home base to its destination. In
addition, the delays that may occur during land movement from the transfer points
SPOE, APOE or RPOE, (SPOD, APOD, or RPOD) to the home base (destination) are
also taken into account in the same class. The simplified event graph for this class is
provided in Figure 15.

The probabilities of breakdown are different for each type of land vehicle and
they are obtained from the Turkish Army Logistics Directorate. The most probable
locations of road traffic accidents are determined according to the historical data of so-
called “black spots” on Turkey’s roads. The data is obtained from

<http://www.kgm.gov.tr/asps/trafik/karanokta.htm> and incorporated into the GIS.

The probabilities of traffic accidents for these locations are obtained from a report

prepared by the Turkish General Directorate of Highways for the years 1997-2002.
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Figure 15. Simplified Event Graph for the Land Component’s LandMaintDelay class.

The simplified event graph in Figure 15 states that if a minor breakdown occurs
during travel from a home base to a destination, then the arrival event to destination is
canceled (the dashed arc) and the arrival at destination is rescheduled after a delay
time of maintenance obtained from a probability distribution. In a similar way, there
are also possibilities of additional types of breakdown (medium and severe) and
accidents when a convoy is on its way from its home base to its destination, or when it
is on its way from an intermediate location such as SPOE, APOE or RPOE (SPOD,
APOD, or RPOD) to its home base (destination). Certainly, there is the possibility of

not having any problems while en route, and it is also incorporated into our model.
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Anytime land transportation assets are used, breakdowns and road traffic accidents are
possible to occur. However, the events of LandArrival AtSPOE(RPOE, APOE),
LandArrival AtSPOD(RPOD, APOD), DepartSPOE(RPOE, APOE), DepartSPOD(RPOD,
APOD), DepartDestination, ArriveAtHomeBase, Medium(Major) Breakdown,
RoadAccident and the canceling arcs for LandArrivalAtSPOE(RPOE,APOE),
LandArrival AtSPOD (RPOD,APOD) and ArriveAtHomeBase are omitted from Figure
15 to keep the presentation simple.
4.2.3. LandArrivalDestination Class

Land arrival destination class simulates the arrivals of convoys at their
designated destination locations, unloading of the vehicles at destinations and forming
of convoys and their departures to bring the remaining items of the unit (from their
designated home bases, SPODs, RPODs or APODs) if additional trips are required.
Otherwise, the vehicles park and stay at their destination locations until a next order
for movement is given. The vehicles will also park and stay there upon reaching the
destination if they are not carriers (e.g. tanks). The event graph for the land arrival
destination subcomponent is provided in Figure 16. The
VehicleArrival AtSPOD(RPOD, APOD) events scheduled by DepartDestination event

are not included in Figure 16 to keep the presentation simple.
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Figure 16. Simplified Event Graph for the Land Arrival AtDestination class.

4.2.4. Exogenous (Input) and Endogenous (Output) Variables for the Land
Component

The events and activities for the land component are as shown in the event
graphs above. The entities for the land component are trucks of different sizes and
capacities such as a 5-ton truck, a 2.5-ton truck, and a tank/armored vehicle-carrying
truck depending on the vehicles required/used for deployment. This section provides
a sample list of possible exogenous (input) and endogenous (output) variables for the
land component. This list is expandable depending on the statistics and measures of

performance that are desired to be calculated.
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4.2.5.1. Exogenous Variables (Input Variables) for the Land Component
The exogenous (input) variables include decision variables (controllable

variables) and parameters (uncontrollable variables) of the simulation model.
4.2.5.1.1. Decision Variables (Controllable Variables)

e The number of loading docks at each home base.

e The speeds of Land Component vehicles.

e The speeds of the convoys.

e The number of vehicles in a convoy.

e The locations of “black spots” for road accidents.

e The number of unload docks at each destination.
4.2.5.1.2. Parameters (Uncontrollable Variables)

e The loading times for each type of vehicle at their home bases.

e The unloading times for each type of vehicle at their destinations.

e The maintenance times for each type of vehicle for a minor breakdown.

e The maintenance times for each type of vehicle for a medium breakdown.

e The maintenance times for each type of vehicle for a severe breakdown.

e The probability of a minor breakdown for each type of vehicle.

e The probability of a medium breakdown for each type of vehicle.

e The probability of a severe breakdown for each type of vehicle.
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4.25.2. Endogenous Variables (Output Variables) for the Land Component
The endogenous (output) variables include state variables and performance
measures.
4.2.5.2.1. State Variables
e The number of different types of vehicles in loading dock queues at home bases.
e The number of different types of vehicles in unloading docks at their
destinations.
e The state of loading docks at home bases (busy vs. idle).
e The state of unloading docks at destinations (busy vs. idle).
4.2.5.2.2. Performance Measures
e Average loading time for each type of vehicle at the loading docks at home
bases.
e Average waiting time for each type of vehicle in loading dock queues at home
bases.
e The utilization of loading docks at home bases.
e Average maintenance time for minor breakdown for each type of vehicle.
e Average maintenance time for medium breakdown for each type of vehicle.
e Average maintenance time for severe breakdown for each type of vehicle.

e Average delay time for road accidents.
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e The number of (minor/medium/severe) breakdowns for different types of
vehicles.

e The number of road accidents.

e Average unloading time for each type of vehicle at the unloading docks at
destinations.

e Average waiting time for each type of vehicle in unloading dock queues at
destinations.

e The utilization of unloading docks at destinations.

4.3. THE SEA COMPONENT

The sea component consists of three classes. These are named
Land Arrival AtSPOE, SeaMaintDelay, and SeaArrival AtSPOD.

4.3.1. LandArrival AtSPOE Class

The land arrival at SPOE class simulates the arrival of land convoy to its
intermediate point, SPOE, for loading into a sea vessel. The vehicles of the convoy
along with their loads can be directly loaded into the sea vessel if it is of RoRo type
(Roll-on Roll-off, i.e., ferries designed to carry wheeled cargo such as cars, trucks etc.).
Otherwise, the items have to be unloaded from the vehicles and then loaded into the
sea vessel. If the ship type is not of RoRo and thus the vehicles do not go with the ship,
then the unloaded vehicles may be loaded (if any loadable items are at the port) and

depart for their next destination. They may also depart the SPOE empty and go to
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their next destination or original location (home base) if a return trip is required. These

events are described in the event graph in Figure 17.
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Figure 17. Simplified Event Graph for the Sea Component’s Land Arrival AtSPOE class.

4.3.2. SeaMaintDelay Class

Sea maintenance delay class simulates possible different causes of delay that
may take place during the movement of a sea vessel from its SPOE to SPOD and vice
versa. The information on different causes of a delay and maintenance times for a sea

vessel were obtained through interviews with experts at the Turkish Navy Command

Headquarters.
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Propeller breakdowns and steer breakdowns are more likely to occur but they
can be fixed by the personnel aboard the ship. On the other hand, gyro breakdowns,
main machine breakdowns, and radar breakdowns are less likely to occur but they
cannot be repaired by the personnel aboard. These types of breakdowns would require
the towing of the ship to a nearest port where repair facilities exist. The event graph

for this class is in Figure 18.
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Figure 18. Simplified Event Graph for the Sea Component’s SeaMaintDelay class.
Certainly, there is the possibility of departing the SPOE (SPOD) and arriving at
the SPOD (SPOE) without any problems while enroute.
Note that only the minor breakdown case is depicted in Figure 18 to keep the

presentation simple. The simplified event graph in Figure 18 states that if a minor
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breakdown occurs during travel from a SPOE (SPOD) to a SPOD (SPOE), then the
arrival event to SPOD (SPOE) is cancelled (the dashed arc) and after a delay time of
maintenance obtained from a probability distribution, the arrival at SPOD (SPOE) is
rescheduled.
4.3.3. SeaArrival AtSPOD Class

Sea arrival at SPOD class simulates the arrival of a ship to its SPOD and
unloading of the ship. If the ship is of RoRo type, then the vehicles that debark may
immediately form convoys and depart the SPOD for their destination. If the ship is not
of RoRo type, then the vehicles present at the port for transporting the unloaded items
and personnel to their destination have to be loaded onto the vehicles, form up

convoys and depart for their destination.
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Figure 19. Simplified Event Graph for the Sea Component’s Arrival AtSPOD class.

The ship may immediately leave after discharging or sail after loading any
available items/personnel to its SPOE if a return trip is required or if the ship is ordered
to return. The simplified event graph for this class is in Figure 19.

4.3.4. Exogenous (Input) and Endogenous (Output) Variables for the Sea
Component

The events and activities for the sea component are as shown in the event
graphs above. The entities for the sea component are sea vessels of different sizes and
capacities such as a RoRo ship or a ship that only carries pax. This section provides a

sample list of possible exogenous (input) and endogenous (output) variables for the sea
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component. This list is expandable depending on the statistics and measures of
performance that are desired to be calculated.
4.3.5.1. Exogenous Variables (Input Variables) for the Sea Component
The exogenous (input) variables include decision variables (controllable

variables) and parameters (uncontrollable variables) of the simulation model.
4.3.5.1.1. Decision Variables (Controllable Variables)

e The number of loading docks at each SPOE.

e The speeds of sea vessels.

e The number of unloading docks at each SPOD.
4.3.5.1.2. Parameters (Uncontrollable Variables)

e The loading times for each type of sea vessel.

e The unloading times for each type of sea vessel.

e The maintenance times for each type of sea vessel for a steer breakdown.

