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Abstract
Many real-world applications adopt multi-label data streams as the need for algorithms 
to deal with rapidly changing data increases. Changes in data distribution, also known as 
concept drift, cause existing classification models to rapidly lose their effectiveness. To 
assist the classifiers, we propose a novel algorithm called Label Dependency Drift Detector 
(LD3), an unsupervised concept drift detector using label dependencies within the data for 
multi-label data streams. Our study exploits the dynamic temporal dependencies between 
labels using a label influence ranking method, which leverages a data fusion algorithm and 
uses the produced ranking to detect concept drift. LD3 is the first unsupervised concept 
drift detection algorithm in the multi-label classification problem area. In this study, we 
perform an extensive evaluation of LD3 by comparing it with 14 prevalent supervised con-
cept drift detection algorithms that we adapt to the problem area using 15 datasets and a 
baseline classifier. The results show that LD3 provides between 16.9 and 56% better predic-
tive performance than comparable detectors on both real-world and synthetic data streams.

Keywords Big data · Multi-label data stream · Multi-label classification · Concept drift · 
Drift detection

1 Introduction

Many organizations generate temporal data in the form of data streams with high variety, 
volume, and velocity (Zheng et al. 2019). Data is created continuously on a massive scale 
and can be assigned multiple labels, which is termed multi-labeled. However, because of 
the scale of this data, they need to be processed immediately since the cost associated with 
storage and retrieval is high, which explains the current popularity of data stream mining 
(Bahri et al. 2021).
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Real-world applications are constantly evolving and over time, a change in data distribu-
tion may occur. This change in data is called concept drift (Bonab and Can 2018) which is 
one of the most prevalent problems in data stream mining. Traditional classification algo-
rithms assume that the data is static, which causes them to lose effectiveness when faced 
with concept drift. An example area for concept drift is the energy sector where the drifted 
streams may cause instabilities for the learning models designed to predict energy con-
sumption, production and distribution (Hammami et al. 2020).

In this study, we propose a novel unsupervised concept drift detection algorithm that 
exploits label dependencies between class labels for multi-label data streams through data 
fusion methods. In multi-label data stream mining, it is common for labels to have correla-
tions and dependencies (Xu et al. 2019). Several studies (Guo and Gu 2011; Wang et al. 
2016; Zhang and Zhang 2010) show that incorporating label dependencies into multi-label 
classifiers boosts their effectiveness. Our aim is to utilize the correlations among labels 
to demonstrate that label dependencies can be used for detecting concept drift. For this 
purpose, we hypothesize that the changing relationships among the labels are indicators 
of concept drift and model the label dependencies by creating a co-occurrence matrix of 
labels (Xue et  al. 2011), and use the generated matrix to represent the current and past 
stream characteristics through label ranking and then use data fusion to detect concept 
drift.

In this study our contributions are the following. 

1. We introduce the concept of label dependency ranking and use it for concept drift detec-
tion in multi-label classification.

2. We perform an extensive evaluation of our method by comparing it with 14 prevalent 
concept drift detection algorithms using 15 data streams and a base classifier. We com-
pare drift detection algorithms with their influence on the predictive performance of the 
baseline classifier. In all cases, LD3 is the number one algorithm and in most cases, it 
enables performance that is statistically significantly higher than most of the baselines 
in terms of almost all effectiveness measures utilized in the experiments. Furthermore, 
our work provides the first study on the use of several different concept drift detection 
algorithms which are developed for multi-class environments, for concept drift detec-
tion in the multi-label classification problem domain. Our experiments with less used 
evaluation metrics such as detection delay enable us to provide interesting observations 
for some of these drift detectors and suggest future research pointers for them.

3. Our method LD3 is the first unsupervised concept drift detection algorithm in the prob-
lem domain we focus on. The baseline drift detection algorithms used in the experiments 
are supervised and require true labels; on the other hand, our method uses only the pre-
dicted labels: In many streaming environments, true class labels needed by supervised 
methods are not always available; in some cases, only a percentage of them are available 
or arrive late or are potentially unavailable (Sethi and Kantardzic 2017; Žliobaite 2010). 
These factors show the practical importance of our approach.

In this study, all algorithms are used with the default parameters provided by their 
respective publications. In the experiments, the baseline classifier starts a new predic-
tion model when a concept drift is detected. We should also note that, since we use a 
supervised classifier in our experiments, LD3 indirectly uses the ground truth labels 
of the data stream as it processes the predicted labels of the classifier. The reason 
behind this is the lack of online unsupervised multi-label classifiers. Although there 
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are previously developed unsupervised multi-label classifiers, they are not designed for 
online learning, such as Wang and Zhang’s work (Wang and Zhang 2020). Therefore, 
we chose to use a supervised classifier.

In the following sections, we first describe the problem domain, the aim of the study, 
and introduce the previous work in Sects. 2 and 3. Then, we propose our solution in Sect. 4. 
Lastly, in Sects. 5 and 6, we discuss the evaluation methodology and present our results 
and discussions. Section 7 concludes the paper.

2  Problem domain and aim of the study

Traditional multi-label data stream classifiers learn by performing the interleaved test-then-
train method (Büyükçakir et al. 2018), i.e, prequential training, on a stream of incoming 
data. However, if there is a change in data distribution, a significant decrease in predictive 
performance is experienced since the classifier still uses the previously learned distribu-
tion in its predictions. A concept drift detector detects the change in data distribution and 
alerts the classifier so that it can start working on adaptation strategies, which increases the 
robustness of the classifier.

Concept drift is the change in the data distribution that occurs over time. Given a data 
stream S0,t = d0, ..., dt , in a time window [0, t], where di = (Xi, yi) with Xi being the features 
and yi being the labels of the i-th data instance, concept drift is (Gama et al. 2014):

According to this definition, Lu et al. (2018) describe three potential sources of concept 
drift:

• The change may happen due to a change in posterior probabilities Pt(y|X) , meaning, 
Pt(y|X) ≠ Pt+1(y|X) . This is called real or actual drift and it usually results in a shift in 
the decision boundary, causing a significant decrease in effectiveness.

• If the cause of the change is Pt(X) ≠ Pt+1(X) , while Pt(y|X) = Pt+1(y|X) , it is called a 
virtual drift because it does not cause a shift in the decision boundary.

• The final source is when the change occurs as both Pt(y|X) and Pt(X) change over time 
which is called rigorous drift (Gözüaçık and Can 2021).

Figure 1 illustrates the three sources of concept drift along with the original distribution.
Lu et al. (2018) further define four types of concept drift in terms of how they happen 

over time, which are illustrated in Fig.  2. In the figure, the vertical axis represents data 
distribution and the horizontal axis represents time. Depending on the nature of data, this 
change may be sudden, incremental, gradual, or reoccurring. For example, with the chang-
ing of seasons, climate data may show reoccurring concepts or big events may cause sud-
den drift in news data.

