
978-1-6654-7013-1/22/$31.00 ©2022 IEEE

A Survey on Machine Learning-based
Automated Software Bug Report Classification

Ömer Köksal
ASELSAN Research Center

Ankara, Turkey
koksal@aselsan.com.tr

Ceyhun Emre Öztürk
ASELSAN Research Center

Department of Electrical and Electronics Engineering, Bilkent
University

Ankara, Turkey
ceyhunozturk@aselsan.com.tr

Abstract—In software development processes, classifying

software bugs is a vital step since it helps grasp the nature,

implications, and causes of software failures. Further,

categorization enables reacting to software bugs appropriately

and faster. However, manual classification of software bugs is

inefficient and costly, especially in large-scale software projects,

since one must deal with extensive bug reports from multiple

sources. Hence, many studies have addressed this problem by

automated software bug classification with the help of machine

learning techniques. Researchers used various machine

learning-based algorithms and techniques to obtain better

classification performance. Furthermore, many researchers

used open source bug repositories to compare their results with

previous studies. In this paper, we aimed to report the main

studies in machine learning-based automated software bug

report classification by highlighting the recent improvements

and indicating the key steps in this process. So, this survey can

benefit the researchers and practitioners working in automated

software bug report classification and other related domains.

Keywords—software engineering, software bug report

classification, machine learning, deep learning, natural language

processing

I. INTRODUCTION

Software failures are almost unavoidable in contemporary
software systems by their complicacy and enormous size.
Therefore, software verification and validation processes are
getting more important in software development, taking more
time and effort. In software verification and validation
processes, understanding and resolving the root cause of the
faults are as important as detecting the failures to ensure the
software projects’ functional and quality requirements.
Detected faults and the steps which led to the failure are
described in the software bug reports that contain textual
explanations. Since software bug reports contain crucial
information about failures, the completeness and quality of
these reports are decisive in software verification and
validation steps. Also, for developers to fix the bug, the main
source of understanding the failure and its cause heavily
depends on the quality of the software bug reports.

In this paper, we focus on bug report classification. The
bugs can be categorized into different types using the
information stated in bug reports. Several bug schemas were
proposed in the literature to categorize bugs into various types.
One of the oldest bug schemas was proposed by Bezier [1].
Later, Chillarege [2] offered another schema named
Orthogonal Defect Categorization to classify software bugs.
Finally, another schema is proposed by Seamon [3]. These
schemas were used in several types of research to classify the
bug types in various software development projects. With the

rise of artificial intelligence (AI), various types of research
were performed using machine learning (ML) based
classifiers, data/text mining, natural language processing
(NLP) techniques, and bug classification schemas. In the next
sections, we will provide detailed information on these works.

II. BACKGROUND

This paper focuses on the ML-based automatic
classification of software bug reports. Hence, first, we briefly
mention the ML and NLP techniques and the algorithms used
in the bug report classification process.

A. Machine Learning

ML is a crucial part of AI that uses historical data to enable
software to predict accurately. Hence, ML algorithms are
categorized by their learning types: Methods in which the
algorithm is trained with the labeled data are called supervised
learning. Whereas in unsupervised ML, no labeled data is
used. The unsupervised ML algorithm splits data using the
features extracted from the data. In reinforcement learning, the
agents are trained to make a sequence of decisions. The
training is based on rewarding desired behaviors and
punishing others.

Deep learning (DL) is an important subclass of ML based
on artificial neural networks. With their improved learning
and feature extraction capabilities, DL algorithms provide
superior results in almost all AI domains [4], [5].

ML is widely used in automated software bug report
classification. Firstly, traditional ML algorithms such as naïve
Bayes (NB), K-nearest neighborhood (KNN), logistic
regression (LR), support vector machines (SVM), decision
tree (DT), random forest (RF), and their variants were used in
software bug report classification. Later, several DL-based
algorithms (multi-layer Perceptron (MLP), convolutional
neural networks (CNN), long short-term memory (LSTM),
and gated recurrent unit (GRU), were used in this domain.

B. Natural Language Processing

NLP uses several ML, DL, and AI-based algorithms [6].
Further, NLP uses many information retrieval and data/text
mining techniques. NLP is one of the core technologies used
in software bug report classification and related tasks. Apart
from ML and DL algorithms, several word embedding
libraries (such as Word2Vec [7] and FastText [8]) and
transformer algorithm-based pretrained language models
(such as BERT [9] and ELECTRA [10]) are widely used in
the software bug classification domain.

