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Abstract—In software development processes, classifying 

software bugs is a vital step since it helps grasp the nature, 

implications, and causes of software failures. Further, 

categorization enables reacting to software bugs appropriately 

and faster. However, manual classification of software bugs is 

inefficient and costly, especially in large-scale software projects, 

since one must deal with extensive bug reports from multiple 

sources. Hence, many studies have addressed this problem by 

automated software bug classification with the help of machine 

learning techniques. Researchers used various machine 

learning-based algorithms and techniques to obtain better 

classification performance. Furthermore, many researchers 

used open source bug repositories to compare their results with 

previous studies. In this paper, we aimed to report the main 

studies in machine learning-based automated software bug 

report classification by highlighting the recent improvements 

and indicating the key steps in this process. So, this survey can 

benefit the researchers and practitioners working in automated 

software bug report classification and other related domains.  

Keywords—software engineering, software bug report 

classification,  machine learning, deep learning, natural language 

processing 

I. INTRODUCTION  

Software failures are almost unavoidable in contemporary 
software systems by their complicacy and enormous size. 
Therefore, software verification and validation processes are 
getting more important in software development, taking more 
time and effort. In software verification and validation 
processes, understanding and resolving the root cause of the 
faults are as important as detecting the failures to ensure the 
software projects’ functional and quality requirements. 
Detected faults and the steps which led to the failure are 
described in the software bug reports that contain textual 
explanations. Since software bug reports contain crucial 
information about failures, the completeness and quality of 
these reports are decisive in software verification and 
validation steps. Also, for developers to fix the bug, the main 
source of understanding the failure and its cause heavily 
depends on the quality of the software bug reports.  

In this paper, we focus on bug report classification. The 
bugs can be categorized into different types using the 
information stated in bug reports. Several bug schemas were 
proposed in the literature to categorize bugs into various types. 
One of the oldest bug schemas was proposed by Bezier [1]. 
Later, Chillarege [2] offered another schema named 
Orthogonal Defect Categorization to classify software bugs. 
Finally, another schema is proposed by Seamon  [3]. These 
schemas were used in several types of research to classify the 
bug types in various software development projects. With the 

rise of artificial intelligence (AI), various types of research 
were performed using machine learning (ML) based 
classifiers, data/text mining, natural language processing 
(NLP) techniques, and bug classification schemas. In the next 
sections, we will provide detailed information on these works.  

II. BACKGROUND 

This paper focuses on the ML-based automatic 
classification of software bug reports. Hence, first, we briefly 
mention the ML and NLP techniques and the algorithms used 
in the bug report classification process.  

A. Machine Learning 

ML is a crucial part of AI that uses historical data to enable 
software to predict accurately. Hence, ML algorithms are 
categorized by their learning types: Methods in which the 
algorithm is trained with the labeled data are called supervised 
learning. Whereas in unsupervised ML, no labeled data is 
used. The unsupervised ML algorithm splits data using the 
features extracted from the data. In reinforcement learning, the 
agents are trained to make a sequence of decisions. The 
training is based on rewarding desired behaviors and 
punishing others.  

Deep learning (DL) is an important subclass of ML based 
on artificial neural networks. With their improved learning 
and feature extraction capabilities, DL algorithms provide 
superior results in almost all AI domains [4], [5].   

ML is widely used in automated software bug report 
classification. Firstly, traditional ML algorithms such as naïve 
Bayes (NB), K-nearest neighborhood (KNN), logistic 
regression (LR), support vector machines (SVM), decision 
tree (DT), random forest (RF), and their variants were used in 
software bug report classification. Later, several DL-based 
algorithms (multi-layer Perceptron (MLP), convolutional 
neural networks (CNN), long short-term memory (LSTM), 
and gated recurrent unit (GRU), were used in this domain.  

B. Natural Language Processing 

NLP uses several ML, DL, and AI-based algorithms [6]. 
Further, NLP uses many information retrieval and data/text 
mining techniques. NLP is one of the core technologies used 
in software bug report classification and related tasks. Apart 
from ML and DL algorithms, several word embedding 
libraries (such as Word2Vec [7] and FastText [8]) and 
transformer algorithm-based pretrained language models 
(such as BERT [9] and ELECTRA [10]) are widely used in 
the software bug classification domain.  
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III. SOFTWARE BUG CLASSIFICATION PROCESS 

We extract the main steps of the software bug 
classification process. Although these steps may vary 
depending on the application, the essential sub-processes are 
revealed in Figure 1.  