Among the types presented in Fig. 2, outlier is not actually a drift type. Outliers can be 
seen as a form of noise for simplicity; however, since outlier detection is a developing area 
(Duraj and Szczepaniak 2021), we do not explicitly define the differences between the two 
and see it as a future research topic as it is out of this paper’s scope.

In this study, we aim to design an unsupervised concept drift detector and measure its 
boosting impact in classifier prediction accuracy. Our method LD3 exploits dependen-
cies among predicted labels and grants drift detection capabilities to multi-label stream 

(1)∃t ∶ Pt(X, y) ≠ Pt+1(X, y)
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classifiers with no drift detection facility. In this work, we consider a supervised classifi-
cation environment. The use of LD3 with an unsupervised multi-label (Wang and Zhang 
2020) or a self-tuning classifier (Roseberry and Cano 2018) is beyond the scope of this 
paper.

Fig. 1  Sources of concept 
drift based on how they occur 
probabilistically. Different colors 
represent different classes and 
the dotted line is the decision 
boundary. (Color figure online)

Fig. 2  Types of concept drift based on what happens to the concept over time (outlier is not a drift). Differ-
ent colors represent different concepts. (Color figure online)
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3  Related works

In the following subsections, we first briefly introduce previously developed supervised 
detection algorithms based on online error rate monitoring and multi-label specific algo-
rithms. Then, previous work on some of the unsupervised concept drift detection algo-
rithms is presented.

3.1  Supervised concept drift detection algorithms

Concept drift is a prevalent problem in data stream mining, where many detectors are pro-
posed to combat it within the literature. Based on previously developed algorithms, Lu 
et al. (2018) propose an overall framework for concept drift detection which is comprised 
of four stages: Data retrieval, data modeling, test statistics calculation, and the hypothesis 
test. They further divide the detectors into three categories: Error rate-based, data distri-
bution-based, and the multiple hypothesis test. Among these three, we focus on the first 
category as we were unable to find available source codes for data distribution-based algo-
rithms and multiple hypothesis test algorithms. Table 1 displays the categories and meth-
ods used for each baseline algorithm we tested. The data modeling stage is not included in 
the table since all of the detectors except LD3 share the same data modeling scheme which 
is learner-based modeling.

3.1.1  Error rate‑based algorithms

The detection algorithms in this category usually focus on the changes in the online error 
rate of the base classifiers, i.e, whether changes in the error rate of a classifier are statisti-
cally significant, the detector concludes that there is drift. Since these detectors monitor the 
online error rate and related metrics, they usually employ learners to model the data, which 
is the case for all of the algorithms presented in this section, and they tend to be efficient 
algorithms due to the simplicity of their input data (error-rate).

One of the most frequently used algorithms is the Drift Detection Method (DDM) pro-
posed by Gama et al. (2004). It uses a separate classifier to check whether the change in 
the online error rate is significant, which is done through distribution estimation. If the 
change is statistically significant, drift is detected. There are also a large number of algo-
rithms that build upon the DDM algorithm, which usually change the test statistics and 
hypothesis test stages. For instance, Early Drift Detection Method (EDDM) (Baena-Garcıa 
et al. 2006) improves DDM by also considering the sample-wise distance between errone-
ous classifications.

In order to improve the hypothesis test stage, Frías-Blanco et al. (2014) propose HDDM, 
which utilizes Hoeffding’s inequality (Hoeffding 1963) to obtain probabilistic guarantees 
to further increase effectiveness. It has two variants, namely HDDM_A and HDDM_W, 
where, in the former, they use bounded moving averages (A-test) and in the latter, they 
use bounding weighted moving averages (W-test). Furthermore, Pesaranghader and Vik-
tor (2016) introduce Fast Hoeffding Drift Detection Method (FHDDM) which requires the 
base detectors to either stay at a steady level or improve in accuracy. FHDDM checks this 
by monitoring the most recent probability of correct predictions instead of the error rate. 
Pesaranghader et al. (2018a) further improve FHDDM as FHDDMS by adopting a stacking 
window scheme of various sizes. The stacking windows are a short and long window that 
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has overlapping content that is used to detect sudden and gradual drifts separately. It also 
has another variant, FHDDMS_add, where the authors employ additive summaries for bet-
ter efficiency in memory and execution time.

Apart from Hoeffding’s inequality-based improvements to DDM, Pesaranghader et al. 
(2018b) developed McDiarmid Drift Detection Method (MDDM). MDDM is similar to 
HDDM as they also make improvements in hypothesis testing, by including the McDiar-
mid inequality to check the statistically significant differences. MDDM also implements 
a weighting scheme within its window where the most recent elements are given more 
importance. According to alternate weighting, it has three variants: MDDM_A (Arithmetic 
weighting), MDDM_E (Euler weighting), and MDDM_G (Geometric weighting).

Instead of modifying a stage, Barros et  al. (2017) propose Reactive Drift Detection 
Method (RDDM), in which they define a type of soft concept drift based on the number of 
samples accumulated in the window, called RDDM drift. RDDM re-calculates their DDM-
based statistics to solve problems that arise from the high number of accumulated samples 
in the window.

Aside from DDM-based detectors, Bifet and Gavalda (2007) introduce ADWIN, which 
monitors the difference in error rate between two adaptive windows. The difference is 
bounded by Hoeffding’s inequality and if the difference exceeds the Hoeffding bound, a 
drift is detected.

Furthermore, Pears et  al. (2014) propose SeqDrift2. It employs an adapting sampling 
strategy to sample data from a window to get old and new concepts. Then, they detect the 
drift by comparing the differences according to the Bernstein bound.

Finally, Raab et al. (2020) introduce KSWIN, which detects concept drift by applying 
“the Kolmogorov-Smirnov test” (KS-Test) which finds the distance between the estimated 
data distribution and the empirical distribution. These two distributions in KSWIN’s case 
would be the error rates stored in a sliced sliding window for new and old data. If the dis-
tance between the distributions exceeds the confidence interval, a drift is detected.

3.1.2  Algorithms for multi‑label concept drift detection

In the multi-label classification problem domain, concept drift detection is a very thinly 
researched area. To the best of our knowledge, there are two previously developed concept 
drift detectors. However, in both cases the authors did not provide the source code, thus we 
were unable to compare our results with them which is the reason why we did not include 
them in Table 1.

Shi et al. (2014) propose a method in which they use label grouping and class entropy 
to detect concept drift. Initially they group the labels using clustering methods. Then for 
each label group, they calculate the multi-label entropy values within two sliding windows 
where they apply a threshold method to detect concept drift.