635

20
22

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
M

ul
tid

isc
ip

lin
ar

y
St

ud
ie

s a
nd

 In
no

va
tiv

e
Te

ch
no

lo
gi

es
 (I

SM
SI

T)
 |

 9
78

-1
-6

65
4-

70
13

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

M
SI

T5
60

59
.2

02
2.

99
32

82
2

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 28,2023 at 08:16:54 UTC from IEEE Xplore. Restrictions apply.

III. SOFTWARE BUG CLASSIFICATION PROCESS

We extract the main steps of the software bug
classification process. Although these steps may vary
depending on the application, the essential sub-processes are
revealed in Figure 1.

We have modeled this process in Business Process Model
and Notation (BPMN) format [11], as shown in Figure 1.
Although we present the software bug classification steps in a
simplified format, they are good to follow practically. Hence
in this work, we follow the steps given in this figure.

Software Bug Classification

Bug Classification Bug Fix

Bug Report

Review

Bug Report

Is it a Bug?

Is it a

duplicate

bug?

bug

not a

duplicate

Categorize

Bug

not a bug

duplicate bug

Assign bug to the

best suitable

developer

Analyze

Bug Report

Can fix?

Fix Bug

Yes

Update and

Close Bug

Report

No

Triage Bug

Fig. 1. Software Bug Classification Process.

IV. ARTIFICIAL INTELLIGENCE-BASED RESEARCH ON

SOFTWARE ENGINEERING

Four main categories of artificial intelligence (AI)
applications for software bug classification are the following:
(1) Detecting whether a bug is a real bug or a new feature is
requested, (2) Detecting whether a bug is a duplicate bug, (3)
Bug triaging, and (4) Software Bug Report Classification.
Apart from the above items, several other AI-based
applications are used in software verification and validation
fields, such as predicting software defects and predicting bug
fixing efforts. But, these are out of the scope of this work. So,
in the next sections, we focus on bug report classification and
give brief information about AI applications on software
verification and validation.

A. Software Bug Datasets

In the literature, most of the studies are performed using
open source projects’ bug datasets such as Eclipse, Mozilla,
JBoss, and several Apache projects. However, several types of
research are performed on bug datasets and their data quality.
For example, Sánchez et al. [12] created a TANDEM dataset

to classify the performance bugs. Performance bugs are errors
in software that makes the software inefficient or slow. This
dataset categorizes performance bugs into five subsets
according to their origin.

Wu et al. [13] worked on five publicly available datasets
used for classifying bug reports as security or non-security bug
reports. They manually re-labeled the samples of the datasets
and found that there were many mislabeled sentences.
Furthermore, they observed that the classification
performance of the ML algorithms with the re-labeled datasets
was better than the same algorithms with the original datasets.

B. Bug Type Classification Schemas

Our work focused on the problem of categorizing software
bugs into predefined bug classification schemas. Researchers
offered several defect classification schemas.

Beizer [1] offered a well-known scheme in which he
indicated that various sources affect the taxonomy. Hence
over a hundred software fault categories, including ten main
categories, are provided in his work.

Orthogonal Defect Classification (ODC) is another widely
used defect classification schema by Chillarege et al. [2]. ODC
evaluates defects at two specific times: when defects are
opened and closed. Three attributes are captured when defects
are opened: activity, trigger, and impact. On the other hand,
five attributes are captured at closing time: target, defect type,
qualifier, source, and age. Authors offer to reduce the number
of defects by classifying them in terms of the involved
program structure. This methodology aims to enable feedback
to software developers and was applied to over 50 IBM
software projects.

Freimut et al. [14] proposed an approach as an alternative
to using ODC schemes since they evaluated that it is hard to
transfer existing schemes to ODC. The authors present a new
approach to introduce, describe, and confirm adopted defect
categorization schemas for industrial use in their work. The
authors stated their main goal of combining software
engineering and domain know-how. To this end, the authors
defined defects by their three properties as origin, mode, and
type. ‘Origin’ is defined as the activity in which the defect was
introduced, ‘mode’ details the scenarios leading to the defect,
and the ‘type’ characterizes the bug’s location.

