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Abstract. Magnetic particle imaging (MPI) is a recent modality that
enables high contrast and frame-rate imaging of the magnetic nanoparti-
cle (MNP) distribution. Based on a measured system matrix, MPI recon-
struction can be cast as an inverse problem that is commonly solved via
regularized iterative optimization. Yet, hand-crafted regularization terms
can elicit suboptimal performance. Here, we propose a novel MPI recon-
struction “PP-MPI” based on a deep plug-and-play (PP) prior embedded
in a model-based iterative optimization. We propose to pre-train the PP
prior based on a residual dense convolutional neural network (CNN) on
an MPI-friendly dataset derived from magnetic resonance angiograms.
The PP prior is then embedded into an alternating direction method
of multiplier (ADMM) optimizer for reconstruction. A fast implemen-
tation is devised for 3D image reconstruction by fusing the predictions
from 2D priors in separate rectilinear orientations. Our demonstrations
show that PP-MPI outperforms state-of-the-art iterative techniques with
hand-crafted regularizers on both simulated and experimental data. In
particular, PP-MPI achieves on average 3.10 dB higher peak signal-to-
noise ratio than the top-performing baseline under variable noise levels,
and can process 12 frames/sec to permit real-time 3D imaging.

Keywords: Magnetic particle imaging · Reconstruction · Plug and
play · Deep learning

1 Introduction

Magnetic Particle Imaging (MPI) is a recent imaging modality that allows high
contrast imaging of magnetic nanoparticles (MNP) with high frame rate. Impor-
tant applications include cancer imaging, stem cell tracking, angiography and
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targeted drug delivery [14,15,17]. In MPI, a field free region (FFR) is gener-
ated to later measure a signal that reflects the total MNP concentration within
the targeted region. Since the signal response is influenced by properties of the
imaging system and MNP characteristics, a common procedure is to measure a
system matrix (SM) that characterizes the forward signal model. Image forma-
tion from measured MPI signals can then be cast as an inverse problem based
on the SM. As the inverse problem is ill-posed, reconstructions characteristically
embody regularization terms that reflect prior information on the characteristics
of MNP distribution.

A common reconstruction method is based on �2-norm regularization during
algebraic reconstruction technique (ART) optimization [10]. Compressed sens-
ing methods were also proposed for image regularization via �1-norm and/or
total variation (TV) terms during an alternating direction method of multipliers
(ADMM) optimization [8]. While prominent results have been reported, hand-
crafted regularization terms can induce well-known blurring, or blocking arti-
facts in the reconstructed image. As an alternative, several recent studies have
proposed purely learning-based approaches. A deep image prior (DIP) method
has been considered in [5] that performs reconstruction based on an untrained
network via inference optimization, which may limit real-time applicability. End-
to-end methods trained to map MPI signals to images have also been introduced
[3,7,12]. Yet, end-to-end methods require retraining under changes to the SM,
and their success relies on training datasets that match the characteristics of
MPI images. Given the absence of a dedicated database of MPI images, previous
studies have primarily used training sets containing simulated vessel phantoms
or numerical digit images [4]. This may restrict generalization performance for
experimental data and 3D imaging scenarios.

Here, we introduce a novel deep plug-and-play (PP) image prior for model-
based MPI reconstruction. Inspired by the success of task-agnostic PP priors
in medical imaging [1,13], we propose to train a denoising PP prior for MPI
based on a training set derived from time-of-flight cerebral magnetic resonance
angiograms (MRA) to closely mimic the vascular structures targeted in MPI
scans. We build the prior on a residual dense convolutional neural network (CNN)
[16]. During inference, we embed trained prior into a model-based ADMM opti-
mization that includes measured SM. The PP prior enhances the quality of recon-
structed images while ADMM offers a fast implementation suitable for real-time
imaging. To utilize 2D dataset in 3D reconstruction and improve computational
efficiency, we propose to fuse the predictions from denoised cross-sections of sep-
arate rectilinear orientations. Our main contributions are: (1) We introduce the
first PP method for MPI reconstruction, (2) We propose an efficient algorithm
based on ADMM and fused 2D priors for 3D reconstruction, (3) We validate the
proposed method on simulated and experimental datasets [11].