Wang et al. (2020) introduce DDM-FP-M, a multi-label focused concept drift detector 
aimed at data streams on the Internet of Things problem domain. They propose modifica-
tions to DDM in which they add false positive classifications to make it more suitable for 
multi-labeled data stream environments.

3.2  Unsupervised concept drift detection

Although many concept drift detectors exist, one area that is insufficiently researched is 
unsupervised concept drift detection. Iwashita and Papa (2018) found that unsupervised 
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drift detectors only make up 3% of developed concept drift detectors. However, as 
Gemaque et al. point out, many of the real-world problems are better suited for unsuper-
vised drift detection, since the swift acquisition of labels is often not possible (Gemaque 
et al. 2020). Since concept drift detection requires fast detection to enable rapid recovery 
after drift, the topic of unsupervised concept drift detection requires more attention.

Some of the previous works on unsupervised concept drift detection include detectors 
such as IKS-bdd (dos Reis et al. 2016), CD-TDS (Koh 2016), Plover (de Mello et al. 2019), 
DSDD (Pinagé et  al. 2020), D3 (Gözüaçık et  al. 2019), and OCDD (Gözüaçık and Can 
2021).

IKS-bdd applies the Incremental Kolmogorov-Smirnov test, which is a modified Kol-
mogorov-Smirnov test that is better suited for online learning, to each of the data features 
in order to detect drift. CD-TDS detects two types of drift: Local drift and global drift. For 
local detection, the sample means of the new and old data are compared, bounded by the 
Hoeffding Bound. In the case of global drift, a pairwise statistical test is applied to find dif-
ferences between two tree structures representing new and old data.

Plover monitors the input data behavior and detects changes based on observed insta-
bilities. Moreover, DSDD detects drifts based on classification error simulation using an 
ensemble of classifiers.

Furthermore, Gözüaçık et  al. introduce D3, a drift detector that utilizes a discrimina-
tive classifier that is trained on auto labeled samples based on how recent a sample was 
seen within a window (“0” for old and “1” for new samples). Drift detection is made by 
measuring the AUC score of the classifier. Likewise, OCDD uses a one-class classifier to 
distinguish between changing concepts, in which drift is detected when the ratio of false 
predictions is higher than a threshold.

Our work proposes an unsupervised drift detection algorithm that utilizes the predicted 
labels of the paired classifier; however, we did not compare our detector with the described 
unsupervised algorithms, because compared to unsupervised algorithms, supervised detec-
tors are able to work with more data and in general, produce better effectiveness results. 
Since we aim to subject our algorithm to a more strict evaluation, we chose to only test 
against supervised detectors.

4  Our method: label dependency drift detector

In this study, we propose LD3, a data distribution-based, unsupervised concept drift detec-
tor which exploits the dependencies among predicted labels. It works alongside any online 
multi-label classifier that does not have inherent drift detection properties to assist in han-
dling the changes in data distribution. We evaluate the changes in the label dependencies 
through the predicted labels provided by the paired model, and if a significant change 
occurs in the dependencies, we detect concept drift. In the remainder of this section, Algo-
rithm 1 is referenced for explanations (Table 2). 

4.1  Evaluating the changes in the label dependencies

In an ideal environment, labels can be chosen such that each label is independently dis-
tributed, i.e, dependencies do not exist. However, in real-world datasets, this is usually not 
the case, as some labels tend to occur more frequently together (e.g, in movie categories, 
comedy and drama tags occur more commonly together than comedy and thriller tags). In 



2409Unsupervised concept drift detection for multi‑label data…

1 3

our study, we hypothesize that this correlation causes dependencies, and changes in these 
dependencies are a precursor to concept drift.

Given a multi-label classifier, we buffer the labels predicted by the classifier in two 
fixed-sized moving windows, one each for the new and old data. Apart from providing up-
to-date statistics about label distribution, these windows allow the classifier to boot itself 
up, i.e, learn enough of the data distribution to generate consistent predictions, as the win-
dows are filled (Alg. 1, lines 4–6), which functions as a warmup scheme.

After the windows are full, we first generate two co-occurrence matrices from the win-
dows (Alg. 1, lines 10–11). The matrices are obtained by counting the number of times 
each class label occurs as “1” alongside other labels. The generated matrices are then 
ranked within each row, which we call local ranking, by creating a ranking for each label 
based on their co-occurrence frequencies.

Table 2  Symbols table for 
Algorithm 1

Symbol Description

l Predicted label
L Threshold for number of anomalies
t Standard deviation multiplier
w Number of samples in a window
W

new
Label window for new samples

W
old

Label window for old samples
W

corr
Past correlation window
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Following the local ranking, the ranks are aggregated by utilizing a data fusion algo-
rithm to obtain a representation of label dependencies for new and old samples (Alg. 1, 
lines 12–13). We call the resulting aggregated ranking as global ranking. Through this, 
we obtain the most influential labels among all of them and use these labels to monitor 
changes in the stream. We use reciprocal rank fusion, which is seen in Eq. 2, where ri is the 
global ranking of a class label within the predicted label l, which is denoted by li . Moreo-
ver, we use n to represent the number of classes and rij for the local ranking of li , where 
{j | 1 ≤ j ≤ n} . We justify our selection of reciprocal rank fusion, rather than some other 
commonly used approaches, by experiments in Sect. 6.3.

(2)ri =
1∑n

j=1

1

rij

{i � 1 ≤ i ≤ n}
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4.2  Measuring similarity between two rankings

Subsequent to the global ranking, we calculate the rank correlation between the two global 
rankings we obtained (Alg. 1, line 14), which evaluates the similarity between rankings. 
We use the WS coefficient as our rank correlation measure which is a ranking similar-
ity method developed by Sałabun and Urbaniak (2020). It calculates the weighted similar-
ity between two rankings and returns a value bounded within [−1, 1] , where two identical 
rankings are scored as 1, whereas the score is − 1 for the opposite case, from which can be 
deduced Eq. 3. In this equation, Rxi and Ryi represent the rank position of a label li within 
Rnew and Rold.

Within the summation, 2−Rxi is the weight of the label li which ensures that higher ranking 
labels have more influence. The numerator |Rxi − Ryi| is the ranking distance of li within the 
two rankings and the denominator scales this distance.

We chose to use the WS coefficient instead of other popular rank correlation measures 
such as Kendall’s � (Kendall 1938) or Spearman’s � (Spearman 1987) because it provides 
a way to weigh the labels. Since we measure the influences labels have on each other, a 
change in the higher ranked labels is more important than other labels. Furthermore, it 
measures the similarity based on the distance between the two rankings. In a possibly vola-
tile environment like a data stream, rankings could change by a few places temporarily; 
however, if we measure the similarity based on distance, such irregularities are tolerated 
more easily, which is why measures such as weighted � (Vigna 2015) are not suitable for 
our case.