Seaman et al. [3] offer software bug classification schemes
using historical data to guide future projects. The authors
provide three types of defects which are “requirements
inspection”, “design and source code inspection”, and “test
plan inspection”.

Ploski et al. [15] compared various software fault
categorization schemas by performing a literature survey. The
authors indicated that the generalization of quantitative
observations concerning software faults among projects is still
open and concluded that the distribution of software faults
tightly depends on project-specific factors.

C. Bug Report Quality

Several studies have focused on automated defect
classification proposing a solution to the various issues in this
area. A software bug report is the vital input of the bug
classification process; hence, the bug report quality is a
dominant factor affecting the whole classification process.
Therefore, several studies have focused on the quality of bug
reports quality. For example, Bettenburg et al. [16] and

636

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 28,2023 at 08:16:54 UTC from IEEE Xplore. Restrictions apply.

Zimmermann et al. [17] reported their survey results to find
the vital information that shall be included in software defect
descriptions. For this purpose, a tool was developed to
measure the quality of the bug reports and guide bug reporters.
So, with the use of this tool, the reporters are guided to provide
helpful information to improve the quality of the software bug
reports.

D. Duplicate Bug Reports

After reporting the bug, the bug reports need to be checked
to see if the same bug has already been entered into the bug
report database. However, Bettenburg et al. [16] and
Zimmermann et al. [17] specified that reproduced/duplicate
bug reports are harmless, contrary to common belief.
However, Sun et al. [18] denoted that the duplicate definitions
might cause extra maintenance costs.

E. Detecting Whether a Report is a Bug or Not

The next step in the process in Figure 1 is checking
whether the bug report includes a real bug definition or the
definition of a new feature instead of a bug encountered.

Terdchanakul et al. [19] provided an N-gram and inverse
document frequency (IDF) solution for this problem. The
authors claimed they achieved F1 scores between 62% and
88% for this task.

Another research in this task belongs to Antoniol et al.
[20]. The authors automatically classified defect definitions in
free text format with traditional data mining algorithms. As a
result, the authors claimed that more than fifty percent of
errors in defect report classification are not related to software
bugs. Further, the developed ML-based categorization
approach distinguishes defects from other concerns entered
into bug reports.

Herzig et al. [21] investigated how misclassification
influences bug prediction. The authors concluded that one-
third of the bugs are not real bug descriptions.

F. Bug Triaging

Another issue in the bug report classification process given
in Figure 1 is bug triaging. Several studies have focused on
bug triaging. For example, Čubranic et al. [22] and Neelofar
et al. [23] researched how to automatically delegate a software
defect in the bug tracking system to the most convenient
software developer. In addition, Zhang et al. [24] performed a
detailed survey about the research in this domain.

V. BUG REPORT CLASSIFICATION

This section presents the main research about bug report
classification using ML-based algorithms and techniques.
Many types of research are performed on software bug
classification in the literature. Among these, we select 18
primary studies (PS). In this section, we provide more details
about the PS in historical order, and in the next section, we
compare these researches based on the techniques and
algorithms they used. Further, we provide more details about
the datasets used in these works.

Huang et al. [25] proposed an approach named AutoODC
for automating the classification process using SVM with
ODC schema. The authors declared they have used a manual
categorization baseline and using AutoODC, achieving 80.2%
accuracy.

Thung et al. [26] used a 500 software defects dataset. The
authors first classified and analyzed this dataset manually

using ODC. Further, they automatically classified the same
dataset using SVM and achieved an accuracy of 77.8 %.

Pingclasai et al. [27] automatically classified software
defect reports with a topic modeling algorithm, namely Latent
Dirichlet Allocation (LDA). The authors indicated their
model’s most efficient classifier was Naïve Bayes, whereas
LDA improved the F1 score from 65% to 82%.

Another topic modeling algorithm, the nonparametric
Hierarchical Dirichlet Process (HDP), was applied by
Limsettho et al. [28]. The authors concluded that the HDP
performs similarly to LDA, which requires parameter tuning.
However, they indicated that, for the used dataset, both LDA
and HDP suffer from a lack of data and imbalance problems.