¢ The maintenance times for each type of sea vessel for a propeller breakdown.

e The maintenance times for each type of sea vessel for gyro/radar/main machine
breakdowns.

e The probability of a steer breakdown for each type of sea vessel.

e The probability of a propeller breakdown for each type of sea vessel.

e The probability of gyro/radar/main machine breakdowns for each type of sea

vessel.
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4.3.5.2. Endogenous Variables (Output Variables) for the Sea Component
The endogenous (output) variables include state variables and performance

measures.
4.3.5.2.1. State Variables

e The number of different types of sea vessels in loading dock queues at each
SPOE.

e The number of different types of sea vessels in unloading dock queues at each
SPOD.

o The state of sea vessels at SPOEs (busy vs. idle).

e The state of sea vessels at SPODs (busy vs. idle).
4.3.5.2.2. Performance Measures

e Average loading time for each type of sea vessel at the loading docks at SPOEs.

e Average waiting time for each type of sea vessel in loading dock queues at
SPOEs.

e The utilization of sea vessels.

e Average maintenance times for a steer breakdown for each type of sea vessel.

e Average maintenance times for a propeller breakdown for each type of sea
vessel.

e Average maintenance times for gyro/radar/main machine breakdowns for each

type of sea vessel.
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e Average delay time for mine encounters.

e The number of (steer/propeller/radar/gyro/main machine) breakdowns for
different types of sea vessels.

e Average unloading time for each type of sea vessel at the unloading docks at
SPODs.

e Average waiting time for each type of sea vessel in unloading dock queues at
SPODs.

e The utilization of loading docks at SPOEs.

e The utilization of unloading docks at SPODs.
4.4. THE RAIL COMPONENT

The rail component consists of three classes. These are named
Land Arrival AtRPOE, RailMaintDelay, and RailArrival AtRPOD.

4.4.1. LandArrival AtRPOE Class

The land arrival at RPOE class simulates the arrival of a land convoy to its
intermediate point, RPOE, for loading into a train. The vehicles of the convoy along
with their loads can be directly loaded onto the train. Otherwise, the items have to be

unloaded from the vehicles and then loaded into the train.
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Figure 20. Simplified Event Graph for the Rail Component’s Land Arrival AtRPOE
class.

If the vehicles are not loaded onto the train and thus the vehicles do not go with the
train, then the unloaded vehicles may be loaded (if any loadable items are at the train
station) and depart for their next destination. They may also depart the RPOE empty
and go to their next destination or original location (home base) if a return trip is
required. These events are described in the event graph in Figure 20.
4.4.2. RailMaintDelay Class

Rail maintenance delay class simulates possible different causes of delay that

may take place during the movement of a train from its RPOE to RPOD and vice versa.
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The possible causes of maintenance delay are minor, medium, and severe
breakdowns in rail transportation assets. The probabilities of breakdown are different
for each certain type of train. These different types of delay are possible when a train is
on its way from a RPOE (RPOD) to its RPOD (RPOE). Certainly, there is the possibility
of not having any delays while enroute. The event graph for this class is in Figure 21.

Note that only the minor breakdown case is depicted in Figure 21 to keep the
presentation simple. The simplified event graph in Figure 21 states that if a minor
breakdown occurs during travel from a RPOE (RPOD) to a RPOD (RPOE), then the
arrival event to RPOD (RPOE) is canceled (the dashed arc) and after a delay time of
maintenance obtained from a probability distribution, the arrival at RPOD (RPOE) is

rescheduled.
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Figure 21. Simplified Event Graph for the Rail Component’s RailMaintDelay class.
These different types of delay are possible when a train is on its way from a RPOE
(RPOD) to its RPOD (RPOE).
4.4.3. RailArrival AtRPOD Class

Rail arrival at RPOD class simulates the arrival of a train to its RPOD and its
unloading. If the vehicles were loaded onto the train with their loads, then the vehicles
that debark may immediately form convoys and depart the RPOD for their destination.
If only the items and personnel were loaded at the RPOE, then the vehicles present at
the RPOD for transporting the unloaded items and personnel to their destination have

to be loaded. Then the vehicles form up convoys and depart for their destination.
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Figure 22. Simplified Event Graph for the Rail Component’s Arrival AtRPOD class.

The unloaded train may immediately leave after discharging or leave after
loading any available items/personnel to its RPOE if a return trip is required or if the
train is ordered to return. The event graph for this class is in Figure 22.

4.4.5. Exogenous (Input) and Endogenous (Output) Variables for the Rail
Component

The events and activities for the rail component are as shown in the event
graphs above. The entities for the rail component are trains of different sizes and
capacities. This section provides a sample list of possible exogenous (input) and

endogenous (output) variables for the sea component. This list is expandable
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depending on the statistics and measures of performance that are desired to be

calculated.

4.4.5.1. Exogenous Variables (Input Variables) for the Rail Component

The exogenous (input) variables include decision variables (controllable

variables) and parameters (uncontrollable variables) of the simulation model.

4.4.5.1.1. Decision Variables (Controllable Variables)

The number of loading docks at each RPOE.
The speeds of trains.
The number of railroad cars in a train.

The number of unload docks at each RPOD.

4.4.5.1.2. Parameters (Uncontrollable Variables)

The loading times for each type of train.

The unloading times for each type of train.

The maintenance times for each type of train for a minor breakdown.
The maintenance times for each type of train for a medium breakdown.
The maintenance times for each type of train for a severe breakdown.
The probability of a minor breakdown for each type of train.

The probability of a medium breakdown for each type of train.

The probability of a severe breakdown for each type of train.
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44.5.2. Endogenous Variables (Output Variables) for the Rail Component
The endogenous (output) variables include state variables and performance

measures.
4.4.5.2.1. State Variables

e The number of trains in loading dock queues at RPOEs.

e The number of trains in unloading docks queues at RPODs.

e The state of loading docks at RPOEs (busy vs. idle).

e The state of unloading docks RPODs (busy vs. idle).

4.4.5.2.2. Performance Measures

Average loading time for each train at RPOEs.

e Average waiting time for each train in loading dock queues at RPOEs.

e The utilization of loading docks at RPOEs.

e Average maintenance time for minor breakdown for each type of train.

e Average maintenance time for medium breakdown for each type of train.

e Average maintenance time for severe breakdown for each type of train.

e The number of (minor/medium/severe) breakdowns for different types of trains.
e Average unloading time for each type of train at the unloading docks at RPODs.
e Average waiting time for each type of train in unloading dock queues at RPODs.
e The utilization of unloading docks at RPODs.

e The utilization of trains.
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4.5. THE AIR COMPONENT

The air component consists of three classes. These are named
LandArrival AtAPOE, AirDelay and AirArrivalAtAPOD.
4.5.1. LandArrivalAtAPOE Class

The land arrival at APOE class simulates the arrival of land convoy to its
transfer point, APOE, for loading into an airplane. The vehicles of the convoy along
with their loads can be directly loaded into airplane if it is of a certain type (C-5 or
Antonov). Otherwise, the items have to be unloaded from the vehicles and then loaded
into the airplane. If the airplane type is not suitable to load the vehicles, thus the
vehicles do not go with the airplane, then the unloaded vehicles may be loaded (if any
loadable items are at the airport) and depart for their next destination. They may also
depart the APOE empty and go to their next destination or original location (home
base) if a return trip is required. These events are described in the event graph in

Figure 23.
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Figure 23. Simplified Event Graph for the Air Component’s Land Arrival AtAPOE class.

4.5.2. AirDelay Class

Air delay class simulates possible random delay of circling in air upon arrival at
destination airport due to air traffic congestion. Delays can also occur due to nonfatal
breakdowns that do not cause a crash or by foreign object damage (usually by birds
during takeoff). These could require the airplane to land at the nearest or the original
airport where the plane took off. A fatal breakdown of the aircraft would cause a crash
and require a search and rescue effort to be started. Delays may also be due to
inclement weather conditions. These are not simulated at this point and left as future

work. The simplified event graph for this class is in Figure 24.
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Figure 24. Simplified Event Graph for the Air Component’s AirDelay class.

4.5.3. AirArrival AtAPOD Class

Air arrival at APOD class simulates the arrival of an airplane to its APOD and
unloading of the airplane. If the airplane is of a certain type (i.e., C-5 or Antonov) then
the vehicles that debark may immediately form convoys and depart the APOD for their
destination. If the airplane is not of a certain type, then the vehicles present at the
airport for transporting the unloaded items and personnel to their destination have to
be loaded onto the vehicles, form up convoys and depart for their destination. The

airplane may immediately leave after discharging or take off for its APOE after loading
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any available items/personnel if a return trip is required or if the airplane is ordered to

return. The simplified event graph for this class is in Figure 25.
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Figure 25. Simplified Event Graph for the Air Component’s AirArrivalAtAPOD class.

454. Exogenous (Input) and Endogenous (Output) Variables for the Air

Component

The events and activities for the air component are as shown in the event graphs

above. The entities for the air component are aircraft of different sizes and capacities

such as a C-5, Antonov, or C-130. This section provides a sample list of possible

exogenous (input) and endogenous (output) variables for the air component. This list
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is expandable depending on the statistics and measures of performance that are desired
to be calculated.
4.5.4.1. Exogenous Variables (Input Variables) for the Air Component
The exogenous (input) variables include decision variables (controllable
variables) and parameters (uncontrollable variables) of the simulation model.
4.5.4.1.1. Decision Variables (Controllable Variables)
e The number of loading docks at each APOE.
e The speeds of aircraft.
e The number of unloading docks at each APOD.
4.5.4.1.2. Parameters (Uncontrollable Variables)
e The loading times for each type of aircraft.
e The unloading times for each type of aircraft.
e The delay times for circling in air due to traffic congestion at destination airport.
e The probability of a traffic congestion at destination airport.
454.2. Endogenous Variables (Output Variables) for the Air Component
The endogenous (output) variables include state variables and performance
measures.
4.5.4.2.1. State Variables

e The number of different types of aircraft in loading dock queues at each APOE.
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e The number of different types of aircraft in unloading dock queues at each
APOD.

o The state of aircraft at APOEs (busy vs. idle).

e The state of aircraft at APODs (busy vs. idle).

4.5.4.2.2. Performance Measures

Average loading time for each type of aircraft at the loading docks at APOEs.

e Average waiting time for each type of aircraft in loading dock queues at APOEs.

o The utilization of aircraft.

e Average delay in air due to traffic congestion.

e Average unloading time for each type of aircraft at the unloading docks at
APODs.

e Average waiting time for each type of aircraft in unloading dock queues at
APODs.

e The utilization of loading docks at APOEs.

e The utilization of unloading docks at APODs.
4.6. THE SIMULATION EVENT LISTENER PATTERNS

Listener Event Graph Object (LEGO) framework (Buss and Sanchez, 2004) is

used to connect components of our simulation. LEGOs can be programmed using
Simkit. The listener pattern implementation in Simkit is called Simulation Event

Listener or “SimEventListener” pattern using Simkit's interface name (Buss and
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Sanchez, 2002 and Buss, 2002). The simulation event listener patterns are used to
ensure communication between components of the simulation. This pattern
(SimEventListener pattern) is used to connect simulation components in a loosely
coupled manner. Simulation objects register interest in certain other simulation
objects” events. SimEvents are always invoked by a callback from the FEL to the
scheduling object that ultimately invokes the corresponding “do” method. The
SimEvent is then dispatched to every SimEuventListener that has explicitly registered
interest in that object’s SimEvents.