Although the generated rank correlation value implies whether the current ranking indi-
cates a drift, it needs to be checked for statistical significance. This is done by utilizing the 
three sigma rule (Pukelsheim 1994), which translates to a simple left tailed test for our case 
(Alg. 1, lines 15–19). A separate moving window ( Wcorr ) is utilized to accumulate the past 
rank correlations. If the current correlation is less than the mean ( � ) within the window by 
t times the standard deviation ( � ), it is considered an anomaly. However, such anomalies 
may be the result of noise in the data, i.e, outliers described in Sect. 2. To prevent false 
detections, we store these anomalies in a list, and if the length of this list is greater than a 
chosen length L, the detector signals that a drift has been encountered. The three sigma rule 
is used here to increase the computational efficiency of the algorithm as the desired result 
is obtained without having to estimate the distribution of the recent data in its entirety.

The general representation of all of the stages is illustrated in Fig. 3. In addition, a sim-
ple numerical example of LD3 is given in Fig. 4. In this figure, Mold and Mnew are obtained 
by counting the co-occurrences of labels. Then, local rankings are obtained which are rep-
resented as Li and L′

i
 for each label within Mold and Mnew . The variables ri and r′

i
 are recip-

rocal ranking results for old and new samples for each label.

4.3  Complexity analysis

Lastly, two parts of LD3 is important in determining its time complexity which are label 
dependency ranking and rank similarity comparison described in Sects. 4.1 and 4.2 in their 

(3)C = 1 −

n∑
i=1

(
2−Rxi

⋅

|Rxi − Ryi|
max{|1 − Rxi|, |n − Rxi|}

)
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Fig. 3  Workflow of LD3. Red boxes represent false labels (0) and green boxes represent true labels (1). 
(Color figure online)

Fig. 4  A simple numerical example of LD3 where � and � are the mean and standard deviation of the sam-
ples within W

corr
 , t is the standard deviation multiplier for the three sigma rule (Pukelsheim 1994), and L is 

the number of anomalies threshold. Recently arrived predicted labels are highlighted in bold. The calcula-
tions are explained in more detail in “Appendix A”
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respective order. Since we compute the dependencies for each label, the complexity of the 
first section would be O(Nn2) where N is the number of samples and n is the number of 
labels. Since the complexity for the rank similarity computation is O(Nn), as we compute n 
rankings for each sample, the overall complexity of the algorithm is O(Nn2).

Aho and Ullman (2022) indicate that continuously running systems such as operat-
ing systems and alike require a different type of computational abstraction that should 
be included in the abstraction taxonomy of computer science. In conventional computa-
tions there is a beginning and an end. Data stream classification computations are con-
tinuous and in LD3 the computations are performed w number of data items at a time and 
what is important is the performance of the algorithm inside a time window that contains 
w number of samples. Therefore, expressing the complexity of LD3 as O(wn2) is more 
meaningful.

Multi-label classification has a wide variety of applications ranging from a small num-
ber to a very large number of labels. An efficient adaptation of LD3 to a domain with many 
labels (a large value of n) may require taking advantage of the characteristics of the appli-
cation area. For such domains during data stream processing some labels may become pop-
ular and other labels may become almost extinct for a long time: Based on this, the value of 
n can be determined by only considering these active labels. Another possibility is cluster-
ing of labels. By clustering, meta labels can be defined and they can be used as the labels 
employed for drift detection (Tsoumakas et al. 2008).

5  Evaluation and experimental setup

5.1  Datasets

For evaluation, we used nine well-known real-world multi-label datasets, which we 
obtained in MEKA (Read et  al. 2016) formats, and six synthetic data streams (Montiel 
et al. 2018). Table 3 represents the datasets and their properties. The datasets are chosen 
among the ones tested in the study of Roseberry and Cano (2018). We used all datasets 
from that list shown to have drift by any of the tested detectors and had better effectiveness 
results than a baseline classifier without drift detection functionalities. Since we measure 
the detectors’ benefit based on the effectiveness improvement on the classifier, if the base-
line classifier shows higher predictive performance, we conclude that detectors only make 
false positive detections. In such a case, we assume the dataset does not have drift.

The six synthetic data streams are generated to measure the difference in effectiveness 
results among incremental, reoccurring, and sudden drifts, which are generated by chang-
ing between three different multi-label data streams that have different label cardinalities 
(for reoccurring concepts, the third data stream has the same properties and data distribu-
tion as the first data stream). The change between streams is smoothed by the sigmoid func-
tion over a specified number of samples. To simulate sudden drift, we applied the change 
over one sample whereas in the reoccurring and incremental drifted streams the change is 
applied over 500 samples. The first three data streams have 20,000 samples and their drifts 
are at the sample positions 4000 and 10,000. The variations of these data streams have 
40,000 samples and the drifts are at the sample positions 10,000 and 30,000 which are cre-
ated to further investigate the predictive performance of the detectors with more samples, 
higher label cardinality and density (The number of labels are reduced to increase the label 
density). The properties of the streams are shown in Table 3.
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5.2  Experimental setup and evaluation metrics

The experiments are performed using the Scikit-Multiflow (Montiel et  al. 2018) and 
Tornado (Pesaranghader et  al. 2018a) frameworks. Scikit-multiflow is employed for 
synthetic data stream generation and contains six (ADWIN, DDM, EDDM, HDDM_A, 
HDDM_W, KSWIN) of the tested baseline detectors. Moreover, the Tornado framework 
is utilized as it contains the remaining eight baseline detectors.

To demonstrate the effectiveness benefits of the detectors, a Classifier Chain (CC) 
(Read et al. 2011) using Gaussian Naive Bayes (NB) classifiers (John 1995) is used as 
a base classifier. CCs build binary classifiers for each class label that are linked in a 
chain to preserve inter-label dependencies. The reason for using a CC is that it provides 
accurate results with reasonably fast execution. The same reasoning applies to the use 
of NBs as base classifiers and it is also a popular base classifier that is frequently used 
in the literature (Pintas et al. 2021). Furthermore, our concept drift adapting strategy, as 
we stated earlier, resets the classifier if drift is detected.

