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Abstract—Video streaming accounts for the most of the global
Internet traffic and providing a high user Quality of Experience
(QoE) is considered an essential target for mobile network
operators (MNOs). QoE strongly depends on network Quality
of Service (QoS) parameters. In this work, we use real-world
network traces obtained from a major cellular operator in
Turkey to establish a mapping from network side parameters
to the user QoE. To this end, we use a model-aided deep
learning method for first predicting channel path loss, and then,
employ this prediction for predicting video streaming MOS. The
experimental results demonstrate that the proposed model-aided
deep learning model can guarantee higher prediction accuracy
compared to predictions only relying on mathematical models.
We also demonstrate that even though a trained model cannot
be directly transferred from one geographical area to another,
they significantly reduce the volume of required training when
used for prediction in a new area.

Index Terms—quality of experience, prediction, deep learning,
video streaming, mobile networks, key performance indicators

I. INTRODUCTION

With the rapid development of the wireless multimedia
technology, video streaming has become an indispensable part
of our lives [1]. Users can watch videos on mobile devices, and
are stimulated with unique requirements in expecting ultra-
high-definition quality [2]. Several factors further fuel the wide
adoption of new and improved data services: a continuous evo-
lution of the range of applications, increased users’ awareness
and the constantly evolving performance of wireless networks
[3]. Wireless multimedia systems are being developed to
download videos faster, improve live video streaming quality
and make strong connections between cell towers and user
equipment [4]. Nowadays, machine learning and deep learning
tools are adopted to improve the performance of wireless
multimedia systems [5]. Accordingly, this improvement can
be realized by the wireless multimedia systems by benefiting
from the exploration of precious details about users’ behavior,
content information, and network dynamics [6]. There are
two important categories of performance metrics for modern
communication networks to consider: QoE and QoS [7]. User
Quality of Experience (QoE) has been the most important
performance criterion in modern communications networks
[8]. Unlike Quality of Service (QoS), which describes network
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performance, user QoE depends not only on the network but
also on the content, user preferences, and how the content is
delivered. In many services, e.g. video streaming, user QoE is
measured as Mean Opinion Score (MOS). Although QoE is a
subjective measure, some data-driven objective QoE evaluation
approaches have been proposed such as ITU P.1203 [9]. The
mean opinion score is based on objective parameters such as
video resolution, video startup delay time, etc. In this work,
we have drive test data taken from different locations and
times which supplement such information. Our algorithm is
aimed to make predictions with virtual drive tests following
real world deployment. The data from traditional drive tests
are inefficient when compared to virtual drive tests, hence their
need is minimized. The datasets under our investigation can
also be appealing for machine learning applications such as
throughput prediction or RSRP prediction.

The rest of the paper is organized as follows. Section II
reviews the related works of the path loss prediction and QoE
prediction. Section III explains the methodologies, including
data analysis and model-aided deep learning method for path
loss and QoE prediction. Section IV describes our measure-
ment setup provided for data analysis, and the background
information about the available individual KPIs are presented.
Section V proposes our approach for the model-aided deep
learning method for path loss and QoE prediction. Section
VI gives our results and discussions. Section VII presents the
conclusion and future work.

II. RELATED WORKS
A. Path Loss Prediction

The modeling and prediction of path loss in wireless
communications have been an active area of research. The
authors in [10] used artificial neural network (ANN) models
for macrocell path-loss prediction. In constructing the ANN
model, different-sized ANNs were trained by using different
backpropagation training algorithms, such as gradient descent
and Levenberg—Marquardt. Reference [11] proposed a path
loss prediction combining four machine learning algorithm,
including back propagation neural network (BPNN), support
vector regression (SVR), random forest, and AdaBoost. To
ensure the accuracy of prediction, the empirical model and
machine-learning-based model were all considered. [12] pro-
posed an improved path loss prediction model for mobile
communications systems using deep learning algorithm by
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collecting satellite imagery and position indicator. Due to
the increase in data, the proposed approach was capable of
improving the accuracy of path loss prediction. A machine
learning architecture for predicting path loss by considering a
combination of three key techniques: artificial neural network
(ANN)-based multi-dimensional regression, Gaussian process-
based variance analysis, and principle component analysis
(PCA)-aided feature selection was proposed in [13]. PCA was
applied to decrease the number of features in the collected
dataset and make the learning model less complex. Then, ANN
learned the path loss model from the simplified dataset by
reducing the dimension, and Gaussian process was used for
the shadowing effect. In [14], multilayer perceptron (MLP)
neural network in artificial neural network (ANN) was utilized
to accurately do the prediction of path loss for wireless com-
munication networks, in which the impact of environmental
features, ANN architectures, the dimension and percentage of
training samples on PL prediction models were considered for
model validation.