There are four components or modules of the transportation simulation: Land,
Sea, Air and Rail. In order for the two components to communicate with one another,
their subcomponents or submodules must have at least one event with the same name.
The same is true for two subcomponents to communicate with each other.

The Land Component consists of three subcomponents or submodules called
classes in Java. These are named HomeBaseDeparture, LandMaintDelay, and
LandArrivalAtDestination. For example, for the HomeBaseDeparture and
LandMaintDelay subcomponents to communicate with each other there needs to be
events with the same name in each one. The “DepartHomeBase” event is common to
both HomeBaseDeparture and LandMaintDelay submodules as seen in Figures 13 and
15. Thus, when an event named “DepartHomeBase” is fired in HomeBaseDeparture

component, it can be heard by the LandMaintDelay subcomponent if this component
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registers interest in that event by adding itself as a SimEventListener to
“HomeBaseDeparture” subcomponent.
4.6.1. The Simulation Event Listener Pattern for Land and Sea Components

The simulation event listener pattern for the land and sea components is in
Figure 26. The land component has three subcomponents: Home Base Departure, Land
Maintenance Delay, and Land Arrival At Destination. The sea component has also
three components: Land Arrival At SPOE, Sea Maintenance Delay, and Sea Arrival At

SPOD.

Land Land
Maintenance Arrival

Delay At
Destination

Land Sea
Arrival Sen Arrival
At _ i pd At

SPOE Maintenance N SPOD
Delay

NV

Figure 26. The Simulation Event Listener Pattern for Land and Sea Components.

80



The Land Maintenance Delay subcomponent listens to the “DepartHomeBase”
events of departing convoys from the Home Base Departure component. Land Arrival
At Destination subcomponent listens to the “LandArrivalAtDestination” events of the
Land Maintenance Delay subcomponent. Land Maintenance Delay subcomponent also
listens for “DepartDestination” events at Land Arrival At Destination subcomponent
for convoys returning to the home base for multiple trips. For those convoys going to a
SPOE, Land Arrival At SPOE subcomponent listens for “LandArrival AtSPOE” events
of the Land Maintenance Delay subcomponent. The Land Maintenance Delay
subcomponent listens to “VehiclesDepartSPOE” events of the Land Arrival At SPOE
subcomponent for the vehicles returning home base for multiple trips to the SPOE. Sea
Maintenance Delay subcomponent listens to the “DepartShipFromSPOE” events of the
Land Arrival At SPOE subcomponent. Sea Arrival At SPOD subcomponent listens to
the “ShipArrival AtSPOD” events of the Sea Maintenance Delay subcomponent.
Similarly, the Sea Maintenance Delay subcomponent listens to the
“DepartShipFromSPOD” events of the Sea Arrival At SPOD subcomponent for ship
departures back to the SPOE. The Land Component Arrival At SPOE subcomponent
listens to the “ShipArrivalAtSPOE” event of the Sea Maintenance Delay

subcomponent.
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The Land Maintenance Delay subcomponent listens to “VehiclesDepartSPOD”
events of the Sea Arrival At SPOD subcomponent for vehicles going to the destination
and thus may be subjected to maintenance delays.

4.6.2. The Simulation Event Listener Pattern for Land and Rail Components

The simulation event listener pattern for the land and rail components is
explained here. The land component has three subcomponents: Home Base Departure,
Land Maintenance Delay, and Land Arrival At Destination. The rail component has
also three components: Land Arrival At RPOE, Rail Maintenance Delay, and Rail
Arrival At RPOD.

The listening pattern connections are similar to those in Figure 26, with class
names replaced by those of Rail component’s. The SimEventListener pattern for land

and rail components is displayed in Figure 27.
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Figure 27. The Simulation Event Listener Pattern for Land and Rail Components.
4.6.3. The Simulation Event Listener Pattern for Land and Air Components

The simulation event listener pattern for the Land and Air components is
explained here. The Land component has three subcomponents: Home Base
Departure, Land Maintenance Delay, and Land Arrival At Destination. The Air
component has three components: Land Arrival At APOE, Air Delay and Air Arrival
At APOD.

The listening pattern connections are similar to those in Figure 26, with class
names replaced by those of Air component’s. The SimEventListener pattern for land

and air components is displayed in Figure 28.

83



Home Land Land
Base Maintenance Arrival

Departure Delay A‘[ _
Destination

Land

Arrival
At Air
APOE Declay

Figure 28. The Simulation Event Listener Pattern for Land and Air Components.
4.7. ANIMATION AND GRAPHICAL USER INTERFACE (GUI)

The implementation of animation in our simulation is performed by periodically
scheduling a single recurring event called “Ping”. A component called “PingThread”
simply puts “Ping” events into the event list with deterministic time between
occurrences. When the “Ping” event is heard by “Simulation” subcomponent of model
component, it updates the locations of mover objects and the “GUIMain”
subcomponent of GUI component repaints the icons of mover objects on the map view.

A screenshot of a simple implementation of this is in Figure 29.
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Figure 29. A sample screen shot of animation showing a deployment using road (thin
black lines) and rail networks (thick brown lines) and sea lines (best viewed
in color).

This sample screen shot of animation shows a deployment using road (thin

black lines) and rail networks (thick brown lines) and sea lines (best viewed in color). A

detailed treatment of simple movement and animation in DES is presented in (Buss

and Sanchez, 2005).

We also provide a brief description of the GUI and provide a few sample screen

captures to show the general structure of the GUI and the steps that would be required

to define and run a simulation. Figure 30 is a screen capture of the home base creation
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screen from which the user can add appropriate transportation assets, loads, and pax to

the home base created.

onvoy Size :
at:4510:41:43 N Lon.323:28:52 E
[ Add Truck || AddBus H Add Tank || Add APC H Add SP Howitzer H AddLoad || AddPax
| ok | | cancel |

Figure 30. A screen capture of the home base creation screen.
Figure 31 depicts the detailed data used in creation of a truck. The user can
create trucks of different capacities and sizes, determine according to the deployment
plan their initial delay times at their respective home bases, and assign routes (paths) to

follow. Itis clear from Figure 31 that the modeling level of resolution for truck entity is

high.
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Figure 31. A screen capture of the truck creation screen.
Figure 32 is a screen capture of the GUI where the user can select breakdown
probabilities, their maintenance delay times and load/unload times for trucks. All

standard probability distributions are supported. Creation of other entities such as
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buses, tanks, self-propelled howitzers, trains, and ships used in the simulation are done

using similar GUIs. They are not all included here.

(Data | Stat |

Delay Probability
Minor

Uniform |+ |0.5 1.5

Medium

Major

Uniform | = {2 1

Maintenance Time
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Medium

Uniform | ¥ |1 2

Major

Triangle | v |2 3 5

Load Time

Uniform | v |2 4

Unload Time

Triangle | = |2 3 5

‘ Ok ] ‘ Cancel ‘

Figure 32. A screen capture of the truck breakdown probabilities and maintenance,
load/unload time distributions creation screen.

Figure 33 depicts the GUI used in detailed (height, length, width, weight, and

volume) creation of loads.
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Figure 33. A screen capture of load creation.

Figure 34 depicts the GUI used in creation of pax.

Pax Type :
Jai \I
'Nlumber of Pax:
E \I
eight of Pax in Kgs :
100 |
Ok ‘ ‘ Cancel ‘

Figure 34. A screen capture of pax creation.
Figure 35 is a screen capture of the seaport of embarkation (SPOE) creation
screen from which the user can determine the number of load/unload docks at the port
and add ships of appropriate characteristics to the SPOE created. The GUI for creation

of a SPOD is similar and thus not presented here.
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Figure 35. A screen capture of SPOE creation.
Figure 36 depicts the GUI used by the network module of the simulation which
allows shortest path selection in route planning. In addition, it allows the listing and
selection of all routes on land and rail networks whose length (cost) is a user-specified

percentage more than the shortest path’s.
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Figure 36. A screen capture of network module.
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4.8. EXPLANATIONS OF SOME OF THE OTHER JAVA CLASSES (MODULES)

The simulation has a total of 97 Java classes (modules) and over 16000 lines of code.
Here we provide explanations of some of the Java classes or modules used in the
simulation. The requests for obtaining the entire code for research and other purposes
may be considered on a case by case basis by the author and the thesis advisors of this
dissertation. The classes are organized under five packages or components. These are
the model, gui, statistics, network, and explorer packages.

4.8.1. Model Package (Component)

Some of the classes (subcomponents) in this package and a brief explanation on
what they do are provided below.

HomeBaseDeparture, LandArrivalDestination, LandArrival AtAPOE,
LandArrival AtSPOE, LandArrival AtRPOE, MaintenanceDelay, SeaArrivalAtSPOD,
RailArrival AtRPOD, AirArrival AtAPOD are the classes explained previously using
their event graphs.

Bus, APC (armored personel carrier), Ship, SPHowitzer (self-propelled
howitzer), Tank, Truck, Plane, Train are classes or design blueprints to create carriers
of different sizes and capacities.

Pax and Load classes create loads and troops to be transported. PaxStock and

PaxContainer are helper classes for Pax class.
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MipasMover, MipasPath, and MipasPathMoverManager are used for creation
and movement of movers. Convoy class is used for creation of convoys.

PingThread, PingLlistener and PingEvent classes are used for animation
purposes. MapViewProvider is an interface class for displaying map view.

4.8.2. GUI Package (Component)

Most of the classes used in the model component have their corresponding
classes related to GUI in this package. MipasHomeBaseDialog creates a dialog box for
creation of home bases. It is similar for other classes such as SPOE and MIPASSPOE
etc. MIPASHomeBase wraps HomeBaseDeparture class so that it is displayable on the
mapview. Dialog boxes, path creation handling, and BlackSpots are displayed using
the classes in this package.