Gama et al. (2014) propose three possible metrics for change detection algorithms: 
(1) Probability of true change detection, (2) Probability of false alarms, and (3) Delay 
of detection. In our experiments and discussions, in order to incorporate the suggested 
measures, we first perform effectiveness tests on the 15 datasets we presented. Then, 
through plots, we make an in-depth analysis on the obtained effectiveness measures on 
the top four performing detectors, in which we discuss the effects of the false detec-
tions (alarms) and true detections. Moreover, to measure the impact of detection delay, 
we perform experiments using six synthetic data streams with varying drift speeds, i.e, 
how fast does the change happen between old and new concepts. This experiment allows 

Table 3  Table of multi-label datasets used in the experiments

The upper group contains the real-world datasets. N represents the number of samples, D is the number 
of features, n is the number of labels and LC(D ) and LD(D ) represents label cardinality and label density 
which are the average number of true labels of the samples in dataset D and LC(D ) divided by the number 
of labels, indicating the average label cardinality per label (Tsoumakas and Katakis 2007)
The real-world datasets can be accessed from: http:// www. uco. es/ kdis/ mllre sourc es/

Dataset name Domain N D n LC(D) LD(D)

20NG Text 19,300 1006 20 1.029 0.051
Birds Audio 645 260 19 1.014 0.053
Enron Text 1702 1001 53 3.378 0.064
EukaryotePseAAC Biology 7766 440 22 1.146 0.052
Imdb Text 120,900 1001 28 2.000 0.071
Ohsumed Text 13,930 1002 23 1.663 0.072
PlantPseAAC Biology 978 440 12 1.079 0.090
Tmc2007-500 Text 28,600 500 22 2.220 0.101
Yeast Biology 2417 103 14 4.237 0.303
Synthetic Incremental Drift 1 Generic 20,000 200 50 1.588 0.040
Synthetic Re-occurring Drift 1 Generic 20,000 200 50 1.588 0.040
Synthetic Sudden Drift 1 Generic 20,000 200 50 1.587 0.040
Synthetic Incremental Drift 2 Generic 40,000 300 25 4.014 0.161
Synthetic Re-occurring Drift 2 Generic 40,000 300 25 4.000 0.160
Synthetic Sudden Drift 2 Generic 40,000 300 25 4.014 0.161

http://www.uco.es/kdis/mllresources/
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us to assess the detectors’ response within different drift environments. Lastly we pre-
sent our findings on average detection delay, number of false detections and number 
of correct detections in Sect.  6.4.2 to investigate the detection characteristics of the 
algorithms.

The tests are conducted using prequential evaluation (Gama et al. 2009). We apply the 
following four metrics to evaluate the effectiveness of the algorithms which are used in 
previous literature to measure multi-label classification effectiveness (Büyükçakir et  al. 
2018; Nam et al. 2017). Since the aim of concept drift detection is to allow paired models 
to maintain their effectiveness, an increase in the effectiveness results after drift detection 
would translate into better real-world performance. Therefore, we chose effectiveness met-
rics that have been utilized in previous multi-label classification studies.

• Example-based metrics: Example-based accuracy (Eq. 4), Hamming score (Eq. 5), and 
example-based F1 score (Eq. 6). The formulas for these are given below in equations 
with ŷi being the prediction, Yi as the ground truth, n as the number of labels, and N 
being the number of samples.

• Label-based metrics: Micro-averaged F1 score (Eq. 7). TPi , FPi , and FNi are true posi-
tive, false positive, and false positive counts for the i-th label (Zhang and Zhou 2013).1,2

 

 LD3 is compared with the detection algorithms displayed in Table 1 and their variations. 
Although these detection algorithms are not specifically designed for the multi-label use-
case, they are eligible baseline algorithms because they are error rate-based detectors. For 
these type of algorithms, the input passed into the detector is whether or not the prediction 
is correct, which means that their input is “1” for correct and “0” for incorrect predictions 
(For “1”, all predicted labels must exactly match the true labels). For this reason, they can 
also be used in the multi-label concept detection problem domain since this information 

(4)Accuracyexample =
1

N

N�
i=1

�Yi ⋂ ŷi�
�Yi ⋃ ŷi�

(5)HammingScore = 1 −
1

N

N∑
i=1

1

n
|ŷiΔYi|

(6)F1example =
2 ⋅ Precisionexample ⋅ Recallexample

Precisionexample + Recallexample

(7)F1micro = F1

(
n∑
i=1

TPi,

n∑
i=1

FPi,

n∑
i=1

FNi

)

1 Precisionexample =
1
N

∑N
i=1

|Yi
⋂

ŷi|
|ŷi|

 Recallexample =
1

N

∑N

i=1

�Yi ⋂ ŷi�
�Yi�

2 F1(TP,FP,FN) = 2⋅TP

2⋅TP+FN+FP
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is also generated in multi-label data streams. Wang et al. (2020) also test their multi-label 
concept drift detection algorithm against DDM.

6  Experimental results and related discussions

In the following subsections, we discuss and analyze our results based on effectiveness 
measures, provide simple guidelines for hyperparameter optimization, discuss the effects 
of different data fusion algorithms, the influence of various drift types and speeds, analyze 
the detectors based on detection delay and false detections, and finally discuss the effects 
of noise.

6.1  Effectiveness analysis

We assess our effectiveness results by comparing our experimental results with the base-
line detectors. Furthermore, we visually analyze the effectiveness results in the time scale. 
Lastly, we discuss the advantages of unsupervised detection with pointers on efficiency.

6.1.1  Analysis with different effectiveness measures

The results of our experiments are presented in Table 4. Each row represents the results of 
a detector and columns represent the datasets. The table is divided into four sections for 
each effectiveness measure. The baseline classifier without a detector is labeled as “ND”, 
i.e, no detector. While calculating the average rankings, the ties are handled by averaging 
the ranks that would be assigned to all the tied values and assigning that value to each tied 
element, e.g., for the given list [1, 2, 3, 3, 4], the average ranking is [1, 2, 3.5, 3.5, 5].

The results show that LD3 achieves the best results overall on all metrics. For all met-
rics, LD3 achieves an at least 16.9% improvement over the baseline averages. However, 
average rank-wise, LD3 displays comparatively worse predictive performance on the exam-
ple-based F1 score than other metrics. We found that the reason behind this is mostly due 
to the classifier resetting procedure. Example-based F1 score punishes miss-classifications 
more harshly than example-based accuracy since miss-classified samples are multiplied in 
its numerator and they are divided by additive components. A recently reset classifier is 
prone to incorrect predictions, and it is usually the case that none of the predicted labels 
match the true labels of the initial samples after resetting, which produces the outcome of 
the worst example-based F1 scores.

6.1.2  Statistical significance evaluation of effectiveness results

To further investigate the effectiveness of LD3, we performed the “Friedman test with 
Nemenyi post-hoc analysis" in which we evaluate the statistical significance of our results, 
which is presented in Fig. 5. We applied the two-tailed Nemenyi test to find our critical 
distance for Nemenyi Significance. Our critical distance is CD = 5.956 , which is calculated 
using Eq. 8, where q�,k is the critical value acquired from the Critical Values Table from 
Demšar (2006) with � = 0.05 and k is the number of algorithms (16) and K is the number 
of datasets (15).
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The Nemenyi Significance tests show that LD3 achieves the overall best rankings 
with a statistically significant difference from most of the detectors. Among the different 
effectiveness measures, only RDDM, EDDM and ADWIN consistently display statisti-
cally indistinguishable predictive performance.