Zhou et al. [29] used a hybrid approach so-called multi-
stage classification. They performed automated classification
by associating data mining and text mining. Further, by
applying their proposed technique to large-scale open-source
projects, the authors declared that they improved the F1
measures. The achieved F1 scores were reported as 93.7 for
Jboss (+9.1%), 79.5% for Firefox (+6.7%), 85.9% for
OpenFOAM (+6.1), 80.2% for Eclipse (+3.5%), and 81.7%
for Mozilla (+%3,4),

Xia et al. [30] developed a fUzzy Set based fEature
Selection (USES) algorithm to categorize software bugs by
inspecting defect reports’ natural language descriptions. The
authors claimed they increased the best baseline by 12.3% and
achieved a 45.3% F1 measure.

Thung et al. [31] proposed an active semi-supervised
defect categorization approach to investigate how this
algorithm cut down the manual labeling cost of the dataset
they used in their previous work. The authors claim that, by
incrementally refining the training model, their approach
outperforms the baseline work by Jain et al. [32], achieving
62.3% F1 and 71.0% AUC.

Limsettho et al. [33] extended their workshop paper [28],
applying the HDP as the topic modeling and using two
clustering algorithms: expectation-maximization and X-
means. They also worked with a decision tree (DT) and
logistic regression (LR) algorithms to compare the clustering
algorithms with the supervised algorithms. As expected, the
supervised algorithms achieved substantially higher F1 scores
than unsupervised ones.

Hernández-Gonzales et al. [34] used the ODC schema [2]
in their work and classified the impact of bugs. The authors
declared that they had improved the classification
performance by using several traditional ML-based classifiers
and majority voting techniques.

Catalino et al. [35] declared that researchers investigate
bug triaging concepts deeply. Yet, only a few studies exist in
the literature to help developers in grasping the category of a
reported defect. Therefore, they used various open-source
projects to build a bug taxonomy and employ automatic
support for labeling software defects concerning their class.
As a result, the authors claimed they obtained a 64% F1
measure by implementing their taxonomy and automatic
classification process.

Jain et al. [36] created and worked on a dataset of bugs in
Web apps. The dataset consists of bug reports from the
qaManager, bitWeaver, and WebCalendar apps and reviews
on the Google Store of the Dineout: Reserve a Table, and

637

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 28,2023 at 08:16:54 UTC from IEEE Xplore. Restrictions apply.

Wynk Music apps. First, they extracted the features with the
term frequency-inverse document frequency (TF-IDF) to
process with the particle swarm optimization (PSO)
algorithm. Finally, the bugs were classified with five
algorithms: NB, DT, SVM, KNN, and MLP. The best
accuracy score in the study was 93.35%, achieved by the DT
classifier.

Peters et al. [37] developed the FARSEC (Filtering And
Ranking methods to reduce the mislabeling of SECurity bug
reports) framework for classifying bug reports as security or
non-security bug reports. In the FARSEC framework, the stop
words and unwanted terms in bug reports were removed.
Unwanted terms were words with punctuation or non-
alphanumeric characters. Then, a TF-IDF matrix was created
where the features are the most common 100 words. Almost
all bug reports in the utilized datasets were non-security bug
reports. Also, the authors observed that many non-security
bug reports in the datasets were mislabeled. Thus, FARSEC
detected the mislabeled samples by Graham’s Bayesian filter
and removed these samples. The bugs in the dataset were
classified with NB, LR, RF, MLP, and KNN algorithms.

Lopes et al. [38] used ODC schema [2] to evaluate several
ML-based algorithms (KNN, SVM, NB, Nearest Centroid,
RF, and RNN) for automatic bug categorization utilizing ODC
schema on unstructured textual bug reports. The authors
declared that their experiments demonstrate the challenges of
automatically categorizing particular ODC attributes solely
using bug reports. Hence, they suggested improving
classification accuracy using larger datasets.

 Kumar et al. [39] have trained an LSTM model for bug
report classification. They used ODC defect types (Chillarege
et al., 1992) as the classes. They achieved a precision of 59.4%
and a recall of 57.2%. With these scores, their model
outperformed the TF-IDF model introduced by Lopes et al.
[38], who also published the dataset.

 Zheng et al. [40] worked on a highly imbalanced dataset
with two classes. The dataset had 128,946 bug reports in total,
of which 127,536 reports belong to the majority class. Six
class rebalancing techniques were used to solve the class
imbalance problem: adaptive synthetic, borderline -SMOTE,
near miss, condensed nearest neighbor, Rose, and Mahakil.
Then, they trained LR, multinomial NB, MLP, SVM, and RF
models for bug report classification. It can be observed from
the results that classification performance improves vastly
when class rebalancing techniques are used. For example,
using Rose and RF together achieved an F1 score of 83.0% on
the Chromium dataset, whereas the RF model achieved an F1
score of 67.0% on the same dataset.