4.8.3. Statistics Package (Component)

This is actually a subpackage of the gui component and it provides the panels
for creation of statistical distributions and delays. Some of the classes are DelayPanel,
DistributionFactory which allows for creation of all standard distributions,
StatDistributionPanel, StatInputPanel, and TriangularDist.

4.8.4. Network Package (Component)
This package has NetworkCreater, NetworkDirectionFunction,

NetworkShortestPathCreationHandler, NetworkAlternativePathCreationHandler,
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NetworkCostFunction, NetworkUtil, and NetworkWizard classes used for shortest and
alternative path creation and cost calculation.
4.8.5. Explorer Package (Component)

This package has ExplorerPlugin, ObjectControlPanel and
SimulationControlPanel classes used for running the simulation as a plugin inside

GeoKIT Explorer.
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5. VERIFICATION AND VALIDATION

Verification (also referred to as debugging by Kleijnen in (Sargent et al., 2000)) is
simply making sure that the computer program of the computerized model and its
implementation is correct. A model is said to be valid if within its domain of
applicability it posesses a satisfactory range of accuracy consistent with the intended

application of the model (Sargent, 1999).

Problem Entity
(System)  [W% _

Operational Cu“‘llrllcu E:{.erluﬂl
Validation T;lljdmiuu
! %
f’ Experimentation ‘%J:]ﬂ:\d'sis 1.‘

Data Modeling

Validity :
]

- — -,

Computerized
Model

Computer Programming Conceptual
and Implementafion Model

- Computerized _-
S~ Maodel -
Verification

Figure 37. Simplified Version of the Modeling Process (Adapted from Sargent, 2001).
Sargent favors the simplified version of the modeling process displayed in Figure

37 and relates verification and validation to this.
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Verification and validation were conducted by using appropriate methods
explained in (Sargent, 2001 and Balci, 1998). To mention a few more specifically, for face
validity, we have discussed inputs and outputs of the model and its EGs with potential
users of the model and personnel at Transportation Coordination Center of the General
Staff. We used assertion checking to verify that the model functioned within its
acceptable domain. Incrementally, bottom-up testing was performed, where each
individual subcomponent was tested and integrated. Fault (failure) insertion testing was
used to test whether the model responded by producing an invalid behavior given the
faulty component. During special input testing, we used an arbitrary mixture of
minimum and maximum values, and invalid data for the input variables, and tested for
potential peculiar situations at the boundary values. In addition, we have tested the
validity and behavior of the model under extreme workload and congestion at the
load/unload docks and transfer points such as SPOEs, SPODs etc. Animation also
helped in discovering errors during model development.

Furthermore, results of the deployment optimization model developed by
Akgiin and Tansel (2007) were used for verification purposes. Akgiin and Tansel used
three different networks with number of nodes 13, 19, and 25 and number of arcs 49, 77,
and 109, respectively. For each network, they generated five problems corresponding
to 4, 8, 16, 32, and 64 types of items. Of the 15 problem types generated by Akgiin and

Tansel, we have used for verification purposes three of them, corresponding to three
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different network sizes, and 32 item types. We report here only the scenario

corresponding to the network with 13 nodes and 49 arcs depicted in Figure 38.

Vehicle Pool

® .

48 47 Source

3/26

Destination

Destination

Destination

Figure 38. One of the network models used for verification purposes.

The first set numbers on the arcs are those of the directed arcs depicted in Figure
38. The second set of numbers belongs to the reverse arcs. In this network, source
nodes (home bases) are 1, 2, 3, and 6. Demand nodes (destinations) are 10, 11, and 12.
Transshipment nodes are 4, 5, 7, 8, and 9. There is no transfer node (POE or POD).
Dummy node (vehicle pool) is 13. It provides transportation assets inorganic to the

units and can be regarded as a home base for vehicles. In this scenario, 32 different item
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types of varying amounts are transported. Item types 1, 9, 17, and 25 are pax. The
others are loads of different dimensions and weights. There are 6 different types of TAs
allocated to this scenario. The total number of TAs allocated is 61 vehicles. Load and
unload times for each TA is 1 hour. For all TAs, the minimum and maximum arrival
times at destinations are 80 and 100 hours, respectively. The scenario had around
180,000 single variables, 4,300 discrete variables and 130,000 equations. The objective
was to find the minimum cost deployment plan meeting the time-window deadlines to
be at destination. This scenario had only one mode of transportation (land). The
scenario was solved to optimality via ILOG CPLEX 9.0 on a 1.5 GHz PIV PC with 1.5 GB
RAM. The optimal cost obtained is $5,727,912.00. This cost figure includes fixed cost of
procurement of TAs and the variable cost of travel per unit time.

A part of the optimal solution of the model that shows movement routes and

times of loaded trucks is in Table 3.
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Convoy # Departure Source TAX TA Type Through Nodes Demand

Time Node Node
68 1 1 1 89 12
1
(1st trip) 68 1 16 B 5-9 12
B8 1 1 4 59 12
[St5] 3 10 3 57 10
2 (ot 3 2 4 57 10
(1st trip) ;
(&t 3 4 b 57 10
89 2 10 3 59 11
2 89 2 2 4 59 11
(2nd trip)
89 2 4 b 59 11
50 B 1 1 87 10
1
@nd trip) 90 b 1 4 57 10
90 B 16 b a7 10

Table 3. Optimal numbers, movement routes, and movement times of loaded trucks.
The first line in Table 3 shows that one TA of type 1 departs from source node 1
at time t=68, and travels through nodes 5 and 9 to reach the demand node 12. The first
three lines of Table 3 indicate that a total of 18 (1+16+1) vehicles depart as a convoy from
source node 1 at time t=68. Upon reaching demand node 12 (at time t=82, not shown),
these vehicles unload and return to source node 6. As seen in the last three rows in
Table 3, these vehicles in the first three lines of Table 3 that departed at t=68 for
destination node 12, now depart at t=90 from source node 6 to demand node 10. Thus,
in the optimal solution of network in Figure 38, multiple trips are made from source

node 1 to destination node 12 and from source node 6 to destination node 10 by the
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same set of vehicles shown in the first and last three rows of Table 3. The remaining
rows of Table 3 also depict multiple trips between source node 2 to destination node 11,
and source node 3 to destination node 10. The optimization results for movement of
empty TAs from dummy node (vehicle pool) 13, and after unloading at destination
nodes are not included here. The results of the optimization model were simulated
using deterministic values used in the optimization model. That is, load and unload
times were taken as 1 hour each. Travel times used in arcs of the optimization network
were transferred to distance figures using constant travel speeds (60 km. per hour) to be
able to physically create the network in the simulation. The cost figure obtained under
these deterministic conditions from the simulation was the same as the cost figure
obtained from the optimization model.

In addition, simulation results were compared to the historical deployment data
obtained from the Scientific Decision Support Center of the General Staff. The results of

the comparison were satisfied in terms of validation of our model.
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6. SIMULATION ANALYSIS OF A TYPICAL REAL-WORLD
SCENARIO

6.1. SIMULATION ANALYSIS OF A TYPICAL REAL-WORLD CASE STUDY

A typical and most-encountered deployment scenario, which is a good
benchmark to test our model, for deploying four battalions (three mechanized and one
armored) during peace-time from southeastern to northwestern Turkey is analyzed.
The scenario uses land, sea, and rail transportation networks and assets. These four
units deploy from three different home bases to three unique destinations. Units C and
D are co-located, and Units B and C deploy to the same destination location. The data

related to the deployment of each unit and its components are listed in Table 4.
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Deployment Pax APC Tank 25 5Ton Generator Box Box

Component Number Ton Truck (Type 1) {Type 2)
Truck

Total 500 45 14 10 10 8 40 40

Advance

Party

40 1 1 3 3
Unit A | pay Party
450

- 10 45 | 14 9 10 7 37 37

by Sea

Total 500 45 14 10 10 8 40 40

Pax Party

Gargo Pany 50 45 | 14 10 10 8 40 40

by Rail

Total 500 45 14 10 10 8 40 40

Pax Party

Cargo Party 50 5 | 14 10 10 8 40 40

by Rail

Total 500 14 45 10 10 8 40 40

Pax Party

Catgo Pany 50 14 | 45 10 10 8 40 40

by Rail

Table 4. Units listed by their deployment components and major equipment.

As shown in the rows allocated to Unit A in Table 4, Unit A deploys in three
components; advance, pax, and cargo parties. The advance party for Unit A has 40 pax,
one 2.5-ton truck, one generator, three Type 1 boxes, and three Type 2 boxes. The pax
party for Unit A has 450 personnel. The cargo party for Unit A will deploy by sea. It has
10 pax, 45 armored personnel carriers (APCs), 14 tanks, nine 2.5-ton trucks, ten 5-ton

trucks, seven generators, 37 Type 1 boxes, and 37 Type 2 boxes. Unless otherwise
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indicated in Table 4, each component deploys by land. The total number of deployed
personnel and equipment for Unit A are shown in the line named fotal. Units B, C, and
D deploy in two components each. Their cargo parties deploy by rail as indicated in
Table 4.

Table 5 shows the minimum and maximum time requirements for deployed
units to be at their designated destination locations. For example, all components of

Unit B must deploy not before 120 hours and not after 240 hours.

Unit Name Min Time Max Time
{hours - days)  (hours - days)

Unit A& -0 (120 -5}

Unit B (120 - 5) (240 —10)

Unit C (120 - 5) (240 —10)

Unit D (48 —2) (168 —7)

Table 5. Time windows for units to be deployed.
Table 6 shows the initial delay times for each deployment component. Delay
times are used to ensure timely and coordinated arrivals at destinations for each
deploying unit. For example, Pax component of Unit D departs after 36 hours of

simulation time, and its Cargo component departs after 48 hours.
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Unit Name Deployment Initial Delay

Component {In Hours)

Advance

Party 12
Linit A Pax Party 24

Cargo Party 0

by Sea

Fax Party 96
Unit B

Cargn_ Farty 96

by Rail

Pax Party 96
Unit C

Cargu_ Party 120

by Rail

Pax Party 36
Unit D

Cargn_ Party 48

by Rail

Table 6. Initial delay times for each deployment component.