It should be observed that contrary to prior expectation, ND does not show the worst 
results and it achieves better results compared to more than half of the tested detectors. 

(8)CD = q�,k

√
k(k + 1)

6K

(a) Example-based accuracy

(b) Hamming score

(c) Example-based F1 score

(d) Micro-averaged F1 score

Fig. 5  Nemenyi critical distance diagrams for all metrics. The number given within parentheses after the 
method name indicates the rank position of the method
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Our experiments show that apart from ADWIN, EDDM, HDDM_A, and RDDM, the 
baseline detectors either do not detect drift or perform worse than ND in general. We 
identify the reason behind this as frequent false positive drift detections. An incorrectly 
detected drift leads the classifier to discard the progress it made which severely reduces 
their effectiveness. In addition, after a reset, the error rate of the classifier is increased 
which causes an error rate-based detector to miss-interpret the miss-classification statis-
tics which may result in oscillating drift detection. The negative feedback loop gener-
ated from both of these factors causes the detectors to produce worse results than ND.

One aspect we would like to highlight is LD3’s ability to detect drifts even when 
tested with a dataset that has low label cardinality. Our initial assumption was that LD3 
would perform worse on datasets with lower label cardinality, since there would be less 
co-occurrence. However, in datasets with low label cardinality such as Birds, 20NG, and 
PlantPseAAC; LD3 still outperforms the baselines in general. We found that even if the 
label cardinality is low, as long as the data stream is a multi-label stream, some labels 
still have more influence over other labels and LD3 continues to be effective. One problem 
that arises from this is that how the algorithm should respond if the nature of the stream 
changes from multi-label to a multi-class stream. Our suggestion in such a case would be to 
switch to a different detector suited to multi-class streams since LD3 would lose its ability 
to detect drifts. However, we were unable to find any detectors that could detect a change in 
the data stream’s nature and recommend further research for such cases.

Our experiments confirm that ADWIN, EDDM, HDDM_A, and RDDM are suitable for 
drift detection on multi-label data streams. For the following discussions, we use the top 
four detectors in terms of average rank, namely, LD3, ADWIN, EDDM, and RDDM. We 
also include ND in our comparisons.

6.1.3  Time change analysis of effectiveness

Figure 6 plots the time scale example-based accuracy results of the top four detectors and 
ND. These datasets are chosen as most of the detectors co-detect drifts and their plots are 
more clear, allowing better inspection. The datasets are divided into 25 subsets and the 
average accuracy within those subsets is plotted.

Most of the sudden decreases in accuracy are caused by the classifier resets which 
means that at those points, the algorithms deduce that drift is present. Noticeably on the 
PlantPseAAC dataset, the sudden decreases in accuracy occur earlier for LD3, after which 
the classifier produces higher accuracy values than the baselines. LD3’s early detections 
allow the classifier to learn larger amounts of samples and adapt to the new concept faster. 
This is also observed in the second half of the Enron dataset where the other detectors stag-
nate in accuracy while LD3 resets to learn the new drift.

Furthermore, the plots illustrate that LD3 is more resistant to the noisy data originating 
from a recently reset classifier. Notably with ADWIN and RDDM on Tmc2007-500 and 
Imdb datasets, we observe that there are numerous consecutive drops in accuracy, which is 
the result of a new detection following a recent reset. While the classifier builds a proba-
bilistic model for the new distribution, some noise is usually expected. Yet for error rate-
based algorithms like ADWIN and RDDM, this noise causes false detections that result 
in oscillating resets as previously discussed. LD3 combats this problem by waiting until 
sufficient statistics are obtained while the windows get filled, which allows for faster recov-
ery. For instance, in the Tmc2007-500 dataset, RDDM generally reaches higher accuracy 
values. However, RDDM resets the classifier frequently as opposed to LD3’s more stable 
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execution, which results in marginally worse overall accuracy (LD3: 0.2029, RDDM: 
0.2016) for RDDM, despite having multiple higher local maximum values. A similar case 
is also displayed with the Imdb dataset.

We define robustness, in the context of concept drift detection, as the ability to aid clas-
sifiers to provide the best predictive performance within a data stream with changing con-
cepts. Our investigation on Fig. 6 and results on Table 4 demonstrate that LD3 is a robust 
detection algorithm that assists the classifier to achieve the best effectiveness results over-
all, within varying streaming environments with drift.

6.1.4  Efficiency concerns and advantages of unsupervised detection

In our study, we chose not to include an efficiency analysis, because, in our experiments, 
we observe that a drift detector’s influence on the execution time is much lower than the 
paired classifier. Furthermore, supervised detection algorithms assume that the true labels 
are readily available (Sethi and Kantardzic 2017; Žliobaite 2010); however, that is not 
always the case in real life. The acquisition of labeled data is usually difficult and it is much 
easier to collect unlabeled data (Subhashini et al. 2021). As LD3 is an unsupervised detec-
tor, the lack of labeled data does not prevent its continuous concept drift detection whereas 
supervised algorithms may halt while waiting for labels (we have stated some research pos-
sibilities in the Complexity Analysis section for the use of LD3 in applications with a high 
number of labels).

Fig. 6  Example-based accuracy results of the top detectors and ND on four datasets. Y-axis of the plots is 
given with different scales
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6.2  Hyperparameter analysis

In our analysis of the hyperparameters, we propose a method to set the standard deviation 
multiplier t. Furthermore, we conduct experiments to determine the effect of window size 
w and threshold for the number of anomaly L.

6.2.1  Setting the standard deviation multiplier t

We developed a simple way to tune the t parameter of LD3. Figure 7 plots the distribution 
of past correlations within Wcorr , when a drift is detected for four datasets as histogram 
plots.

Since LD3 is an unsupervised detector, such plots could easily be obtained as a part of 
the test runs of a given data stream. In the figure, we see that with each subplot the range 
of correlation values expand; however the mean correlation does not decrease at the same 
rate, where they stay in [0.80, 1]. If the standard deviation of the correlations is low, e.g, 
EukaryotePseAAC dataset in Fig. 7a, a small t is required such as t = 2 . With this t value, 
if the current correlation value is smaller than � − 2� , it lies outside of the 95% confidence 
interval and should be considered an anomaly (Pukelsheim 1994). For accurate tuning of 
LD3, starting from t = 2 , the confidence interval should be expanded with an increasing 
t, with guidance from the plots generated, similar to the examples in Fig. 7. We used this 

(a) (b)

(c) (d)

Fig. 7  Distribution of the rank correlations within W
corr

 of four datasets after a drift is detected with differ-
ent t values ( � multipliers). X-axis of the plots is given with different scales
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method to determine the t values for our experiments on Table 4. Among the parameter 
values we used, t = 4 most frequently achieves the best effectiveness result. Therefore, we 
use this value as a default parameter.