Ahmed et al. [41] created a framework named as CaPBug.
This framework categorizes bug reports into bug types. Bug
reports from Mozilla and Eclipse were used by manual
labeling. The reports included both textual and categorical
features. Both using only the textual features give the best
results. Ahmed et al. used SMOTE to overcome the class
imbalance problem. This technique over-samples majority
classes and under-samples minority classes. After applying
SMOTE, they achieved an accuracy score of 88.78% with the
RF classifier.

Köksal et al. [42] performed a bug classification on a
commercial dataset using several traditional ML-based
algorithms (NB, KNN, LR, DT, RF, and SVM with four
different kernels). The authors stated that small datasets are

unsuitable for training DL algorithms such as CNN and RNN.
They also used FastText [8] word embeddings and BERT [9]
models but obtained the best results using SVM in their
commercial dataset.

 Kim et al. [43] utilized transfer learning for bug report
classification. Firstly, they trained a CNN model with source
code files. During the first training session, the model’s input
was the file names and file contents as texts. Then, they re-
trained this model with bug reports. During this training
session, the model’s input was the summary of the bug reports
(used as a replacement of the file names) and the contents of
the bug reports (used as a replacement of the file contents). In
this study, two classes of bugs were defined. A macro-F1
score of 83.9% was achieved.

VI. COMPARISON OF RELATED WORKS

In this section, we compare bug report classification works
mentioned in the previous sections. We selected 19 primary
studies (PS) from the related work section. In Table 1, we have
listed the datasets’ properties used in these PS.

TABLE I. DATASETS USED IN PRIMARY STUDIES.

Primary

Studies
Ref. Year

Dataset (DS)

Name

DS

Type

No. of

Bugs

Huang et al. [25] 2011
Proprietary /
commercial dataset

PD 403

Thung et al. [26] 2012
Mahout, Lucene,
OpenNLP

OS 500

Pingclasai
et al.

[27] 2013
HTTP Client,
Jackrabbit, Lucene

OS 1,940

Limsettho
et al.

[28] 2014
HTTP Client,
Jackrabbit, Lucene

OS 2,718

Zhou et al. [29] 2014
Mozilla, Eclipse,
JBoss, Firefox,
OpenFOAM

OS 3,220

Xia et al. [30] 2014
Apache HTTPD,
AXIS, Linux,
MySQL,

OS 809

Thung et al. [31] 2015
Mahout, Lucene,
OpenNLP

OS 500

Limsettho
et al.

[33] 2016
HTTP Client,
Jackrabbit, Lucene

OS 4,710

Hernández
et al.

[34] 2018
Compendium,
Mozilla

OS 1,444

Catolino et
al.

[35] 2019
Mozilla, Apache,
Eclipse

OS 1,280

Jain et al. [36] 2019

qaManager,
bitWeaver,
WebCalendar,
Dineout: Reserve a
Table, and Wynk
Music

OS 4,577

Peters et al. [37] 2019
Chromium,
Wicket, Ambari,
Camel, Derby

OS 45,940

Lopes et al. [38] 2020
MongoDB,
Cassandra, HBase

OS 4,096

Kumar et
al.

[39] 2021
MongoDB,
Cassandra, Hbase

OS 4,096

Zheng et al. [40] 2021

Ambari, Camel,
Derby, Wicket,
Chromium,
OpenStack

OS 128,946

Ahmed et
al.

[41] 2021
Mozilla and
Eclipse

OS 2,138

Köksal et
al.

[42] 2021
Proprietary /
commercial dataset

PD 504

Kim et al. [43] 2022 Bench4BL OS 4,059

638

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 28,2023 at 08:16:54 UTC from IEEE Xplore. Restrictions apply.

As can be seen from Table 1, almost all researchers use
open source datasets, and only two papers used
proprietary/commercial datasets.

Table 2 provides the techniques, schemas, and algorithms
used in the selected 18 primary studies. We present this table
in the same order as Table 1.