The preparation time for all units in this scenario is 10 days (240 hours) and is not
listed in Table 6. The preparation time is also not simulated. The simulation for this
scenario is a terminating one with a termination time of 240 hours. The transportation
assets allocated to this scenario are not listed in detail here. They include one large
RoRo ship, four trains with enough and appropriate rail cars, trucks, and tank carriers
(one tank carrier can carry a single tank or 2 APCs). The armored vehicles must be
carried by rail or sea to distances over 300 km. In this scenario, they deploy over 300
km. Other restrictions used in the simulation, such as the storage capacities of SPOE,

SPOD, RPOE, and RPOD, are not presented here.
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6.2. INITIAL RESULTS

We adjust the sample size by setting the number of replications. To achieve the
desired accuracy of 90% relative precision (10% error), we first ran the model for 5
replications for a run-length of 240 hours. Using our performance measure of
percentage of average on-time arrivals at each unit’s destination, we calculated point
and interval estimates. For each unit, the half-width as a measure of accuracy varied.
In order to achieve the desired accuracy in the worst case, we used the maximum half-
width for all units for the given run-length and decided that 10 runs would suffice.

Yet, since run-time is not expensive in our case, we ran the simulation for 60
replications (around 25 minutes) on a 1.6 GHz Pentium(R) M PC with 512 MB RAM to
see the model’s behavior. Our performance measure was the percentage of average
number of TAs from each of the four units that arrived in their given time windows at
their respective destinations. This performance measure was met for each unit.
However, there were different numbers of vehicle breakdowns that lasted varying
amounts of time. Even though all TAs from 4 units arrived during their given time
windows, some had to deal with delays due to maintenance problems. To be more
specific, on average, Unit A had two minor breakdowns per run. Unit B had one minor
breakdown every four runs. Unit C had 9 breakdowns per 5 runs, and 17 medium
breakdowns per 20 runs. Unit D had one minor breakdown per run, one medium

breakdown per 5 runs, and one major breakdown per 4 runs.
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That is, all deployed units arrived at their respective destinations with some
maintenance problems. This is common for any military deployment scenario, yet it
does not provide much insight other than to have spare equipment and personnel to fix
broken down vehicles. In order to see how this plan would behave in an emergency
situation, such as a quickly escalating military situation or a natural disaster, we
decided to reduce allowed maximum arrival times (Tmax) at each unit’s respective
destinations by 12-hour increments and ran the simulation for each case. Even though a
replication number of 10 is sufficient, we used 15 replications for each case just to be on
the safe side. We made a total of 15x12 = 180 replications. We assumed that since the
situation is urgent, the initial delay figures depicted in Table 4 are zero. Likewise, the
allowed minimum arrivals times at each unit’s respective destination are taken as zero.
The results are displayed for each unit. These figures represent the robustness of a
peace-time deployment scenario under urgent circumstances. For Unit A, all
deployment components arrived on-time for the peace-time scenario with Tmax = 120
hours. Figure 39 depicts that the percentage of average on-time arrivals for Unit A after

Tmax= 96 hours drops below 20 percent. This is unacceptable by any military standard.
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Percentage of Average On-Time Amivals vs. Reduction in Tmax for
Unit A
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Figure 39. Percentage of Average On-Time Arrivals vs. Reduction in Tmax by 12 hours
for Unit A.

Units B and C arrive at the same destination, and thus are considered together.
For Units B and C, there is no change of average on-time arrivals in the range Tmax is
considered. That is, this deployment scenario is robust for Units B and C. Figure 40
shows that the danger zone for Unit D lies between Tmax = 72 hours and 60 hours as
the percentage of average on-time arrivals drops from 88 percent to 28 percent. 28

percent is certainly unacceptable.

106



Percentage of Average On-Time Arrivale v2. Reduction in
Tmax For Unit D
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Figure 40. Percentage of Average On-Time Arrivals vs. Reduction in Tmax by 12 hours
for Unit D.

These are very critical information as to what would happen if an existing plan
had to be modified accordingly as unexpected events unfold. A military mission cannot
be accomplished and lives could be lost if military units can not arrive at their
designated destinations in a timely manner according to their plans. Our simulation
proves to be an invaluable tool to create, and to determine the applicability and
robustness of existing plans in a relatively short time.

6.3. FURTHER ANALYSIS USING NOLH SAMPLING
Even a small-scale military deployment scenario can have a large number of

input variables (factors) that may impact the outcome of the plan. In classical design of
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experiments (DOE), one can explore only a handful of cases. With the use of computers
and in a simulation setting, the user can vary a large number of input variables. Yet,
even with today’s computing power, a complete enumeration of all possible scenarios is
an exhaustive task. To intelligently sample the state space of possible alternatives in a
simulation setting, we use an approach developed for large-scale simulation
experiments with many factors (Kleijnen et al. 2005, Cioppa and Lucas 2007).
6.3.1. Nearly Orthogonal Latin Hypercube Sampling and Its Application

DOE deals with different fields from medicine to farming, and provides
procedures for efficient conduct of statistical experiments. Computer simulation
provides a vast area in which to expand DOE. Some of the possible designs are
presented in the Design Toolkit (Kleijnen et al. 2005). Latin Hypercube (LH) designs are
recommended for simulation experiments with minimal assumptions and many factors.
Ye (1998) developed an algorithm for orthogonal LH designs (Ye 1998). This was later
extended by Cioppa and Lucas (2007), who gave up small amounts of orthogonality for
better space-filling designs, and developed the Nearly Orthogonal Latin Hypercube
(NOLH) designs. Orthogonal Latin Hypercube (OLH) and NOLH designs are special
cases of LH designs. OLH designs have strict orthogonal properties, i.e,, a matrix
condition number of 1, and a maximum pairwise correlation of zero between any two
columns in the design matrix. NOLH designs relax the requirements on the orthogonal

properties. NOLH designs choose the most space-filling design among design matrices
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that satisfy near orthogonal thresholds. In a good space-filling design, the design points
are required to be scattered throughout the experimental region with minimal
unsampled regions. The limits used by Cioppa and Lucas (2007) are a condition
number of less than 1.13 and a maximum pairwise correlation between all columns of
the design matrix in the interval (-.03, .03). The NOLH design matrix is a compromise
between complete enumerations of all possible scenarios, which is an exhaustive task
even with today’s computing power, and an OLH design. NOLH designs can also
handle discrete variables, as opposed to LH designs which can only handle continuous
variables, at a cost of orthogonality and space-filling properties if the levels of discrete
variables are a few. Generating these designs is a time-consuming process. But a
catalogue of ready-to-use designs are available online. This paper utilizes a 29-factor
and 257-run design by Sanchez and Hernandez, 2005). Table 7 provides the factors and
their levels for experimentation with our deployment simulation. The levels of these
factors are entered into the spreadsheet provided by Sanchez and Hernandez (2005) to
create a nearly-orthogonal and space-filling 257-run design matrix. The factors are the
convoy speed, the number of load and unload docks at transfer points (such as
SPOE/RPOE etc.) and minor/medium/major breakdown probabilities for transportation
assets used in the deployment. These factors were chosen according to expert opinion.

As more units are added, more factors with varying levels will have to be considered.
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# Factor Name Low | High
1 | Convoy speed 30 70

2 | Unit A Sea Group # load docks 3 37

3 | Unit A Destination # unload docks 3 10

4 | Unit B Home # load docks 3 37

5 | Unit B RPOE # load docks 1 10

6 | Unit B RPOD # unload docks 1 6

7 | Unit B Destination # unload docks 3 37

8 | Unit C Home # load docks 3 20

9 | Unit C RPOE # load docks 1 10

10 | Unit D Home # load docks 3 37

11 | Unit D RPOE # load docks 1 6

12 | Unit D RPOD # unload docks 1 6

13 | Unit D Destination # unload docks 3 37

14 | Truck Minor Breakdown Probability | 0 0.05
15 | Truck Medium Breakdown Prob. 0 0.07
16 | Ship Minor Breakdown Probability 0 0.1
17 | Ship Medium Breakdown Prob. 0 0.008
18 | Train Minor Breakdown Probability | 0 0.06
19 | Train Medium Breakdown Prob. 0 0.02
20 | Train Major Breakdown Probability | 0 0.001
21 | Bus Minor Breakdown Probability 0 0.05
22 | Bus Medium Breakdown Probability | 0 0.025
23 | Bus Major Breakdown Probability 0 0.008
24 | Tank Minor Breakdown Probability | 0 0.1
25 | Tank Medium Breakdown Prob. 0 0.04
26 | Tank Major Breakdown Probability | 0 0.008
27 | APC Minor Breakdown Probability | 0 0.15
28 | APC Medium Breakdown Prob. 0 0.025
29 | APC Major Breakdown Probability | 0 0.009

Table 7. Factors and their levels.
6.3.2. Further Results
Part of the design matrix (first 10 runs for the first 5 factors) created using the
factors and their levels in Table 7 are presented in Table 8. For each of these input
combinations (rows) of our 257-run design matrix (partly depicted in Table 8), we have

written a script to modify the simulation’s base-case XML scenario file.
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low level 30 3 3 3 1

highlevel 70 37 10 37 10

decimals 0 0 0 0 0

factor 1 5 3 4 5
name

1 46 33 7 24 7

2 35 17 9 36 7

3 36 23 4 22 10

4 46 8 6 25 8

5 45 22 7 17 9

6 48 15 10 8 9

7 32 24 6 7 6

8 45 4 6 17 9

9 33 21 10 24 4

10 49 6 9 27 1

Table 8. 10 Runs for First 5 Factors of 257-Run Matrix.