We have modeled this process in Business Process Model 
and Notation (BPMN) format [11], as shown in Figure 1. 
Although we present the software bug classification steps in a 
simplified format, they are good to follow practically. Hence 
in this work, we follow the steps given in this figure.   

Software Bug Classification

Bug Classification Bug Fix

Bug Report

Review 

Bug Report

Is it a Bug?

Is it a 

duplicate 

bug?

bug

not a 

duplicate

Categorize 

Bug

not a bug

duplicate bug

Assign bug to the 
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developer

Analyze

Bug Report

Can fix?

Fix Bug

Yes

Update and 

Close Bug 

Report

No

Triage Bug

 
Fig. 1. Software Bug Classification Process. 

IV. ARTIFICIAL INTELLIGENCE-BASED RESEARCH ON 

SOFTWARE ENGINEERING  

Four main categories of artificial intelligence (AI) 
applications for software bug classification are the following: 
(1) Detecting whether a bug is a real bug or a new feature is 
requested, (2) Detecting whether a bug is a duplicate bug, (3) 
Bug triaging, and (4) Software Bug Report Classification. 
Apart from the above items, several other AI-based 
applications are used in software verification and validation 
fields, such as predicting software defects and predicting bug 
fixing efforts. But, these are out of the scope of this work. So, 
in the next sections, we focus on bug report classification and 
give brief information about AI applications on software 
verification and validation.  

A. Software Bug Datasets 

In the literature, most of the studies are performed using 
open source projects’ bug datasets such as Eclipse, Mozilla, 
JBoss, and several Apache projects. However, several types of 
research are performed on bug datasets and their data quality. 
For example, Sánchez et al. [12] created a TANDEM dataset 

to classify the performance bugs. Performance bugs are errors 
in software that makes the software inefficient or slow. This 
dataset categorizes performance bugs into five subsets 
according to their origin.  

Wu et al. [13] worked on five publicly available datasets 
used for classifying bug reports as security or non-security bug 
reports. They manually re-labeled the samples of the datasets 
and found that there were many mislabeled sentences. 
Furthermore, they observed that the classification 
performance of the ML algorithms with the re-labeled datasets 
was better than the same algorithms with the original datasets. 

B. Bug Type Classification Schemas 

Our work focused on the problem of categorizing software 
bugs into predefined bug classification schemas. Researchers 
offered several defect classification schemas.  

Beizer [1] offered a well-known scheme in which he 
indicated that various sources affect the taxonomy. Hence 
over a hundred software fault categories, including ten main 
categories, are provided in his work.  

Orthogonal Defect Classification (ODC) is another widely 
used defect classification schema by Chillarege et al. [2]. ODC 
evaluates defects at two specific times: when defects are 
opened and closed. Three attributes are captured when defects 
are opened: activity, trigger, and impact. On the other hand, 
five attributes are captured at closing time: target, defect type, 
qualifier, source, and age. Authors offer to reduce the number 
of defects by classifying them in terms of the involved 
program structure. This methodology aims to enable feedback 
to software developers and was applied to over 50 IBM 
software projects.  

Freimut et al. [14] proposed an approach as an alternative 
to using ODC schemes since they evaluated that it is hard to 
transfer existing schemes to ODC. The authors present a new 
approach to introduce, describe,  and confirm adopted defect 
categorization schemas for industrial use in their work. The 
authors stated their main goal of combining software 
engineering and domain know-how. To this end, the authors 
defined defects by their three properties as origin, mode, and 
type. ‘Origin’ is defined as the activity in which the defect was 
introduced,  ‘mode’ details the scenarios leading to the defect, 
and the ‘type’ characterizes the bug’s location. 

Seaman et al. [3] offer software bug classification schemes 
using historical data to guide future projects. The authors 
provide three types of defects which are “requirements 
inspection”, “design and source code inspection”, and “test 
plan inspection”.  

Ploski et al. [15] compared various software fault 
categorization schemas by performing a literature survey. The 
authors indicated that the generalization of quantitative 
observations concerning software faults among projects is still 
open and concluded that the distribution of software faults 
tightly depends on project-specific factors. 