B. QoE Prediction

Recently, the prediction of the user QoE in mobile net-
works has also been a hot area of research. [15] proposed a
new context-aware QoE prediction model, in which Bayesian
Networks and Utility Theory were applied to do QoE in-
ference under uncertainty. Authors in [16] presented a deep
learning-based MOS prediction approach with a large-scale
QoE dataset in mobile video transmission. Through collecting
users’ scores for four metrics, including visual quality, loading,
stalling, and overall quality, and 89 network parameters, a
deep learning model was developed to build the relationship
between network parameters and the subjective QoE values
after feature selection and data cleaning. [17] formulated a
Bayesian network based on a probabilistic graphical model to
predict QoE of video streaming performance in non-real-time.
In [18] a flexible QoE prediction model was designed to do
the anomaly detection in adaptive video streaming, including
predictor and anomaly detector. Long Short Term Memory
(LSTM) Recurrent Neural Networks (RNNs) was used to
perform the prediction of QoE in consideration of network
and application Key Performance Indicators (KPIs). In [19],
to improve QoE for users in the Long-term evolution (LTE)
network, a deep learning approach based on the evaluation of
a mean opinion score (MOS) for a real-time video conference
service for optimal handover time prediction was proposed.

III. METHODOLOGY
A. Data Analysis

Datasets are collected by conducting drive-tests in ten
different locations in Turkey. The drive-test vehicle collects
both RF measurements and video quality data while streaming
a finite-length video named “Big Buck Bunny” from the
YouTube servers. This video is chosen by most of the QoE
measurement software due to its inherent characteristics. The
measurements are limited to fixed length duration of 60
seconds, and the video streaming is stopped at the end of

this duration. Video QoE is measured by a software called
PEVQS which is well-known and widely used by operators
worldwide. The software outputs a value between 1 and 3,
every 5 seconds, commonly referred to as Mean Opinion
Score (MOS) in reference to the averaging of scores given
by the participants in a subjective test. However, unlike a
subjective test, this calculated MOS is an objective calculation
based on the KPIs of the video measured by the software.
The parameters measured by the software are unknown to
our analysis. Additionally, the channel KPIs are measured
and recorded every second, allowing us to build a correla-
tion between MOS and radio KPIs. Channel KPIs include
Reference Signal Received Power (RSRP), Reference Signal
Received Quality (RSRQ), Signal-to-Interference plus Noise
Ratio (SINR), Physical Resource Block (PRB) utilization of
Physical Downlink Shared CHannel (PDSCH), PRB utiliza-
tion of Physical Uplink Shared CHannel(PUSCH), Down-
Link PRB Utilization (DL_PRB_UTILIZATION), DownLink
Throughput (APP_DL_THROUGHPUT), UpLink Throughput
(APP_UL_THROUGHPUT). Finally, in different locations the
manufacturers of cell towers are also different, and the data is
collected mostly from dense-urban environments.

B. Deep Learning Method for Path Loss and QoE Prediction

The closest work to ours is [12], which also proposed a
model-aided deep learning method for path loss prediction al-
beit under different specifications. Note that the path loss pre-
diction has always been of vital importance in communication
networks. There are several empirical path loss models for this
purpose. For example, in greenfield implementations, simple
empirical loss models are used. In urban environments where
coverage already exists, the distribution and management
of interference increases in complexity, so more advanced
channel models are required. The power-distance relationships
in current empirical models describe specific local geostatistics
that influence signal quality parameters. The use of empirical
models usually results in over- or under- prediction of signal
quality parameters and requires additional calibration. There-
fore, accurate channel models are still in need to evaluate
future generation mobile communication systems. Channel
models have general requirements and should consider a wide
selection of propagation scenarios to limit the need to calibrate
through extensive measurements. Furthermore, cognitive net-
working is considered as a necessary part of future solutions.
Note that cognitive networking is expected to have tight
needs on channel models, not solely in terms of accuracy but
conjointly in terms of computational performance. Thus, new
channel models offering improvements in both aspects are of
great interest.