We made 15 replications (to achieve the desired accuracy of 90% relative
precision) of each of the newly-created 257 scenarios to reach a total of 257x15=3855
computer runs. Compare this to an experiment with 29 factors each with only 2 levels
and 15 replications per run for a complete enumeration experiment (2% x15=
8,053,063,680 computer runs!). We have written a VBA script to extract and calculate
the percentage of on-time arrivals for each run (averaged across replications) from the
simulation output files written onto EXCEL spreadsheets. For Unit A, Averaged on-
time Arrivals at its destination (AoA) ranged between 76.8% and 100% with a average
of 97.93% and a standard deviation of 0.0374. That is, on average, 97.93 percent of all
vehicles of Unit A arrived at their destination on-time according to the deployment
plan. For Units B and C deploying to the same destination, AoA ranged between 96%

and 100% with an average of 99.96% and a standard deviation of 0.0034. The
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deployment plans for Units B and C seem to be robust across the input combinations
simulated. For Unit D, AoA ranged between 93.04% and 98.8% with an average of
98.57% and a standard deviation of 0.0118.

To identify which factors contribute more to our performance measure of AoA,
we use a nonparametric approach, namely regression trees, to reveal the structure in the
data in a more human-readable way. We append the AoA response variable for Units
as 30" column to the 257-run design matrix for 29 factors, and import this newly formed
30-column matrix into JPM (SAS 2005). This is done separately for Unit A, Unit D, and
Units B&C. The data are split into two leaves in such a way that the variability in the
response within each leaf decreases and the variability in the response between leaves
increases (Kang, Doerr, and Sanchez 2006). The split is continued until the point of
diminishing returns in the value of R? (a measure of the amount of variance in the data
that is explained by the given model) is reached. Only after 26 splits, an R? of 0.617 is
reached for Unit A. For Units B and C, an R? value of 0.317 is reached only after JMP
makes 6 splits, and no further splits can be made. However, a careful examination of
the split columns (factors) reveal that two factors have nothing to do with the
deployment of Units B and C, and thus can be pruned to achieve an almost the same
level of R? of 0.314. Figure 41 shows the final regression tree for Units B and C. For

(column) factor 11 (the number of load docks at RPOE for Unit D), the AoA is 100% for
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60 scenarios when number of load docks is greater than 2, as opposed to an AoA of

99.4% for 6 scenarios when the number of load docks is less than 2.

All Rows
Count 257  LogWorth
Mean 0,9996211 1,5239336

Std Dev  0,0034444

Column 14>=0,04 Column 14<0,04

Count 78 LogWorth Count 179
Mean 0,9987612 1,7012579 Mean 0,9999958
Std Dev  0,0061935 Std Dev  5,5988e-5

Column 28<0,01 Column 28>=0,01

Count 12 LogWorth Count 66  LogWorth

Mean 0,9946005 0,4827947 Mean 0,9995176 2,6502806

Std Dev  0,0124684 Std Dev  0,0039186

!—‘—\ !—‘—\

Column 9>=5 Column 9<5 Column 11<2 Column 11>=2

Count 5| Count 7 Count 6 || Count 60
Mean 0,987191 || Mean 0,999893 Mean 0,9946941 (| Mean 1
Std Dev  0,0175998|( Std Dev 0,0002831| | Std Dev 0,0129967 || Std Dev 0

Figure 41. Regression Tree for Units B and C.
Although not a huge difference, this is due to the fact that Units C and D are co-

located and share the same resources (loading docks) even though the design matrix is

for deployment of Units B and C. Major factors of influence seem to be minor
breakdown of trucks and medium breakdown of Armored Personnel Carriers (APCs).
As for Unit D, JMP makes 43 splits of the data to achieve an R? of 0.417. A careful

examination of splits and pruning of unnecessary and illogical leaves (i.e. factors not
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related to deployment of Unit D), reveals that the same R? value can be achieved with
only 11 splits of the data.
6.4. CONCLUSIONS AND FUTURE WORK

In this dissertation, we have introduced a logistics and transportation simulation
developed for use in the military DPP. We applied, for the first time, the EG
methodology and LEGO framework to create a multi-modal discrete-event simulation
model of the DPP. EGs and LEGOs provided a simple yet powerful and elegant way of
representing DES model of deployment, and enabled easy creation of component-based
models of a real-world military problem. The mostly high-resolution used allowed us
to estimate whether a given plan of deployment will go as intended, and determine
prospective problem areas in a relatively short time compared to other existing
simulations because of the absence of the need to use several models of differing
resolutions in succession. The short run times achieved demonstrated this. The very
accurate and detailed GIS data, and the detailed data used in modeling of entities,
resources and military equipment in the simulation permitted us not to exchange reality
in favor of shorter run times. We had to extend Simkit by writing additional Java
classes that are specific to military deployment. The component-based approach
adopted in development of our simulation model enables us to easily integrate future
additions to our model. These additions may be detailed modeling of infrastructure

and resources at transfer points. Our model is generic enough to be used in commercial
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logistics applications after some problem-specific modifications. While some of these
modifications may be minor ones, others could be major modifications depending on
the domain of the problem desired to be modeled. Finally, we have simulated a real-
world case study to see its robustness under urgent situations. We used a rather new
and intelligent nearly-orthogonal design of experiments to further complement classical
analysis techniques. Our simulation provided valuable insights as to when and what
percentage of units would be at their designated destinations if the original plan had to
be modified for more urgent deployment of military units. This is invaluable
information for a commander since a military mission cannot be accomplished and lives
could be lost if military units can not arrive at their designated destinations in a timely
manner according to their plans.

As for future work, we plan on integrating our simulation software to the
optimization model developed by Akgiin and Tansel (2007) for use in simulation
optimization applications. In addition, we consider adding web-based services for
obtaining real-time or near real-time weather information and integrating this into the
simulation environment. We desire to test more scenarios and will look for ways to
automating the design of experiments part using NOLHS. This will be done in
accordance with our on-going work in development of a detailed output analyzer

module for the simulation.
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APPENDIX A

Sample Java code for home base departure class is provided below. The
complete code for all classes is not provided here due to space limitations and the
length of the code. The requests for obtaining the entire code for research and other
purposes may be considered on a case by case basis by the author and the thesis

advisors of this dissertation.

package mipas.model;

* author : Ugur Ziya YILDIRIM

* Mipas

* date : November, 2005

* A class that implements Home Base Departures for land movers

* They depart after loading and move to their destination, a SPOE, a RPOE

* or an APOE. Upon arrival they may unload and return for multiple

* trips if necessary. Those land movers that do not need to load anything

* simply form a convoy and depart home base for where they have to go after

* the convoy size reaches a prefixed convoy size. Those that return may park at a

* parking lot if there is no load to transport.
>('>(->(->(->('>('>(->(->('>(->(->(->(->(—>(->(->(->(—>(->('>('>('>('>(->('>('>('>(->('>('>(->(->('>('>('>(->(->(->('>('>(->(->('>('>('>(->('>('>('>(->(->('>('>('>(->('>(-*********************/

import java.awt.Image;

import java.awt.geom.Point2D;
import java.util. ArrayList;
import java.util. Enumeration;
import java.util.Iterator;
import java.util. LinkedList;
import java.util.List;

import javax.swing.JFrame;

import mipas.gui.BlackSpotsGroup;
import mipas.gui. MIPASBusDialog;

import simkit.Schedule;
import simkit.smdx.PathMoverManager;

import com.bilgi.geokit.kernel.feature.geom.model. GKCoordinate;
import com.bilgi.geokit.kernel.registry. GKRegistryNode;
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public class HomeBaseDeparture extends AbstractLocationBase {
// mover container
protected LinkedList moverContainer;

[[***state variables***

//load queue at home base
protected LinkedList loadingQueue;
protected LinkedList busQueue;

// number of vehicles in the loading queue
protected int numInLoadingQueue;
protected int numInBusQueue;

// number of available load docks at home base
protected int numAvailableLoadDocks;

/[total time spent in loading docks
protected double timeInLoadingDocks;

//delay in loading queue
protected double delayInLoadingQueue;

//mumber of breakdown according to their types

protected int numberMinorBreakdownsFromHomebase;
protected int numberMediumBreakdownsFromHomebase;
protected int numberMajorBreakdownsFromHomebase;

//time spent during breakdowns according to their types
protected double timeInMinorBreakdownFromHomebase;
protected double timeInMediumBreakdownFromHomebase;
protected double timeInMajorBreakdownFromHomebase;

//time spent in “black spots”
protected double blackSpotsDelayTime;

// parking lot at home base to park vehicles that return and have no load to carry.
// Just a storage
protected LinkedList parkingLotHomeBase;

%% 4%
/

instance variables
//name of home base
private String nameHomeBase;

// location of home base
private Point2D homeBaseLocation;

//mumber of load docks at home base for land vehicles
private int numLoadDocks;
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private LoadStock baseStock = new LoadStock();

private PaxStock basePax = new PaxStock();

[/***constructor***

public HomeBaseDeparture(int nld, GKCoordinate hbl, String name) {

setNumLoadDocks(nld);

setHomeBaseLocation(new Point2D.Double(hbl.x,hbl.y));

setName(name);

moverContainer = new LinkedList();

stock = new LoadStock();

pStock = new PaxStock();

loadingQueue = new LinkedList();

busQueue = new LinkedList();

parkinglLotHomeBase = new LinkedList();
}

public void reset(){
super.reset();

numAvailableLoadDocks = numLoadDocks;

loadingQueue.clear();
busQueue.clear();
numlInLoadingQueue=0;
numInBusQueue=0;
timeInLoadingDocks=0;
delayInLoadingQueue=0;

numberMinorBreakdownsFromHomebase = 0;

numberMediumBreakdownsFromHomebase = 0;

numberMajorBreakdownsFromHomebase = 0;

timeInMinorBreakdownFromHomebase = 0;
timeInMediumBreakdownFromHomebase = 0;
timeInMajorBreakdownFromHomebase = 0;

blackSpotsDelayTime =0;

for (Iterator iter = moverContainer.iterator(); iter.hasNext();) {
MipasMover element = (MipasMover) iter.next();
element.setLocation(new Point2D.Double(getLocation().x,getLocation().y));

element.reset();
}
parkingLotHomeBase.clear();
stock = cloneLoadStock();
pStock = clonePaxStock();
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private LoadStock cloneLoadStock() {
LoadStock stock = new LoadStock();

for (Iterator iter = baseStock.getContainers(); iter.hasNext();) {
LoadContainer lc = (LoadContainer) iter.next();
LoadContainer nlc = new LoadContainer(Ic);
stock.addLoadContainer(nlc);