C. Bug Report Quality 

Several studies have focused on automated defect 
classification proposing a solution to the various issues in this 
area. A software bug report is the vital input of the bug 
classification process; hence, the bug report quality is a 
dominant factor affecting the whole classification process. 
Therefore, several studies have focused on the quality of bug 
reports quality. For example, Bettenburg et al. [16] and 
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Zimmermann et al. [17] reported their survey results to find 
the vital information that shall be included in software defect 
descriptions. For this purpose, a tool was developed to 
measure the quality of the bug reports and guide bug reporters. 
So, with the use of this tool, the reporters are guided to provide 
helpful information to improve the quality of the software bug 
reports. 

D. Duplicate Bug Reports 

After reporting the bug, the bug reports need to be checked 
to see if the same bug has already been entered into the bug 
report database. However, Bettenburg et al. [16] and  
Zimmermann et al. [17] specified that reproduced/duplicate 
bug reports are harmless, contrary to common belief. 
However, Sun et al. [18] denoted that the duplicate definitions 
might cause extra maintenance costs.  

E. Detecting Whether a Report is a Bug or Not  

The next step in the process in Figure 1 is checking 
whether the bug report includes a real bug definition or the 
definition of a new feature instead of a bug encountered.  

Terdchanakul et al. [19] provided an N-gram and inverse 
document frequency (IDF) solution for this problem. The 
authors claimed they achieved F1 scores between 62% and 
88% for this task.  

Another research in this task belongs to Antoniol et al. 
[20]. The authors automatically classified defect definitions in 
free text format with traditional data mining algorithms. As a 
result, the authors claimed that more than fifty percent of 
errors in defect report classification are not related to software 
bugs. Further, the developed ML-based categorization 
approach distinguishes defects from other concerns entered 
into bug reports.  

Herzig et al. [21] investigated how misclassification 
influences bug prediction. The authors concluded that one-
third of the bugs are not real bug descriptions.  

F. Bug Triaging  

Another issue in the bug report classification process given 
in Figure 1 is bug triaging. Several studies have focused on 
bug triaging. For example, Čubranic et al. [22] and Neelofar 
et al. [23] researched how to automatically delegate a software 
defect in the bug tracking system to the most convenient 
software developer. In addition, Zhang et al. [24] performed a 
detailed survey about the research in this domain.  

V. BUG REPORT CLASSIFICATION 

This section presents the main research about bug report 
classification using ML-based algorithms and techniques. 
Many types of research are performed on software bug 
classification in the literature. Among these, we select 18 
primary studies (PS). In this section, we provide more details 
about the PS in historical order, and in the next section, we 
compare these researches based on the techniques and 
algorithms they used. Further, we provide more details about 
the datasets used in these works.  

Huang et al. [25] proposed an approach named AutoODC 
for automating the classification process using SVM with 
ODC schema. The authors declared they have used a manual 
categorization baseline and using AutoODC, achieving 80.2% 
accuracy.  

Thung et al. [26] used a 500 software defects dataset. The 
authors first classified and analyzed this dataset manually 

using ODC. Further, they automatically classified the same 
dataset using SVM and achieved an accuracy of 77.8 %.  

Pingclasai et al. [27] automatically classified software 
defect reports with a topic modeling algorithm, namely Latent 
Dirichlet Allocation (LDA). The authors indicated their 
model’s most efficient classifier was Naïve Bayes, whereas 
LDA improved the F1 score from 65% to 82%.  

Another topic modeling algorithm, the nonparametric 
Hierarchical Dirichlet Process (HDP), was applied by 
Limsettho et al. [28]. The authors concluded that the HDP 
performs similarly to LDA, which requires parameter tuning. 
However, they indicated that, for the used dataset,  both LDA 
and HDP suffer from a lack of data and imbalance problems.  