The primary focus of our work is predicting the mean
received power under slow fading impairments such as shad-
owing. We aim to improve channel models for modeling the
coverage not only in terms of signal strengths but from video
streaming QoE perspective. For that aim, we utilize data driven
(adaptive) approaches based on deep learning.
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Fig. 1: Road traveled for data collection in Izmir, Turkey.
Points represent measurements (red) and handovers (green).

IV. THE DATASET: KEY PARAMETER INDICATORS
A. Measurement Setup

Due to limited space, in the following, we will only discuss
the dataset collected from Izmir. Our deep learning methods
will be tested on two other locations in the subsequent
sections. The drive-tests relating to the data in this section
conducted nonstatic outdoor measurements between 08:43 on
16 February 2021 and 17:25 on 16 February 2021 in a car
(the measuring user equipment was inside of the car) traveling
over the route through Izmir, Turkey as depicted in Fig.1. The
measurements are made with a smartphone (Samsung S8) in
an operational LTE network of one of the Turkish MNOs. The
smartphone was connected to the nearest cell tower, named as
the primary cell in our dataset. If it loses that connection,
then it tries to connect with other stations whose names are
Secondary Cell 1 (S1) and Secondary Cell 2 (S2).

B. Cell-Specific Reference Signal

We depict the measurements in our dataset collected from
the city of Izmir in Fig.2 with respect to time. Note that
due to lack of space, we only show a small portion of
parameters within the dataset: Reference Signal Received
Power (RSRP), and Signal-to-Interference plus Noise Ratio
(SINR) as the main parameters for radio signal performance
and Mean Opinion Score (MOS) as the indicator for user
QoE. Note that RSRP is the average power received from a
single reference signal and its general range is from -44 dBm
(good) to -140 dBm (bad). RSRP takes the reference point as
a UE’s antenna connector. RSRP can be defined as the linear
average of the power contributions of the resource elements
carrying cell-specific reference signals in the frequency band
considered for measurement. SINR is the reference value used
in system simulation, which is a hallmark that is normally
used to measure network quality. However, it should be noted
that SINR is not specified by 3GPP and therefore UEs do
not report SINR to networks. SINR is measured internally
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Fig. 2: SINR, RSRP, MOS vs. time in Izmir-Turkey dataset.

Cell subscripts: P (primary), S1, S2 (secondary one, two).

by UEs and recorded for use by testing tools. In Fig.2, the
measurement points appear to reside in a vertical line, since
each measurement session spans a length of approximately 60
seconds. We also note that within this period, radio parameters
vary significantly due to the mobility of the test vehicle.
Additionally, when the MOS measurements are observed a
clear pattern is recognized. MOS starts low but increases
within a session as time progresses due to buffering by the
video client at the receiver. In fact, this pattern will be used
by our deep learning model to accurately predict the MOS
values. The similarity with the role of distance for path loss
is recognizable, as the start of a session is the furthest point
from the stability, and thus the inverse of time acts a distance.
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Fig. 3: Experimental measurement of RSRP for the 2600 MHz
channel as a function of distance.

C. Mean Opinion Score

Mean Opinion Score is a numerical measure of the quality
of video sessions in telecommunications. It is a human-decided
quality. It is generally judged between 1 (poor quality) and 5
(excellent). In practice, it is often used to judge numerical
approximations of global phenomena. As shown in Fig.2,
in our dataset, the values of MOS are observed to vary
approximately between 3.6 and 4.6.

V. MODEL-AIDED DEEP LEARNING METHOD TO USE IN
PATH LOSS AND QOE PREDICTION

In this section, we employ a deep learning (DL) approach
to augment a simple but contemporary path loss model to fa-
cilitate the learning of channel conditions and video streaming
QoE based on user locations.