TABLE II. COMPARISON OF AUTOMATIC BUG CLASSIFICATION RESULTS IN THE RELATED WORK.

Paper Techniques / Schemas Used Automated Classification /

 Clustering Algorithms

Huang et al. Automating ODC -based classification SVM
Thung et al. Text Mining using three super categories of ODC defect types C4.5, NB, SVM, LR
Pingclasai et al. LDA topic modeling NB, LR, Alternating DT
Limsettho et al. HDP topic modeling NB, LR, Alternating DT
Zhou et al. Data/text mining and multi-stage classification Multinomial NB, LR, Alternating DT
Xia et al. Fuzzy-based text selection and mining, natural language descriptions, and

developed USES algorithm
NB, Multinomial NB, LR, SVM,
RBF Network, USES

Thung et al. Hybrid ML approach with clustering and active learning K-means clustering and SVM
Limsettho et al. HDP topic modeling Expectation-Maximization, X-means, DT, LR
Hernández-
González et al.

Bayesian network classifiers, K-means clustering, and Expectation-
Maximization (EM) strategy with majority voting and ODC defect types

NB, Tree Augmented NB,
K-Dependence Bayesian Network Classifier

Catolino et al. Taxonomy development and classification using the defined taxonomy, using
TF-IDF and word embeddings (Word2Vec, Doc2Vec)

NB, LR, SVM, and RF

Jain et al. TF-IDF-based feature extraction and PSO algorithm NB, DT, SVM, MLP, KNN
Peters et al. Detection of mislabeled samples with Graham’s Bayesian filter. NB, LR, RF, MLP, KNN
Lopes et al. Automatic classification using all ODC defect types NB, Nearest Centroid, SVM, KNN, RF, RNN
Kumar et al. ODC defect types LSTM
Zheng et al. Class rebalancing methods (adaptive synthetic, borderline-SMOTE, near

miss, condensed nearest neighbor, Rose, and Mahakil)
LR, MNB, MLP, SVM, RF

Ahmed et al. SMOTE as the class rebalancing method NB, DT, RF, LR
Köksal et al. ML, NLP, information retrieval, and with Seaman’s defect types NB, SVM, KNN, LR, DT, RF
Kim et al. Transfer learning from a source code classification model CNN

By comparing these works, we aim to underline
similarities of the utilized processes while indicating the
diverse methodologies. We present the properties of the
datasets used in the selected papers in Table 1. Further, we
provide the techniques and the bug classification schema used
(if they exist) in the selected studies in Table 2, denoting the
names of the classification/clustering algorithms used.

VII. DISCUSSION AND CONCLUSION

Automated software bug classification is a widely used
process in software verification and validation. ML is widely
used in automated software bug classification. Automated bug
classification is time and effort-saving and might be more
robust than manual bug classification. Hence, this paper
focuses on the ML-based automatic classification of software
bug reports and presents important research in this domain.

First, we presented the main steps of the software bug
classification process, indicating the fundamental concerns.
Then, we provided several types of research on the sub-
processes defined, including bug report quality and defect
classification schemes. Finally, we provide the details of 18
PS.

Our investigation of selected PS stated that categorization
of software bugs becomes more difficult if we deal with
unstructured bug reports. We have seen that most primary
studies used traditional ML algorithms as classifiers in their
research. DL approaches have been widely used in software
bug classification in recent years. Further, we presented
various approaches and particular techniques used in this
domain. Moreover, we have provided the names and types of
the datasets used in primary studies. Finally, we have seen that
most of the datasets used are open-source. Hence, we conclude
that there is room for further research to be executed using
commercial datasets.

We plan to prepare a more detailed survey for bug report
classification highlighting the main obstacles and presenting
the proposed solutions as future work.

REFERENCES
[1] B. Beizer, Software testing techniques. Van Nostrand Reinhold, 1990.

[2] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K. Ray,
and D. S. Moebus, “Orthogonal Defect Classification—A Concept for
In-Process Measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11,
pp. 943–956, 1992.

[3] C. Seaman et al., “Defect categorization: Making use of a decade of
widely varying historical data,” in ESEM’08: Proceedings of the 2008
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, 2008, pp. 149–157.

[4] Ö. Köksal, “Classification of Text Data in Healthcare Systems – A
Comparative Study,” in Machine Learning and Deep Learning in
Efficacy Improvement of Healthcare Systems, CRC Press, 2022, pp.
333–352.