}

return stock;

private PaxStock clonePaxStock() {
PaxStock pStock = new PaxStock();
for (Iterator iter = basePax.getContainers(); iter.hasNext();) {
PaxContainer pc = (PaxContainer) iter.next();
PaxContainer npc = new PaxContainer(pc);
pStock.addPaxContainer(npc);
}
return pStock;
}
//The run method for intialization of statistics and
/[ Initial population of thesimulation event list.
public void doRun(){
firePropertyChange("numAvailableLoadDocks",numAvailableLoadDocks);
firePropertyChange('numInLoadingQueue",numInLoadingQueue);
firePropertyChange("numInBusQueue",numInBusQueue);

for(Iterator i = moverContainer.iterator() ; i.hasNext();){
MipasMover mover = (MipasMover)i.next();
mover.reset();
waitDelay("ArrivalHomeBase", 0.0, mover);
}
}

//arrival of movers to home base
public void doArrivalHomeBase(MipasMover mover){
mover.setArrivalTime();
if (mover.getTransferPointIndex()==-1 | | Imover.getMoverPath().getFrom().equals(this)){
mover.moveToNextTransferPoint();

}

//mover type cannot carry load (e.g. a tank), 1st time departure, and mover is not a bus.
if(mover.getCarryLoad()==false &&
mover.getMoverPath().getFrom().equals(this)&&!(mover.getType().equals("Bus"))){
double initDelay = mover.getInitialDelay AtHB();
waitDelay("FormConvoyAtHomeBase", initDelay, mover);
return;
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}

//mover type is bus, there are pax, and 1st time departure
if (mover.getType().equals("Bus")&& !(pStock.isEmpty())){
busQueue.add(mover);
firePropertyChange("numInBusQueue", numInBusQueue, +tnumInBusQueue);
waitDelay("StartLoad AtHomeBase", 0.0);
return;

}

//mover type is bus, no pax available and 1st time departure

if (mover.getType().equals("Bus")&&(pStock.isEmpty()){
waitDelay("ParkVehicleAtHomeBase", 0.1, mover);
return;

}

//mover can carry load (e.g. truck), there is load to carry, load docks available and 1st time departure
if ((mover.getCarryLoad()==true) &&(this.getNumAvailLoadDocks()>0) && !(stock.isEmpty())&&
mover.getMoverPath().getFrom().equals(this)){
loadingQueue.add(mover);
firePropertyChange('numInLoadingQueue", numInLoadingQueue, ++numInLoadingQueue);
waitDelay("StartLoad AtHomeBase", 0.0);
return;
}
//mover can carry load, 1st time departure but no load is available
if ((mover.getCarryLoad()==true)&é& stock.isEmpty/()
&&(mover.getMoverPath().getFrom().equals(this))){
waitDelay("ParkVehicleAtHomeBase", 0.1, mover);
return;

}

//not a 1st time departure (returning), mover type is bus and no pax to carry
if
(mover.getType().equals("Bus")&&(pStock.isEmpty()&&!(mover.getMoverPath().getFrom().equals(this))))
{
waitDelay("ParkVehicleAtHomeBase", 0.1, mover);
return;

}

/[returning, mover type is a bus and pax available
if (
(mover.getType().equals("Bus"))&&! (pStock.isEmpty()) &&! (mover.getMoverPath().getFrom().equals(this)
N
busQueue.add(mover);
firePropertyChange("numInBusQueue", numInBusQueue, ++numInBusQueue);
waitDelay("StartLoad AtHomeBase", 0.0);
return;
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}

//mover can carry load, returning and no load is available
if ((mover.getCarryLoad()==true)&é& stock.isEmpty/()
&&!(mover.getMoverPath().getFrom().equals(this))){
waitDelay("ParkVehicleAtHomeBase", 0.1, mover);
return;

}

/| mover can carry load (e.g. truck), there is load to carry and load docks available and a returning
departure
if ((mover.getCarryLoad()==true) &&(this.getNumAvailL.oadDocks()>0 && !stock.isEmpty()&&

!(mover.getMoverPath().getFrom().equals(this))) ){

loadingQueue.add(mover);

firePropertyChange('numInLoadingQueue", numInLoadingQueue, ++numInLoadingQueue);

waitDelay("StartLoad AtHomeBase", 0.0);

return;

}
}

/[parking vehicles that are not going anywhere and staying (for the moment) at home base
public void doParkVehicleAtHomeBase (MipasMover mover){
addParkingLotHomeBase(mover);

}

/[ start loading movers (bus or any vehicle that can carry load) at home base
public void doStartLoad AtHomeBase(){
if ('busQueue.isEmpty()) {
MipasMover mover = (MipasMover) busQueue.removeFirst();
if (mover.getType().equals("Bus")){
double paxCapacity = mover.getPaxCap();
while (!pStock.isEmpty() &&(paxCapacity>=0)){
Pax pax = pStock.getPax();
mover.addPax(pax);
paxCapacity = paxCapacity -1;
}
firePropertyChange("numInBusQueue", numInBusQueue, --numInBusQueue);
waitDelay("EndLoad AtHomeBase", mover.getLoadTime().generate(), mover);
return;
}
}

if ((loadingQueue.isEmpty()) ){
MipasMover mover = (MipasMover)loadingQueue.removeFirst();
mover.setStartServiceTime();
firePropertyChange("delayInLoadingQueue", Schedule.getSimTime()-mover.getArrivalTime());
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firePropertyChange('numAvailableLoadDocks", numAvailableLoadDocks,--
numAvailableLoadDocks);
firePropertyChange('numInLoadingQueue", numInLoadingQueue, --numInLoadingQueue);

double weight = mover.getWeightCap();
double vol = mover.getVolumeCap();

while (!stock.isEmpty() &&(vol >= mover.getEmptyVolPercentage()*mover.getVolumeCap()) &&
(weight >= mover.getEmptyWeightPercentage()*mover.getWeightCap())){
Load load = stock.getLoad\();
mover.addLoad(load);
vol = vol - load.getVolume();
weight = weight - load.getWeight();
}
waitDelay("EndLoad AtHomeBase", mover.getLoad Time().generate(), mover);
}
}

// end loading movers at home base
public void doEndLoad AtHomeBase(MipasMover mover){

firePropertyChange('numAvailableLoadDocks",
numAuvailableLoadDocks,+numAvailableLoadDocks);
firePropertyChange("timeInLoadingDocks", Schedule.getSimTime() - mover.getStartServiceTime());

if((loadingQueue.size() > 0)&&(!stock.isEmpty())&&(this.getNumAvailLoad Docks()>0)){
waitDelay("StartLoad AtHomeBase", 0.0);

}

if(('busQueue.isEmpty())&& !(pStock.isEmpty())){
waitDelay("StartLoad AtHomeBase", 0.0);

}

double initialDelay = mover.getInitialDelay AtHB();
waitDelay("FormConvoyAtHomeBase", initialDelay, mover);

}

//movers form convoys departing for destination or spoe/rpoe/apoe
//when appropriate convoy size is reached, convoy starts departing home base
public synchronized void doFormConvoyAtHomeBase (MipasMover mover) {

LinkedList convoy = getConvoy(mover.getMoverPath());
if (convoy.contains(mover))
convoy.add(mover);

if (getConvoySize() == convoy.size()) {
LinkedList list = new LinkedList();
list.add All(convoy);
convoy.clear();
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Convoy cv =new Convoy(list);
waitDelay("DepartHomeBase", 0.25, cv);
}
}

//depart as a convoy from the home base
public void doDepartHomeBase(Convoy convoy) {
Iterator movers = convoy.movers();
double pMinor;
double pMed;
double pMajor;
double minorDelayTime;
double medDelayTime;
double majorDelayTime;
double maxDelayTime = 0;

double maintenanceStartTime = 0;
double rand = Math.random();

while(movers.hasNext()) {
MipasMover m = (MipasMover)movers.next();

pMinor = m.getMinorDelayProbability().generate();

pMed = m.getMediumDelayProbability().generate();
pMajor = m.getMajorDelayProbability().generate();

if (pMinor >=rand) {
firePropertyChange('numberMinorBreakdownsFromHomebase",
++numberMinorBreakdownsFromHomebase);
minorDelayTime = m.getMinorDelayTime().generate();

firePropertyChange("timeInMinorBreakdownFromHomebase",minorDelayTime);
maxDelayTime = Math.max(maxDelayTime, minorDelayTime);
}
if (pMed >=rand) {
firePropertyChange("numberMediumBreakdownsFromHomebase",
++tnumberMediumBreakdownsFromHomebase);
medDelayTime = m.getMediumDelayTime().generate();
firePropertyChange("timeInMediumBreakdownFromHomebase",medDelayTime);
maxDelayTime = Math.max(maxDelayTime, medDelayTime);
)
if (pMajor >= rand) {
firePropertyChange('numberMajorBreakdownsFromHomebase",
+tnumberMajorBreakdownsFromHomebase);
majorDelayTime = m.getMajorDelayTime().generate();

firePropertyChange("timeInMajorBreakdownFromHomebase",majorDelayTime);
maxDelayTime = Math.max(maxDelayTime, majorDelayTime);
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}

}
double blackSpotsDelay = MipasSimulation.getBlackSpotDelayTime(

convoy.getMoverPath(), BlackSpotsGroup. ACTIVE_DISTANCE);
firePropertyChange("blackSpotsDelayTime", blackSpotsDelayTime + blackSpotsDelay);
maxDelayTime += blackSpotsDelay;

if (maxDelayTime == 0) { // no delay
for (Iterator iter = convoy.movers(); iter.hasNext();) {
MipasMover mover = (MipasMover) iter.next();
mover.setSpeed(convoy.getSpeed());
waitDelay("DepartHomeBase", 0.5, mover);
}
} else { // maintenance delay with maxDelayTime after maintenance start time
MipasPath p = convoy.getMoverPath();
double totalDistance =
LandArrivalDestination.getTotalDistance(convoy.getLocation(),convoy.getMoverPath().getPath());
double travelTime = (totalDistance/convoy.getSpeed());// need to make stochastic

maintenanceStartTime = Math.random()*travelTime;
ArrayList moverManagers = new ArrayList();
for (Iterator iter = convoy.movers(); iter.hasNext();) {
MipasMover mover = (MipasMover) iter.next();
PathMoverManager myManager = new PathMoverManager (mover,p.getPath());
myManager.start();
moverManagers.add(myManager);