A. Path Loss Prediction

Model-based methods are the standard approach for ac-
counting for radio propagation effects in network simulation
and planning. Existing channel models, for example, 3GPP
TR 38.901 [20], which is employed to train our deep learning
algorithm, can provide high computational efficiency and
allow comparison of different methods in a highly controlled
environment. These methods are mainly capable of imitating
the complex features of the real world radio propagation.
Model-aided artificial intelligence methods make it possible
to optimize the accuracy of the predicted models and to
further reduce the number of necessary training samples. With
the advances in modern deep machine learning methods, the
mathematical radio propagation models traditionally used in
wireless communications are being replaced and/or improved
by models trained with large amounts of real world data.
Among the most recent mathematical propagation models one
can refer to, UMa-B (defined in TR 38.901 by 3GPP) is
suitable for urban environments. In UMa-B model, the height
of the cell tower (the transmitter), the height of the vehicle (the
receiver), and carrier frequency information are the main input

Fig. 4: Deep learning model.

parameters. Nevertheless, mathematical models are inadequate
in predicting path loss in the contemporary urban environments
as demonstrated in Fig. 3, where the blue dots represent real
measurements of RSRP, and the green line represents the
RSRP calculated by UMA-B model .

The idea of introducing a residual path loss into the pro-
posed model leads to an increased performance, which is
observed in training the model through the data. The deep
learning model employs a simple path loss model for assisting
the learning process. More specifically, we define the output
of the simple path loss model as an estimated link budget.
In the proposed deep learning model, the input to the model
is as follows: x,, = [lat,lon,d] where (lat,lon) are the
geographical coordinates of the receiver and d is the distance
between the transmitter and the receiver. In our datasets, we
do not have the exact distance information between the cell
tower and the car, and which cell tower is connected to
the receiver. Hence, in the analyses, we assumed that the
receiver is always connected to the nearest cell tower 2. A deep
machine learning model is implemented to learn a correction
of the estimated path loss produced by the simple path loss
model. We define y(z,,w,0) = z([x,, L(d)],w,8) + L(d).
Our aim is to obtain a regression model that predicts the RSRP
continuously. Hence, the model is formalized as follows:
t, = y(xn,w,0) + ¢, where y is the function to learn, x,
is the input, w are the weights, 6 are the hyper-parameters
and € is Gaussian distributed noise and the observation ¢,, is
the resultant RSRP. The deep learning model is summarized
in Fig. 4. For training, data is shuffled first and split between
%10 test and %90 train. The batch normalization is used with
batch size taken as 100. The model is learned over 100 epochs:
with ReLU as the activation function, le-2 as the learning rate,
Mean Squared Error as the loss, and Adam as the optimizer.

I'The cell tower height is 40 meters, the height of the car is 1 meter and
the carrier frequency is 2600 MHz.

2 Although this assumption is often correct, handovers between cells depend
on other parameters such as signal quality and the duration of its deterioration.
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TABLE I: MSE by model and train-test ratio.

Method (Train%-Test%) MSE
DL (90%-10%) 17.16
UMa (90%-10%) 367.24
DL (75%-25%) 24.95
UMa (75%-25%) 384.67

B. MOS Prediction

Given the predicted RSRP (according to the method ex-
plained in the previous section), we consider a similar deep
learning model to predict MOS values. When the data at hand
is visualized and investigated, it is clear that MOS changed
with time, and according to a similar pattern for each session:
there is approximately 10 seconds of buffering where the MOS
is very low, then it begins to increase and starts to show the
stabilized performance values. As a result, session time, which
is the time from the start of the session, is added to training
features in addition to vehicle coordinates and distance to
the cell tower. Since the buffering does not indicate the final
performance with sufficient accuracy, the first 10 seconds of
each session were left out of testing. The structure of the deep
neural network is the same as the previous model, except for
the addition of an input node for the session time.

VI. RESULTS AND DISCUSSION
A. Performance of DL-Based Path Loss Prediction

The predictive capability of the UMa-B with 2600 MHz
along with the measurements conducted is shown in Fig.3. In
this section, we use the datasets collected from the location
Basaksehir. Note that UMa-B shows rather poor performance
in predicting the actual RSRP values based only on the UE
distance. Hence, we demonstrate how our proposed DL-based
calibration can improve over UMa-B.