Zhou et al. [29] used a hybrid approach so-called multi-
stage classification. They performed automated classification 
by associating data mining and text mining. Further, by 
applying their proposed technique to large-scale open-source 
projects, the authors declared that they improved the F1 
measures. The achieved F1 scores were reported as 93.7 for 
Jboss (+9.1%), 79.5% for Firefox (+6.7%), 85.9% for 
OpenFOAM (+6.1), 80.2% for Eclipse (+3.5%), and 81.7% 
for Mozilla (+%3,4),   

Xia et al. [30] developed a fUzzy Set based fEature 
Selection (USES) algorithm to categorize software bugs by 
inspecting defect reports’ natural language descriptions. The 
authors claimed they increased the best baseline by 12.3% and 
achieved a 45.3% F1 measure. 

Thung et al. [31] proposed an active semi-supervised 
defect categorization approach to investigate how this 
algorithm cut down the manual labeling cost of the dataset 
they used in their previous work. The authors claim that,  by 
incrementally refining the training model, their approach 
outperforms the baseline work by Jain et al. [32], achieving 
62.3% F1 and 71.0% AUC. 

Limsettho et al. [33] extended their workshop paper  [28], 
applying the HDP as the topic modeling and using two 
clustering algorithms: expectation-maximization and X-
means. They also worked with a decision tree (DT) and 
logistic regression (LR) algorithms to compare the clustering 
algorithms with the supervised algorithms. As expected, the 
supervised algorithms achieved substantially higher F1 scores 
than unsupervised ones.  

Hernández-Gonzales et al. [34] used the ODC schema [2] 
in their work and classified the impact of bugs. The authors 
declared that they had improved the classification 
performance by using several traditional ML-based classifiers 
and majority voting techniques.  

Catalino et al. [35] declared that researchers investigate 
bug triaging concepts deeply. Yet, only a few studies exist in 
the literature to help developers in grasping the category of a 
reported defect. Therefore, they used various open-source 
projects to build a bug taxonomy and employ automatic 
support for labeling software defects concerning their class. 
As a result, the authors claimed they obtained a 64% F1 
measure by implementing their taxonomy and automatic 
classification process.  

Jain et al. [36] created and worked on a dataset of bugs in 
Web apps. The dataset consists of bug reports from the 
qaManager, bitWeaver, and WebCalendar apps and reviews 
on the Google Store of the Dineout: Reserve a Table, and 
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Wynk Music apps. First, they extracted the features with the 
term frequency-inverse document frequency (TF-IDF) to 
process with the particle swarm optimization (PSO) 
algorithm. Finally, the bugs were classified with five 
algorithms: NB, DT, SVM, KNN, and MLP. The best 
accuracy score in the study was 93.35%, achieved by the DT 
classifier. 

Peters et al. [37] developed the FARSEC (Filtering And 
Ranking methods to reduce the mislabeling of SECurity bug 
reports) framework for classifying bug reports as security or 
non-security bug reports. In the FARSEC framework, the stop 
words and unwanted terms in bug reports were removed. 
Unwanted terms were words with punctuation or non-
alphanumeric characters. Then, a TF-IDF matrix was created 
where the features are the most common 100 words. Almost 
all bug reports in the utilized datasets were non-security bug 
reports. Also, the authors observed that many non-security 
bug reports in the datasets were mislabeled. Thus, FARSEC 
detected the mislabeled samples by Graham’s Bayesian filter 
and removed these samples. The bugs in the dataset were 
classified with NB, LR, RF, MLP, and KNN algorithms. 

Lopes et al. [38] used ODC schema [2] to evaluate several 
ML-based algorithms (KNN, SVM, NB,  Nearest Centroid, 
RF, and RNN) for automatic bug categorization utilizing ODC 
schema on unstructured textual bug reports. The authors 
declared that their experiments demonstrate the challenges of 
automatically categorizing particular ODC attributes solely 
using bug reports. Hence, they suggested improving 
classification accuracy using larger datasets. 

 Kumar et al. [39] have trained an LSTM model for bug 
report classification. They used ODC defect types (Chillarege 
et al., 1992) as the classes. They achieved a precision of 59.4% 
and a recall of 57.2%. With these scores, their model 
outperformed the TF-IDF model introduced by Lopes et al. 
[38], who also published the dataset. 