PP-MPI: A Deep Plug-and-Play Prior for MPI Reconstruction 107

2 Background

2.1 MPI Signal Model

During an MPI scan, drive field oscillations occurring at a fundamental fre-
quency excite the MNPs, while a spatially encoded selection field creates an
FFR. MNPs in FFR respond to the drive field, and responses are recorded as
voltage waveforms induced on a receive coil. The MNP response is apparent in
frequency bands centered on the harmonics of the fundamental frequency. The
received signal can be compressed by filtering out low intensity bands in the
frequency domain. The filtered signal is complex valued, and commonly repre-
sented by concatenating real and imaginary parts of the signal in separate rows
of the measurement vector. The forward imaging model is:

Ax+ n = r, (1)

where A ∈ R
M×N is the SM (M denotes twice the number of frequency compo-

nents and N is the number of points on the imaging grid), x ∈ R
N is the under-

lying MNP distribution, n ∈ R
M is the measurement noise, and r ∈ R

M denotes
the measured MNP responses. Given the SM A, the forward model expressed in
Eq. (1) can be inverted to estimate the MPI image x given the measurement r.
However, non-idealities regarding the imaging system and MNP characteristics
prohibit accurate analytical calculation of the SM. Thus, it is common practice
to experimentally measure A via calibration measurements [6]. Calibration is
performed while a voxel-sized MNP sample is located at each grid point across
the imaging Field of View (FOV), separately for each frequency component.

2.2 MPI Image Reconstruction

MPI reconstruction involves solution of the inverse problem characterized with
the forward model in Eq. (1). Yet, since the problem is ill-conditioned, regular-
ization terms are typically enforced to guide the reconstruction:

argmin
x≥0

∑

i

αifi(x) s.t ‖Ax − r‖2 < ε, (2)

where αi is the regularization weight for the ith regularization function fi(·),
and ε is the upper bound on noise level reflecting measurement and SM errors.
Note that there is a non-negativity constraint on x as MNP distribution cannot
assume negative values. The most common approach to solve the model-based
reconstruction problem in Eq. (2) is via iterative optimization methods. Kluth et
al. proposed the ART method with �2-norm regularization (f1(x) = ||x||22), which
assumes that the underlying MNP distribution is spatially smooth [9]. Ilbey et
al. proposed the ADMM method with mixed �1-norm and TV regularization
(f1(x) = ||x||1 and f2(x) = TV(x)), which assumes that the MNP distribution
is sparse in image and finite-differences domains [8]. Despite their pervasive use,
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Fig. 1. Multi-orientation 2D PP priors to achieve efficient processing of 3D MPI data.
Volumetric data are split into cross-sections across x, y and z−axes. The same denoiser
processes the cross-sections in each orientation. Resultant volumes are averaged across
orientations to produce the denoised 3D data.

Algorithm 1. An ADMM algorithm for PP-MPI
Initialize z

(i)
0 and d

(i)
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d
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(1)
n + z

(1)
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z
(0)
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(0)
n ) � Projection for DF subproblem

d
(0)
n+1 ← d

(0)
n + z

(0)
n+1 − Axn+1 � Lagrange multiplier update for DF subproblem

n ← n + 1
end while

methods that rely on hand-constructed regularizers can yield suboptimal per-
formance when underlying assumptions are not satisfied on experimental data.
Several recent studies have adopted purely learning-based reconstruction meth-
ods. In a DIP approach, an untrained neural network was optimized for recon-
struction at test time based on a data-fidelity objective [5]. Because DIP requires
prolonged inference, it is not ideally suited for real-time MPI. Multi-layer percep-
tron (MLP) architectures were proposed for MPI reconstruction [3,7]. The MLP
model was trained and tested on simulated phantoms, so experimental utility
remains to be demonstrated. A CNN was proposed that was similarly trained
and validated on simulated vessel phantoms and numerical digit images [4,12].
While data-driven priors promise to mitigate the limitations of hand-constructed
regularizers, end-to-end networks capture a prior conditioned on the SM. There-
fore, they have to be retrained for notable changes in the MPI system such as
scan trajectories or MNP properties.
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3 Methods

3.1 Plug-and-Play MPI Reconstruction (PP-MPI)

Here, we propose a novel plug-and-play method, PP-MPI, for reconstruction of
MPI images. To improve reliability against changes in the system properties, PP-
MPI decouples the forward imaging model characterized by the SM from training
of the deep prior for data-driven regularization. As such, a task-agnostic deep
prior is first trained for image denoising on an MPI-friendly dataset. During
inference, the trained prior is then adapted to perform MPI reconstruction by
incorporating the forward imaging model in Eq. (1). For fast inference, we devised
an ADMM-based algorithm comprising two subproblems: a first problem for
data-driven regularization based on the PP prior, and a second problem for
data-fidelity projection based on the SM. Taken together, these design elements
enable PP-MPI to offer reliable and rapid reconstruction of MPI data.