}

waitDelay(p.getTo().getArrivalMaintenanceDelay(),
"MaintenanceDelayBegin",maintenanceStartTime,new Object[]{convoy,new
Double(maxDelayTime),moverManagers});
}
}

// movers depart home base
public void doDepartHomeBase(MipasMover mover) {
MipasPath mipasPath = mover.getMoverPath();

ILocationBase base = mipasPath.getTo();
if (base instanceof HomeBaseDeparture) {
double totalDistance=0;
totalDistance =
LandArrivalDestination.getTotalDistance(mover.getLocation(), mipasPath.getPath());
double travelTime = (totalDistance/mover.getSpeed ());
PathMoverManager myManager = new PathMoverManager (mover,mipasPath.getPath());
myManager.start();
firePropertyChange("TotalDistance", totalDistance);

124



firePropertyChange("TravelTime", travelTime);
waitDelay(mover.getMoverPath().getTo()," ArrivalHomeBase", travel Time,myManager.getMover());
}
if (base instanceof Land ArrivalDestination) {
double totalDistance=0;
totalDistance =
LandArrivalDestination.getTotalDistance(mover.getLocation(), mipasPath.getPath());
double travelTime = (totalDistance/mover.getSpeed());
PathMoverManager myManager = new PathMoverManager (mover,mipasPath.getPath());
myManager.start();

firePropertyChange("TotalDistance", totalDistance);
firePropertyChange("TravelTime", travelTime);

waitDelay(mover.getMoverPath().getTo(),"Land Arrival AtDestination" travel Time,myManager.getMover(

);
}
if (base instanceof Land Arrival AtSPOE) {

double totalDistance=0;

totalDistance =
LandArrivalDestination.getTotalDistance(mover.getLocation(), mipasPath.getPath());

double travelTime = (totalDistance/mover.getSpeed());

PathMoverManager myManager = new PathMoverManager (mover,mipasPath.getPath());

myManager.start();

tirePropertyChange("TotalDistance", totalDistance);

firePropertyChange("TravelTime", travelTime);
waitDelay(mover.getMoverPath().getTo(),"Land Arrival AtSPOE", travel Time, myManager.getMover());

}

if (base instanceof Land Arrival AtRPOE) {

double totalDistance=0;

totalDistance =
LandArrivalDestination.getTotalDistance(mover.getLocation(), mipasPath.getPath());

double travelTime = (totalDistance/mover.getSpeed());

PathMoverManager myManager = new PathMoverManager (mover,mipasPath.getPath());

myManager.start();

firePropertyChange("TotalDistance", totalDistance);

firePropertyChange("TravelTime", travelTime);

waitDelay(mover.getMoverPath().getTo(),"Land Arrival AtRPOE", travel Time,myManager.getMover());
}
if (base instanceof Land Arrival AtAPOE) {
double totalDistance=0;
totalDistance =
LandArrivalDestination.getTotalDistance(mover.getLocation(), mipasPath.getPath());
double travelTime = (totalDistance/mover.getSpeed());
PathMoverManager myManager = new PathMoverManager (mover,mipasPath.getPath());
myManager.start();
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firePropertyChange("TotalDistance", totalDistance);
firePropertyChange("TravelTime", travelTime);
waitDelay(mover.getMoverPath().getTo(),"Land Arrival AtAPOE", travel Time,myManager.getMover());

}
}

/ %% $%%

setters and getters
public HomeBaseDeparture getHomeBase(){
return this;

}

public LinkedList getLoadingQueue(){
return (LinkedList)loadingQueue.clone();

}

public int getNumAvailLoadDocks(){
return numAvailableLoadDocks;

}

public void setNumLoadDocks(int nld) {
numLoadDocks = nld;

}

public int getNumLoadDocks() {
return numLoadDocks;

}

public void setHomeBaseLocation(Point2D hbl) {
homeBaseLocation = hbl;

}

public Point2D getHomeBaseLocation() {
return homeBaseLocation;

}

public void setName(String nhb) {
nameHomeBase = nhb;

}

public String getName() {
return nameHomeBase;

}

// methods related to containers
public void addMover(MipasMover mover){
moverContainer.add(mover);

}
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public void addParkingLotHomeBase(MipasMover mover){
parkingLotHomeBase.add(mover);

}

public String getBaseName() {
return this.nameHomeBase;

}

public GKCoordinate getLocation() {
return new GKCoordinate(this.homeBaseLocation.getX(),homeBaseLocation.getY());

}

public double getVolumeCapacity() {
return 0;

}

public double getWeightCapacity() {
return 0;

}

public Image getSymbol() {
return null;

)

public List getMoverContainer() {
return (LinkedList)moverContainer.clone();

}

public GKRegistryNode getRegistryNode() {
GKRegistryNode root
=new GKRegistryNode("HomeBaseDeparture");

GKRegistryNode node = new GKRegistryNode("NameHomeBase");
node.setValue(this.nameHomeBase);
root.addChild(node);

node = new GKRegistryNode("LoadStock");
for (Iterator it = this.baseStock.getContainers(); it.hasNext(); ) {
LoadContainer loadContainer = ((LoadContainer)it.next());

if (loadContainer != null) {
node.addChild(loadContainer.getRegistryNode());
}

}
root.addChild(node);
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node = new GKRegistryNode("PaxStock");
for (Iterator it = this.basePax.getContainers(); it.hasNext(); ) {
PaxContainer paxContainer = ((PaxContainer)it.next());

if (paxContainer != null) {
node.addChild(paxContainer.getRegistryNode());
}

}
root.addChild(node);

if (this.homeBaseLocation != null) {
node = new GKRegistryNode("HomeBaseLocation");
GKRegistryNode ele = new GKRegistryNode("X");
ele.setValue(this.homeBaseLocation.getX() + "");
node.addChild(ele);
ele = new GKRegistryNode("Y");
ele.setValue(this.homeBaseLocation.getY() + "");
node.addChild(ele);
root.addChild(node);

}

node = new GKRegistryNode("NumLoadDocks");
node.setValue(this.numLoadDocks + "");
root.addChild(node);

node = new GKRegistryNode("ConvoySize");
node.setValue(this.convoySize +"");
root.addChild(node);

return root;

}

public void loadFromRegistry(GKRegistryNode root) {
GKRegistryNode node = root.getChild("NameHomeBase");
if (node !=null) {
this.nameHomeBase = node.getValue();
}
node = root.getChild("LoadStock");
if (node !=null) {
this.baseStock = new LoadStock();
for (Enumeration enm = node.getChildren(); enm.hasMoreElements(); ) {
GKRegistryNode ele = ((GKRegistryNode)enm.nextElement());
if (ele !=null) {
LoadContainer loadContainer = new LoadContainer();
loadContainer.loadFromRegistry(ele);
this.baseStock.addLoadContainer(loadContainer);
}
}
}
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node = root.getChild("PaxStock");
if (node !=null) {
this.basePax = new PaxStock();
for (Enumeration enm = node.getChildren(); enm.hasMoreElements(); ) {
GKRegistryNode ele = ((GKRegistryNode)enm.nextElement());

if (ele = null) {
PaxContainer paxContainer = new PaxContainer();
paxContainer.loadFromRegistry(ele);
this.basePax.addPaxContainer(paxContainer);
}
}
}

node = root.getChild("HomeBaseLocation");

if (node !=null) {
double x = Double.parseDouble(node.getChild("X").getValue());
double y = Double.parseDouble(node.getChild("Y").getValue());

setHomeBaseLocation(new Point2D.Double(x, y));

}

node = root.getChild("NumLoadDocks");

if (node !=null) {
setNumLoadDocks(Integer.parselnt(node.getValue()));

}

node = root.getChild("ConvoySize");

if (node !=null) {
setConvoySize(Integer.parselnt(node.getValue()));

}

}
public void addLoad(Load load) {

baseStock.addLoad(load);
}

public void addPax(Pax pax) {
basePax.addPax(pax);
}
protected MaintenanceDelay createMaintenanceDelay() {
return new MaintenanceDelay(this," ArrivalHomeBase");
}
//minor breakdown stats
public int getNumberMinorBreakdownsFromHomebase() {
return numberMinorBreakdownsFromHomebase;

}
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//minor breakdown duration
public double getTimelnMinorBreakdownFromHomebase() {
return timeInMinorBreakdownFromHomebase;

}

//medium breakown stats
public int getNumberMediumBreakdownsFromHomebase() {
return numberMediumBreakdownsFromHomebase;

}

//medium breakdown duration
public double getTimeInMediumBreakdownFromHomebase() {
return timeInMediumBreakdownFromHomebase;

}

//major breakdown stats
public int getNumberMajorBreakdownsFromHomebase() {
return numberMajorBreakdownsFromHomebase;

}

//major breakdown duration
public double getTimeIlnMajorBreakdownFromHomebase() {
return timeInMajorBreakdownFromHomebase;

}

public double getBlackSpotsDelayTime() {
return blackSpotsDelayTime;

}

public LinkedList getBusQueue() {
return busQueue;

}

public double getDelayInLoadingQueue() {
return delaylnLoadingQueue;

}

public String getNameHomeBase() {
return nameHomeBase;

}

public int getNumAvailableLoadDocks() {
return numAvailableLoadDocks;

}

public int getNumInBusQueue() {
return numInBusQueue;

}
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public int getNumInLoadingQueue() {
return numInLoadingQueue;

}

public LinkedList getParkingLotHomeBase() {
return parkingLotHomeBase;

}

public double getTimeInLoadingDocks() {
return timelnLoadingDocks;

}

/[test

public static void main(String[] args) {
JFrame frm = new JFrame();
Bus bus = new Bus();
MIPASBusDialog dlg = new MIPASBusDialog(frm,new ArrayList());
dlg.showDialog(frm);
System.out.println(bus.getLoadTime().getParameters());
Object[] parameters = bus.getLoad Time().getParameters();
for (int i =0; i < parameters.length; i++) {

System.out.println("Param = "+parameters[i]);

}
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