 Zheng et al. [40] worked on a highly imbalanced dataset 
with two classes. The dataset had 128,946 bug reports in total, 
of which 127,536 reports belong to the majority class. Six 
class rebalancing techniques were used to solve the class 
imbalance problem: adaptive synthetic, borderline -SMOTE, 
near miss, condensed nearest neighbor, Rose, and Mahakil. 
Then, they trained LR, multinomial NB, MLP, SVM, and RF 
models for bug report classification. It can be observed from 
the results that classification performance improves vastly 
when class rebalancing techniques are used. For example, 
using Rose and RF together achieved an F1 score of 83.0% on 
the Chromium dataset, whereas the RF model achieved an F1 
score of 67.0% on the same dataset.  

Ahmed et al. [41] created a framework named as CaPBug. 
This framework categorizes bug reports into bug types. Bug 
reports from Mozilla and Eclipse were used by manual 
labeling. The reports included both textual and categorical 
features. Both using only the textual features give the best 
results. Ahmed et al. used SMOTE to overcome the class 
imbalance problem. This technique over-samples majority 
classes and under-samples minority classes. After applying 
SMOTE, they achieved an accuracy score of 88.78% with the 
RF classifier. 

Köksal et al. [42] performed a bug classification on a 
commercial dataset using several traditional ML-based 
algorithms (NB, KNN, LR, DT, RF, and SVM with four 
different kernels). The authors stated that small datasets are 

unsuitable for training DL algorithms such as CNN and RNN. 
They also used FastText [8] word embeddings and BERT [9] 
models but obtained the best results using SVM in their 
commercial dataset.  

 Kim et al. [43] utilized transfer learning for bug report 
classification. Firstly, they trained a CNN model with source 
code files. During the first training session, the model’s input 
was the file names and file contents as texts. Then, they re-
trained this model with bug reports. During this training 
session, the model’s input was the summary of the bug reports 
(used as a replacement of the file names) and the contents of 
the bug reports (used as a replacement of the file contents). In 
this study, two classes of bugs were defined. A macro-F1 
score of 83.9% was achieved. 

VI. COMPARISON OF RELATED WORKS 

In this section, we compare bug report classification works 
mentioned in the previous sections. We selected 19 primary 
studies (PS) from the related work section. In Table 1, we have 
listed the datasets’ properties used in these PS.  

TABLE I.  DATASETS USED IN PRIMARY STUDIES.  

Primary 

Studies 
Ref. Year 

Dataset (DS) 

Name 

DS 

Type 

No. of 

Bugs 

Huang et al. [25] 2011 
Proprietary / 
commercial dataset 

PD 403 

Thung et al. [26] 2012 
Mahout, Lucene, 
OpenNLP 

OS 500 

Pingclasai 
et al. 

[27] 2013 
HTTP Client, 
Jackrabbit, Lucene 

OS 1,940 

Limsettho 
et al. 

[28] 2014 
HTTP Client, 
Jackrabbit, Lucene 

OS 2,718 

Zhou et al. [29] 2014 
Mozilla, Eclipse, 
JBoss, Firefox, 
OpenFOAM 

OS 3,220 

Xia et al. [30] 2014 
Apache HTTPD, 
AXIS, Linux, 
MySQL, 

OS 809 

Thung et al. [31] 2015 
Mahout, Lucene, 
OpenNLP 

OS 500 

Limsettho 
et al. 

[33] 2016 
HTTP Client, 
Jackrabbit, Lucene 

OS 4,710 

Hernández 
et al.  

[34] 2018 
Compendium, 
Mozilla 

OS 1,444 

Catolino et 
al.  

[35] 2019 
Mozilla, Apache, 
Eclipse 

OS 1,280 

Jain et al.  [36] 2019 

qaManager, 
bitWeaver, 
WebCalendar, 
Dineout: Reserve a 
Table, and Wynk 
Music 

OS 4,577 

Peters et al. [37] 2019 
Chromium, 
Wicket, Ambari, 
Camel, Derby 

OS 45,940 

Lopes et al. [38] 2020 
MongoDB, 
Cassandra, HBase 

OS 4,096 

Kumar et 
al. 

[39] 2021 
MongoDB, 
Cassandra, Hbase 

OS 4,096 

Zheng et al. [40] 2021 

Ambari, Camel, 
Derby, Wicket, 
Chromium, 
OpenStack 

OS 128,946 

Ahmed et 
al. 

[41] 2021 
Mozilla and 
Eclipse 

OS 2,138 

Köksal et 
al. 