MPI-Friendly Dataset: In many MPI studies, a limited number of simulated
vessel phantoms are used for demonstration of reconstruction methods as vas-
cular imaging is a key application. However, it is difficult to generate a broad
diversity of manually designed phantoms for training deep networks. We instead
propose to generate MPI-like training images from abundant time-of-flight MRA
images in the public “ITKTubeTK - Bullitt - Healthy MR Database” by CASI-
Lab at the University of North Carolina-CH. Data from 95 healthy subjects
are split into non-overlapping training (77 subjects), validation (9) and test (9)
sets. Multiple 3D patches of size 10× 64× 64 are randomly cropped, a thin-slab
maximum-intensity projection is performed across the first dimension, and the
resulting projection is downsampled to 32 × 32 MPI-like images. To avoid of

Fig. 2. 2D reconstructions for simulated vessel phantoms under 40 dB measurement
SNR. Images from competing methods are shown along with reference phantom images
for three separate phantoms (each phantom depicted on a separate row).



110 B. Askin et al.

Table 1. Average PSNR (dB) for reconstructed simulated phantom images with vary-
ing measurement SNRs (20/30/40 dB SNRs).

Method 20 dB SNR 30 dB SNR 40 dB SNR

ART 24.57 26.79 27.87
ADMM (�1) 15.53 18.83 24.48
ADMM (TV) 25.99 27.04 27.64
ADMM (�1&TV) 25.89 27.13 28.26
PP-MPI 29.01 30.49 31.18

empty patches, patches with higher �2-norm of pixel intensities were retained.
Resultant 2D images are normalized to a maximum intensity of 1.

Training the PP Prior: We leverage a Residual Dense Network (RDN) as
backbone architecture for the PP prior given its success in image restoration
tasks in computer vision studies [16]. As MPI images are substantially smaller
than natural images, we devise a specialized RDN architecture with a compact
set of parameters in order to match the characteristics of MPI data. We also
employ rectified linear unit at the output layer to enforce non-negativity of
MPI image intensities. The resulting model is trained for image denoising on
the MPI-friendly dataset. Here, we consider both 2D and 3D reconstruction. For
computational efficiency, we propose to employ 2D priors for both reconstruction
scenarios. Because denoising cross-sections of one rectilinear orientation will offer
suboptimal capture of context along the through-plane dimension, we introduce
a volumetrization strategy for 3D reconstruction. During reconstruction, we first
denoise cross-sections of three orientations using the same 2D prior. Then, we
fuse their predictions via averaging (Fig. 1).

ADMM-Based Inference: The trained PP prior is integrated with the forward
imaging model during inference on actual MPI data. An inference optimization
is performed to find a reconstruction that is consistent with the PP prior and
satisfies data-fidelity (DF) to MPI measurements. For fast inference, an ADMM
based implementation is developed [8], where classical proximal operators in
Eq. (2) for regularization functions are replaced with projections through the
PP prior. The proposed algorithm splits the overall inference optimization into
two easier subproblems as outlined in Algorithm 1, where fPP (·) denotes the
PP prior trained for image denoising, ΨlE(ε,I,b)(·) is the proximal mapping for
indicator function lE(ε,I,b) of being the element of set E(ε, I,b) as described in
[8], and μ indicates the step size of the algorithm. μ and α1 were set to 1. The
maximum number of iterations nmax was selected as a stopping criterion via
cross-validation. Note that large training datasets containing 3D imaging data
may not be broadly available, and inference optimization with a 3D prior might
elevate computational burden. Thus, here, we instead adopted a volumetrization
strategy based on multi-orientation 2D priors.
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Fig. 3. 3D reconstructions of the OpenMPI resolution phantom with PP-MPI are
shown along with the phantom’s CAD model as visual reference. Central cross-sections
along x, y, z axes are shown in separate rows. Arrows indicate notable artifacts.

Fig. 4. 3D reconstructions of the OpenMPI resolution phantom are shown along with
the CAD model of the phantom as visual reference. Central cross-sections along x, y,
z axes are shown in separate rows.

3.2 Analyses

We demonstrated PP-MPI for reconstructing images from a 2D simulated
dataset and a 3D experimental dataset (Open MPI) [11]. First, 2D PP priors
were trained for denoising on the MPI-friendly dataset. Hyperparameters of the
RDN architecture were tuned based on denoising performance on the validation
set. Accordingly, RDN had 3 residual blocks, with 5 convolutional layers and
8 channels each. Original MPI-friendly images were taken as clean references,
and noisy versions were then generated by adding white Gaussian noise with
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a standard deviation of 0.05. The RDN model was then trained to predict the
clean images provided as input noise variants. Model training was performed via
the ADAM optimizer and with �1-loss between predicted and reference images.