6.2.2  Setting the parameters window Size w and threshold for number of anomalies L

To investigate the effect of L and w parameters, we conducted experiments on the real-
world datasets using w = [50, 250, 500] , L = [0, 1, 2] values. Table 5 presents the results of 
our experiments. We found that L = 0 is a good default value since most of the best results 
are achieved with this value. This indicates that our concerns about outlier resiliency are 
not as significant as initially assumed. Though this is most likely not the case for every data 
stream as streams with extreme noise may be susceptible to outliers. We urge researchers 
who would utilize LD3 to better tune the L parameter if there are available resources such 
as labeled data and computational capacity.

Unlike the L parameter, our results show that setting the w parameter to a default value 
is not as straightforward. In Table 5 we observe that datasets with a low number of samples 
work best with w = 50 , and larger datasets with w = 500 . This is related to the problem of 
sampling rate for data streams. Depending on the problem domain, the source of a stream 
can be sampled daily for stable streams such as music billboard charts and it can be sam-
pled several times a minute for volatile data streams such as the price of a cryptocurrency. 
For this purpose, it is possible to use a hyperparameter self-tuning scheme (Veloso et al. 
2021), to better adjust the classifier based on the current distribution. In our experiments, 
we observe that the value of the w parameter is highly dependent on the sampling rate of 
a stream and it should be set accordingly. For frequently sampled data streams we recom-
mend w = 500 as a default value and w = 50 for infrequently sampled streams.

6.3  Analysis of different fusion methods

In order to study the effects of different data fusion algorithms and to choose a suitable, 
default data fusion algorithm for LD3, we conducted experiments on the nine real-world 
datasets we used on effectiveness tests. We chose to exclude the synthetic data streams 
for these experiments as we aim to evaluate the general effectiveness of tested data fusion 
algorithms in real-world datasets. In these experiments, in addition to reciprocal ranking, 
we used popular data fusion algorithms Borda Fuse, Condorcet’s Fuse (Nuray and Can 
2006) and Markov Chains Type 4 (MC4) (Dwork et al. 2001). The results are shown in 
Table 6. The tests are done only by changing the data fusion section of LD3.

The results show that reciprocal rank fusion provides better results (in six of the nine 
cases). This is within our expectations as past studies such as Cormack et  al. (2009) 
and Pedronette and Torres (2015) have shown similar observations in different problem 
domains.

6.4  Effects of drift types and speed on performance

Regarding drift types, since LD3 counts the number of co-occurrences to detect concept 
drift, incremental, sudden, and reoccurring drifts have the same structure, as all of these 
types of drifts result in changing rankings. As shown in Table 4, LD3 generally performs 
the same between different types of drifts and outperforms other detectors. Also, from the 
algorithm perspective, both incremental and gradual drifts show the same structure within 
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the co-occurrence matrix. Therefore, in the analyses of this section we chose not to add an 
additional stream for gradual drift as the results were very similar.

6.4.1  Effects on accuracy

In addition to drift types, the speed at which the drift occurs also influences a detector’s 
ability to find drifts. In Table 7, the accuracy results of the top four detectors are presented. 
The streams used are synthetic data streams with sudden and incremental drifts and the 
number after the underscore is the number of samples over which the drift occurs. We 
generate them using the Scikit-Multiflow framework (Montiel et  al. 2018) by the same 
method described in Sect. 5.1 where they have 20,000 samples, 50 classes, and 200 fea-
tures with drifts occurring at sample positions 4000 and 10,000. We chose to generate our 
data streams with two concept drifts to make it proportional to previous studies (Chiu and 
Minku 2022). Our findings indicate that regardless of the drift speed and type, LD3 still 
outperforms the baseline detectors, which demonstrate the robustness of LD3 under differ-
ent speed conditions.

6.4.2  Effects in terms of some less used performance metrics

In this section we provide experimental results on three interrelated effectiveness meas-
ures that can be important in quantifying the detection performance of data stream clas-
sifiers in various application domains as they are all related to the detection of concept 

Table 6  Example-based accuracy 
results of LD3 using four 
different data fusion algorithms

Best results are highlighted in bold

Dataset Reciprocal Borda Condorcet MC4

20NG 0.1616 0.1480 0.1497 0.1517
Birds 0.0992 0.0913 0.0984 0.0903
Enron 0.1403 0.1343 0.1316 0.1368
EukaryotePseAAC 0.1946 0.2096 0.0727 0.0685
Imdb 0.1140 0.1154 0.1110 0.1134
Ohsumed 0.0693 0.0568 0.0595 0.0594
PlantPseAAC 0.3198 0.3393 0.2397 0.2099
Tmc2007-500 0.2029 0.1954 0.1999 0.1997
Yeast 0.3765 0.3643 0.3577 0.3586

Table 7  Example-based accuracy 
results of the top detectors with 
different drift types

Best results are highlighted in bold

Data Stream LD3 ADWIN EDDM RDDM ND

Sudden_1 0.0788 0.0724 0.0744 0.0720 0.0659
Sudden_25 0.0767 0.0724 0.0741 0.0724 0.0659
Sudden_50 0.0776 0.0725 0.0737 0.0724 0.0659
Incremental_250 0.0769 0.0725 0.0733 0.0731 0.0659
Incremental_500 0.0788 0.0724 0.0787 0.0722 0.0659
Incremental_1000 0.0776 0.0717 0.0766 0.0713 0.0659
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drifts, i.e, directly related to the performance of the detection algorithms themselves: 
Number of false concept drift detections, average detection delay (calculated by taking 
the average of the detection delay for each drift), and number of correct concept drift 
detections. These metrics are usually neglected in data stream literature (possibly) due 
to lack of test data that they can be quantified with, not due their unimportance. (For 
example, Google Scholar returns only 49 results for the query “drift detection delay” on 
April 9, 2022.) The same limitation also affects our experiments but we would like to 
provide experimental observations with them since in addition to our purpose of meas-
uring performance with them they also provide some interesting findings about some of 
the baseline detectors.

In Table  8, detection characteristics of the top four detectors are presented. We can 
observe that LD3 achieves the best results in terms of average detection delay and number 
of correct detections. Furthermore, we see that this prediction performance of LD3 comes 
at the cost of a higher number of false detections.

The low number of correct detections for ADWIN and RDDM shows an inconsistency 
between the effectiveness results and the drift detection characteristics where both of these 
detectors show higher effectiveness results than the baseline ND despite their subpar detec-
tion characteristics. Based on this inconsistency, we can deduce that synthetic datasets do 
not accurately present the detection capabilities of the drift detectors. This is further rein-
forced by our observations in Sect. 6.1.3, as our analysis shows that with real-world data-
sets, both ADWIN and RDDM show worse performance in the number of false detections 
compared to LD3 due to their frequent resets in an oscillating form. Since, to our knowl-
edge, there are no multi-label datasets with labeled drift points, we cannot evaluate the 
detectors for real world datasets. To this end, we urge future researchers to generate new 
multi-label datasets with labeled drifts for more accurate evaluation of both past and future 
studies on this topic.