[42] 2021 
Proprietary / 
commercial dataset  

PD 504 

Kim et al. [43] 2022 Bench4BL OS 4,059 
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As can be seen from Table 1, almost all researchers use 
open source datasets, and only two papers used 
proprietary/commercial datasets.  

Table 2 provides the techniques, schemas, and algorithms 
used in the selected 18 primary studies. We present this table 
in the same order as Table 1. 

TABLE II.  COMPARISON OF AUTOMATIC BUG CLASSIFICATION RESULTS IN THE RELATED WORK. 

Paper Techniques / Schemas Used   Automated Classification / 

 Clustering Algorithms 

Huang et al. Automating ODC -based classification SVM 
Thung et al. Text Mining using three super categories of ODC defect types  C4.5, NB, SVM, LR 
Pingclasai et al. LDA topic modeling   NB, LR, Alternating DT 
Limsettho et al. HDP topic modeling NB, LR, Alternating DT 
Zhou et al. Data/text mining and multi-stage classification Multinomial NB, LR, Alternating DT 
Xia et al. Fuzzy-based text selection and mining, natural language descriptions, and 

developed USES algorithm 
NB, Multinomial NB, LR, SVM,  
RBF Network, USES 

Thung et al. Hybrid ML approach with clustering and active learning K-means clustering and SVM 
Limsettho et al. HDP topic modeling Expectation-Maximization, X-means, DT, LR 
Hernández-
González et al. 

Bayesian network classifiers, K-means clustering, and Expectation-
Maximization (EM) strategy with majority voting and ODC defect types 

NB, Tree Augmented NB,  
K-Dependence Bayesian Network Classifier  

Catolino et al. Taxonomy development and classification using the defined taxonomy, using 
TF-IDF and word embeddings (Word2Vec,  Doc2Vec) 

NB, LR, SVM, and RF 

Jain et al. TF-IDF-based feature extraction and PSO algorithm NB, DT, SVM, MLP, KNN 
Peters et al. Detection of mislabeled samples with Graham’s Bayesian filter. NB, LR, RF, MLP, KNN  
Lopes et al. Automatic classification using all ODC defect types NB, Nearest Centroid, SVM, KNN, RF, RNN 
Kumar et al. ODC defect types LSTM 
Zheng et al. Class rebalancing methods (adaptive synthetic, borderline-SMOTE, near 

miss, condensed nearest neighbor, Rose, and Mahakil) 
LR, MNB, MLP, SVM, RF 

Ahmed et al.  SMOTE as the class rebalancing method NB, DT, RF, LR 
Köksal et al. ML, NLP, information retrieval, and with Seaman’s defect types NB, SVM, KNN, LR, DT, RF 
Kim et al. Transfer learning from a source code classification model CNN 

 

By comparing these works, we aim to underline 
similarities of the utilized processes while indicating the 
diverse methodologies. We present the properties of the 
datasets used in the selected papers in Table 1. Further, we 
provide the techniques and the bug classification schema used 
(if they exist) in the selected studies in Table 2, denoting the 
names of the classification/clustering algorithms used.  

VII. DISCUSSION AND CONCLUSION 

Automated software bug classification is a widely used 
process in software verification and validation. ML is widely 
used in automated software bug classification. Automated bug 
classification is time and effort-saving and might be more 
robust than manual bug classification. Hence, this paper 
focuses on the ML-based automatic classification of software 
bug reports and presents important research in this domain.  

First, we presented the main steps of the software bug 
classification process, indicating the fundamental concerns. 
Then, we provided several types of research on the sub-
processes defined, including bug report quality and defect 
classification schemes. Finally, we provide the details of 18 
PS.  

Our investigation of selected PS stated that categorization 
of software bugs becomes more difficult if we deal with 
unstructured bug reports. We have seen that most primary 
studies used traditional ML algorithms as classifiers in their 
research. DL approaches have been widely used in software 
bug classification in recent years. Further, we presented 
various approaches and particular techniques used in this 
domain. Moreover, we have provided the names and types of 
the datasets used in primary studies. Finally, we have seen that 
most of the datasets used are open-source. Hence, we conclude 
that there is room for further research to be executed using 
commercial datasets.  

We plan to prepare a more detailed survey for bug report 
classification highlighting the main obstacles and presenting 
the proposed solutions as future work. 
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