Let n and m are the percentage of training data and test
data in the experiment, respectively. Table I compares the
performance of the proposed scheme, DL, and UMA-B with
different (n,m) with respect to the error metric of Mean
Square Error (MSE). Note that the MSE of the proposed
scheme is much lower than the traditional simple path loss
model UMa-B. Also it is noticed that the train-test split of
UMa means that MSE is calculated over test portion only.

Next, we consider another important performance metric,
i.e., Mean Absolute Percentage Error (MAPE) and show the
cumulative distribution function of MAPE in Fig. 5a. Note
that approximately 90% of the predictions in test data have
less than 10% MAPE, which demonstrates a very accurate
prediction. Fig. 5b and Fig. 5c¢ demonstrate how MAPE
and MSE changes with respect to the distance of the user
equipment from the closest cell tower. Interestingly, the error
is the highest when the user equipment is approximately 100
and 250 meters away from the closest cell tower. We believe
this anomaly is mainly due to the fact that the user is associated
with a cell tower that may not be closest to the user at these
data points.

B. Performance of DL-Based MOS Prediction

Although there exist several works in the literature that per-
formed signal strength predictions based on machine learning
models trained with real-world measurements, to the best of
our knowledge, there is no other work that has addressed the
prediction of QoE based on the locations of the users. We
employed the method in Section V-B to establish the rela-
tionship between the distance and MAPE of predicted MOS
values. For training, we employed dataset from Basaksehir (in
Istanbul) with 90%-10% train-test ratio. The model outputs
the predicted MOS value. Fig. 6a and 6b depict the change in
MAPE with respect to distance and session time respectively.
MAPE of MOS predictions are predominantly lower than 20%
with respect to the vehicle’s distance to the closest cell tower.
Nevertheless, as was the case for RSRP predictions, MAPE is
the highest when the distance is between 150 and 300 meters.
We believe the reason for this anomaly is as explained before.
In Fig. 6b, we depict how accurate the prediction is for varying
session times. Recall that session time refers to the time into
the playback of the video. MAPE is predominantly less than
10% but it is higher when the session time is between 10 and
20 seconds. We believe this interval is particularly important
for playback, since most of the quality degradation occurs here
due to the inadequate buffering in earlier parts.

C. Transfer Learning

Since provinces and even districts differ vastly from each
other in terms of geographical conditions and cell tower
placement; using only one model for every area would not
be beneficial as the accuracy of the model would decline
significantly in places where the data that is used to train
the model did not come from. This was confirmed when
predictions for another data collection from Kadikoy with the
model trained from Basaksehir yielded a MAPE of 2228%. On
the other hand, training a deep neural network for each area
would require a high amount of time and power. To solve
this challenge, the initial model from Basaksehir was trained
further with the Kadikoy dataset, with the thought that it would
be quicker than training it from the very beginning. To test the
speed of training and the accuracy of this transferred model,
another model is trained only with the Kadikoy dataset. The
transferred model automatically stopped training at the 427¢
epoch, whereas the model that is trained from the beginning
took 178 epochs. The predictions with the transferred model
result in a MAPE of 3.9%, while the other model’s predictions
result in a MAPE of 3.75%. These results demonstrate that
transferring models between different areas has a significant
advantage from the training speed and lower data needs
perspectives, with a nigh-negligible decrease in performance.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a channel model obtained using
Deep Learning (DL) techniques with a simple path loss model
to do the predictions of the path loss and QoE. It considers path
loss modeling techniques offered by state-of-the-art stochastic
models and a ray-tracing model for comparison and evaluation.
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Fig. 5: The prediction performance for path loss. The results are depicted for only test data.
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Fig. 6: MOS prediction performance with MAPE (mean absolute percentage error). The results are depicted for only test data.

The result validates the effectiveness of the deep learning
model in prediction compared with the traditional simple path
loss model UMa-B. As future work, an improved model for
path loss prediction -to use in mobile communication systems-
based on a DL framework utilizing auxiliaries such as satellite
imagery can be explored for augmented QoE prediction.
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