Table 8  Analysis of the drift detection characteristics on six synthetic data streams

If one of the drifts is not detected, the number of samples before the next drift is added. For all the data 
streams there are two drifts at positions 4000 and 10,000 within 20,000 samples. If the detector has failed to 
detect any drifts, we denote its average detection delay as N/A

Detector Sudden_1 Sudden_25 Sudden_50 Incremental_250 Incremental_500 Incremental_1000

Average detection delay
 LD3 877 991 1,379 1,154 649 517
 ADWIN N/A N/A N/A N/A N/A N/A
 EDDM 10,513 10,410 10,701 11,359 12,173 13,354
 RDDM N/A N/A N/A 10,249 10,260 10,558

Number of correct detections
 LD3 2 2 2 2 2 2
 ADWIN 0 0 0 0 0 0
 EDDM 1 1 1 1 1 1
 RDDM 0 0 0 1 1 1

Number of false detections
 LD3 6 6 6 5 7 8
 ADWIN 2 2 2 2 2 2
 EDDM 7 7 7 7 9 7
 RDDM 2 2 2 1 1 2
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6.5  Influence of noise in the data stream

To conclude our experiments, we conducted tests to observe the effect of possible noise in 
the data stream. In these experiments, we added random Gaussian noise by generating a 
Gaussian random variable between 0 and 1, and adding it to the datasets, and recorded the 
example-based accuracy results in Table 9, similar to the Tables 6, 7.

Our results show that even under noise, LD3 achieves the best performance among the 
top detectors and the baseline ND. LD3 operates by monitoring the dependencies between 
the predicted labels and any noise in data would already be learned by the model, i.e, the 
underlying distribution modeled by the classifier would predict based on the noisy data. 
This creates an abstraction layer, i.e, hides the noise, for LD3, and allows it to mostly be 
unaffected by noise.

7  Conclusion

In this paper, we present LD3, a novel unsupervised concept drift detection algorithm that 
exploits dynamic temporal dependencies between class labels in a multi-label classifica-
tion environment. The algorithm is based on a new concept, label dependency ranking, 
which we introduce. We perform an extensive evaluation of LD3 against 14 prevalent drift 
detection algorithms using a Classifier Chain of Gaussian Naive Bayes classifiers. The 
experimental results show that LD3 provides the highest classifier accuracy: Without using 
true class labels, it statistically significantly outperforms several of the other drift detection 
algorithms that require such labels.

Analyses with less used evaluation metrics such as detection delay enable us to provide 
interesting observations for some of the baseline drift detectors and allow us to suggest 
future research pointers on them.

Our algorithm is able to accurately assist multi-label classifiers in the presence of a 
concept drift, which results in more robust classification models that are more adaptive to 
changing trends. In many streaming environments, true class labels required by supervised 
concept drift detection methods are likely to be unavailable due to several reasons. As LD3 
is an unsupervised algorithm, this advantage illustrates the practical value of LD3.

In future work, we plan to examine the uses of LD3 in unsupervised classification and 
in environments that include concept evolution, i.e. the emergence of entirely new labels.

Table 9  Example-based accuracy results for the top four detectors and ND with real-world datasets with 
noise

The best results are highlighted in bold

Detector 20NG Birds Enron Eukaryote 
PseAAC 

Imdb Ohsumed Plant 
PseAAC 

Tmc2007-
500

Yeast

LD3 0.0422 0.0713 0.0785 0.2075 0.0625 0.0313 0.2192 0.0914 0.2479
ADWIN 0.0400 0.0566 0.0752 0.0192 0.0601 0.0300 0.1148 0.1053 0.2059
EDDM 0.0419 0.0564 0.0744 0.0191 0.0600 0.0300 0.0722 0.1019 0.2059
RDDM 0.0395 0.0561 0.0744 0.0386 0.0600 0.0300 0.1004 0.1164 0.2061
ND 0.0394 0.0555 0.0745 0.0190 0.0606 0.0301 0.0720 0.1212 0.2062
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Appendix A Detailed calculation example

Assume that a given data stream S0,t = d0, ..., dt , in a time window [0, t], where di = (Xi, yi) , 
the window size w = 3 and three classes, the most recent six predictions are:

We first calculate two co-occurrence matrices Mnew and Mold . For Mnew we use the most 
recent w labels which are highlighted in bold. The next w labels after that are used for Mold . 
The matrices are calculated by counting the number of times each label occurs together. 
For instance, for the third sample (0, 1, 1), the second and third labels are true together, 
so Mold(2, 3) and Mold(3, 2) are incremented by one. Each row of the matrices represents 
the co-occurrence for a different label. For the given stream, the resulting matrices are the 
following:

Next, we calculate the ranking of the co-occurrences for each label, i.e, which labels occur 
more frequently together with the currently ranked label. A.4 is for Mold and A.5 is for 
Mnew , where Li represents the rankings for each past predicted label and L′

i
 is used for the 

most recently predicted labels.

We perform reciprocal rank fusion on the obtained rankings to get a global, aggregated 
ranking for the old and new labels. For tied rankings, we assume they each have the same 
ranking. ri and r′

i
 are the reciprocal rank of each label for old and new predictions in their 

respective order. The calculated ranks are sorted in ascending order to get the global rank-
ings Rold and Rnew . If two reciprocal ranks are equal, they are sorted based on their label 
indexes.

(A1)S = ((0, 0, 1), (1, 1, 1), (0, 1, 1), (�, �, �), (�, �, �), (�, �, �))

(A2)Mold =

⎡⎢⎢⎣

0 1 1

1 0 2

1 2 0

⎤⎥⎥⎦

(A3)Mnew =

⎡⎢⎢⎣

0 1 2

1 0 0

2 0 0

⎤⎥⎥⎦

(A4)

L1 ← l2 = l3

L2 ← l3 > l1

L3 ← l2 > l1

(A5)

L′
1
← l3 > l2

L′
2
← l1 > l3

L′
3
← l1 > l2
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The obtained Rold and Rnew rankings are then used to calculate the WS coefficient to meas-
ure the rank correlation between the two rankings. In A.8, the ranks represent the ranking 
position of the i-th label where Rold = [2, 0, 1] and Rnew = [0, 2, 1].

For the remaining part, if the obtained correlation C is less than � − t� , where � is the 
mean, � is the standard deviation and t is the � multiplier used in three sigma rule, the 
obtained correlation is added to an anomaly list. The drift is detected when the length of 
the anomaly list generated from Wcorr is greater than the set L threshold.
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