[5] Ö. Koksal, “Artificial Intelligence-Based Categorization of Healthcare
Text,” in Internet of Things and Data Mining for Modern Engineering
and Healthcare Applications, Chapman and Hall/CRC, 2022, pp. 89–
106.

[6] B. Alshemali and J. Kalita, “Improving the Reliability of Deep Neural
Networks in NLP: A Review,” Knowledge-Based Syst., vol. 191, p.
105210, Mar. 2020.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference
on Learning Representations, ICLR 2013 - Workshop Track
Proceedings, 2013.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word
Vectors with Subword Information,” Trans. Assoc. Comput. Linguist.,
vol. 5, pp. 135–146, Dec. 2017.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers),
2019, pp. 4171–4186.

[10] K. Clark, M.-T. Luong, Q. V Le, and C. D. Manning, “ELECTRA: Pre-
training Text Encoders as Discriminators Rather Than Generators,”
ArXiv, vol. abs/2003.1, 2020.

639

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 28,2023 at 08:16:54 UTC from IEEE Xplore. Restrictions apply.

[11] OMG, “BPMN Specification - Business Process Model and Notation.”
[Online]. Available: http://www.bpmn.org/. [Accessed: 08-Jun-2020].

[12] A. B. Sanchez, P. Delgado-Perez, I. Medina-Bulo, and S. Segura,
“TANDEM: A Taxonomy and a Dataset of Real-World Performance
Bugs,” IEEE Access, vol. 8, pp. 107214–107228, 2020.

[13] X. Wu, W. Zheng, X. Xia, and D. Lo, “Data Quality Matters: A Case
Study on Data Label Correctness for Security Bug Report Prediction,”
IEEE Trans. Softw. Eng., Jul. 2021.

[14] B. Freimut, C. Denger, and M. Ketterer, “An industrial case study of
implementing and validating defect classification for process
improvement and quality management,” in Proceedings - International
Software Metrics Symposium, 2005, vol. 2005, pp. 165–174.

[15] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring, “Research
issues in software fault categorization,” ACM SIGSOFT Softw. Eng.
Notes, vol. 32, no. 6, p. 6, Nov. 2007.

[16] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.
Zimmermann, “What makes a good bug report?,” in Proceedings of the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2008, pp. 308–318.

[17] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and
C. Weiss, “What makes a good bug report?,” IEEE Trans. Softw. Eng.,
vol. 36, no. 5, pp. 618–643, 2010.

[18] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2011, Proceedings, 2011, pp. 253–262.

[19] P. Terdchanakul, H. Hata, P. Phannachitta, and K. Matsumoto, “Bug or
not? Bug Report classification using N-gram IDF,” in Proceedings -
2017 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2017, 2017, pp. 534–538.

[20] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y. G. Guéhéneuc,
“Is it a bug or an enhancement? A text-based approach to classify
change requests,” in Proceedings of the 2008 Conference of the Center
for Advanced Studies, CASCON’08, 2008.

[21] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” in Proceedings -
International Conference on Software Engineering, 2013, pp. 392–401.

[22] D. Čubranić and M. Gail, “Automatic bug triage using text
categorization,” SEKE 2004 Proc. Sixt. Int. Conf. Softw. Eng. Knowl.
Eng., pp. 92--97, 2004.

[23] Neelofar, M. Y. Javed, and H. Mohsin, “An automated approach for
software bug classification,” in Proceedings - 2012 6th International
Conference on Complex, Intelligent, and Software Intensive Systems,
CISIS 2012, 2012, pp. 414–419.

[24] T. Zhang, H. Jiang, X. Luo, and A. T. S. Chan, “A Literature Review
of Research in Bug Resolution: Tasks, Challenges, and Future
Directions,” Comput. J., vol. 59, no. 5, pp. 741–773, May 2016.

[25] L. G. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian,
“AutoODC: Automated generation of Orthogonal Defect
Classifications,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2011, Proceedings, 2011, pp.
412–415.

[26] F. Thung, D. Lo, L. Jiang, X. B. D. Le, and D. Lo, “Automatic defect
categorization,” in Proceedings - Working Conference on Reverse
Engineering, WCRE, 2012, vol. 2015-August, pp. 205–214.