Simulated Dataset: Field-free-line (FFL) based SM was simulated for an FOV
of 32 × 32 mm2, imaging grid of 64 × 64. For reconstruction, the SM was then
downsampled to 32 × 32 to avoid inverse crime [2]. MNP saturation, selection
field and drive field were 0.55/μ0, 2.5T/m, 40 mT. The 2nd to 20th harmonics
of the received signal were retained. White Gaussian noise was added to the
measurement vector simulated for a numerical vessel phantom. To improve SNR,
singular value truncation was performed on the SM and the measurement vector
(c = 220 singular values out of N = 1024). Reconstruction performance was
examined visually and via peak signal-to-noise ratio (PSNR).

Open MPI: Field-free point (FFP) data for the resolution phantom measured
on a 3D scanner (Bruker, Ettlingen) with a 3D Lissajous trajectory and Perimag
(Micromod Partikeltechnologie GmbH, Germany) were used. The FOV was 38×
38× 19 mm3, and the grid size was 19× 19× 19. The MNP saturation, selection
field and drive field were 50 mmol/L, −0.5/−0.5/1 T/m, 12 mT. Singular value
truncation was used (c = 2200 singular values out of N = 6859). As no ground
truth image is available, performance was assessed visually against the computer
aided design (CAD) model of the phantom.

Competing Methods: We comparatively demonstrated PP-MPI against meth-
ods that use task-agnostic priors for flexible generalization to changes in system
properties that would be captured by the SM. Accordingly, baselines included
ART with �2-norm regularization [9], and ADMM with �1-norm, TV-norm and
mixed �1&TV norm regularization [8]. Note that we did not consider end-to-end
learning-based methods that require retraining under changes to the SM [3], and
DIP methods that have long inference times that prohibit real-time processing
[5]. All methods were implemented in PyTorch on a Tesla V100 GPU.

4 Results

PP-MPI was first demonstrated for 2D reconstruction of simulated vessel phan-
toms. PSNR metrics from competing methods are listed in Table 1. On average,
PP-MPI outperforms the closest competitor by 3.10 dB PSNR across the test set.
Representative reconstructions are displayed in Fig. 2. ART suffers from smooth-
ing and ADMM variants have relatively poor vessel localization with occasional
block artifacts. In contrast, PP-MPI alleviates reconstruction artifacts and main-
tains sharp vessel localization.

We then demonstrated PP-MPI for 3D reconstruction of experimental data.
In this case, we first compared results from the multi-orientation 2D priors
against 2D priors along singular axes. Representative results are displayed in
Fig. 3. While priors in singular directions can suffer from reconstruction artifacts
in other orientations containing the through-plane axis, PP-MPI with multi-
orientation priors achieves uniformly high quality across all orientations. After-
wards, PP-MPI with multi-orientation priors was compared against competing
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baselines as illustrated in Fig. 4. ART has prominent background artifacts and
vessel smoothing, whereas ADMM variants produce block artifacts particularly
in the vicinity of areas with high MNP concentration. In contrast, PP-MPI
achieves the highest visual quality with sharp vessel depiction and low artifacts.

Lastly, we examined 3D reconstruction times to assess suitability for real-time
imaging. All methods were executed until convergence for fair comparison. ART
with 5 iterations yielded a run time of 1.380 s due to its sequential nature of pro-
cessing. ADMM variants with 200 iterations had run times of 0.076 (�1-norm),
0.633 (TV-norm) and 0.648 (�1-TV-norm). In comparison, PP-MPI achieves run
times of 0.078 (single-orientation 2D priors), 0.082 (multi-orientation 2D priors)
sec. These run times indicate that PP-MPI can be adopted for real-time recon-
struction of a 19× 19× 19 volume at 12 frames/sec. In contrast, a variant based
on 3D priors could only run at 6 frames/sec.

5 Discussion

In this study, we introduced the first PP approach for MPI reconstruction for
improved flexibility in coping with variations in system properties that inevitably
alter the forward imaging model as captured by the system matrix. PP-MPI
leverages a task-agnostic prior trained on an MPI-friendly dataset for denoising.
This deep denoiser is then embedded into a fast model-based reconstruction
implemented via an ADMM algorithm. Demonstrations were performed against
state-of-the-art MPI reconstruction methods based on hand-crafted regularizers.
Quantitative and qualitative improvements were achieved with PP-MPI on both
simulated and experimental data. The performance and computational efficiency
of PP-MPI render it a promising candidate for real-world MPI applications.
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