[27] N. Pingclasai, H. Hata, and K. I. Matsumoto, “Classifying bug reports
to bugs and other requests using topic modeling,” in Proceedings -
Asia-Pacific Software Engineering Conference, APSEC, 2013, vol. 2,
pp. 13–18.

[28] N. Limsettho, H. Hata, and K. I. Matsumoto, “Comparing hierarchical
dirichlet process with latent dirichlet allocation in bug report multiclass
classification,” in 2014 IEEE/ACIS 15th International Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, SNPD 2014 - Proceedings, 2014.

[29] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining and
data mining for bug report classification,” in Proceedings - 30th
International Conference on Software Maintenance and Evolution,
ICSME 2014, 2014, pp. 311–320.

[30] X. Xia, D. Lo, X. Wang, and B. Zhou, “Automatic defect categorization
based on fault triggering conditions,” in Proceedings of the IEEE
International Conference on Engineering of Complex Computer
Systems, ICECCS, 2014, pp. 39–48.

[31] F. Thung, X. B. D. Le, and D. Lo, “Active Semi-supervised Defect
Categorization,” in IEEE International Conference on Program
Comprehension, 2015, vol. 2015-August, pp. 60–70.

[32] P. Jain and A. Kapoor, “Active learning for large multi-class
problems,” 2009, pp. 762–769.

[33] N. Limsettho, H. Hata, A. Monden, and K. Matsumoto, “Unsupervised
Bug Report Categorization Using Clustering and Labeling Algorithm,”
http://dx.doi.org/10.1142/S0218194016500352, vol. 26, no. 7, pp.
1027–1053, Sep. 2016.

[34] J. Hernández-González, D. Rodriguez, I. Inza, R. Harrison, and J. A.
Lozano, “Learning to classify software defects from crowds: A novel
approach,” Appl. Soft Comput. J., vol. 62, pp. 579–591, Jan. 2018.

[35] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all bugs
are the same: Understanding, characterizing, and classifying bug
types,” J. Syst. Softw., vol. 152, pp. 165–181, Jun. 2019.

[36] D. K. Jain, A. Kumar, S. R. Sangwan, G. N. Nguyen, and P. Tiwari, “A
Particle Swarm Optimized Learning Model of Fault Classification in
Web-Apps,” IEEE Access, vol. 7, pp. 18480–18489, 2019.

[37] F. Peters, T. T. Tun, Y. Yu, and B. Nuseibeh, “Text Filtering and
Ranking for Security Bug Report Prediction,” IEEE Trans. Softw.
Eng., vol. 45, no. 6, pp. 615–631, Jun. 2019.

[38] F. Lopes, J. Agnelo, C. A. Teixeira, N. Laranjeiro, and J. Bernardino,
“Automating orthogonal defect classification using machine learning
algorithms,” Futur. Gener. Comput. Syst., vol. 102, pp. 932–947, Jan.
2020.

[39] S. Kumar, M. Sharma, V. B. Singh, and S. K. Muttoo, “Bug Report
Classification into Orthogonal Defect Classification Defect Type using
Long Short Term Memory,” Proc. - 2021 3rd Int. Conf. Adv. Comput.
Commun. Control Networking, ICAC3N 2021, pp. 285–287, 2021.

[40] W. Zheng, Y. Xun, X. Wu, Z. Deng, X. Chen, and Y. Sui, “A
Comparative Study of Class Rebalancing Methods for Security Bug
Report Classification,” IEEE Trans. Reliab., vol. 70, no. 4, pp. 1658–
1670, Dec. 2021.

[41] H. A. Ahmed, N. Z. Bawany, and J. A. Shamsi, “Capbug-a framework
for automatic bug categorization and prioritization using NLP and
machine learning algorithms,” IEEE Access, vol. 9, pp. 50496–50512,
2021.

[42] Ö. Köksal and B. Tekinerdogan, “Automated Classification of
Unstructured Bilingual Software Bug Reports: An Industrial Case
Study Research,” Appl. Sci., vol. 12, no. 1, 2022.

[43] M. Kim, Y. Kim, and E. Lee, “Deep Learning-based Production and
Test Bug Report Classification using Source Files,” Proc. - Int. Conf.
Softw. Eng., pp. 343–344, 2022.

640

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 28,2023 at 08:16:54 UTC from IEEE Xplore. Restrictions apply.

