
DEEP LEARNING BASED CHANNEL
EQUALIZATION FOR MIMO ISI CHANNELS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

electrical and electronics engineering

By

Berke Eren

September 2022

Deep Learning Based Channel Equalization for MIMO ISI Channels
By Berke Eren
September 2022

We certify that we have read this thesis and that in our opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Ayşe Melda Yüksel Turgut

Approved for the Graduate School of Engineering and Science:

Director of
Orhan

the
Arıkan

Graduate School
ii

Tolga Mete Duman (Advisor)

sZan Gezici

ABSTRACT

DEEP LEARNING BASED CHANNEL EQUALIZATION
FOR MIMO ISI CHANNELS

Berke Eren

M.S. in Electrical and Electronics Engineering

Advisor: Tolga Mete Duman

September 2022

Future wireless communications is expected to bring significant changes along

with a number of emerging technologies such as 5G, virtual reality, edge com-

puting, and IoT. These developments pose unprecedented demands in terms of

capacity, coverage, latency, efficiency, flexibility, compatibility, and quality of ex-

perience on wireless communication systems. Machine Learning (ML) techniques

are considered as a promising tool to tackle this challenge due to their ability to

manage big data, powerful nonlinear mapping, and distributed computing capa-

bilities. There have been many research results addressing different aspects of

ML algorithms and their connections to wireless communications; however, there

are still various challenges that need to be addressed. In particular, their use for

communication systems with memory, is not fully investigated. With this motiva-

tion, this thesis considers an application of ML, in particular, deep learning (DL),

techniques for communications over intersymbol interference (ISI) channels.

In this thesis, we propose DL-based channel equalization algorithms for chan-

nels with ISI. We introduce three different DL-based ISI detectors, namely sliding

bidirectional long short term memory (Sli-BiLSTM), sliding multi layer percep-

tron (Sli-MLP), and sliding iterative (Sli-Iterative), and demonstrate that they

are computationally efficient and capable of performing equalization under a va-

riety of channel conditions with the knowledge of the channel state information.

We also employ sliding bidirectional gated recurrent unit (Sli-BiGRU) and Sli-

MLP, which are more suitable for use with fixed ISI channels. As an extension,

we also examine DL-based equalization techniques for multiple-input multiple-

output (MIMO) ISI channels. Numerical results show that proposed models are

well suited for equalization of ISI channels with perfect as well as noisy CSI for

a broad range of signal-to-noise ratio (SNR) levels as long as the ISI length is

not excessive. It is also shown that the proposed DL-based ISI detectors perform

iii

iv

very close to the optimal solution, namely, the maximum likelihood sequence es-

timation, implemented through the Viterbi Algorithm while having considerably

less complexity, and they have superior performance compared to MMSE-based

channel equalization.

Keywords: Deep learning, neural networks, intersymbol interference, MIMO de-

tection, equalization, wireless communications.

ÖZET

ÇOKLU GİRİŞ ÇOKLU ÇIKIŞ SİSTEMLERDE
SEMBOLLER ARASI GİRİŞİM KANALLARI İÇİN
DERİN ÖĞRENME TABANLI KANAL EŞİTLEME

Berke Eren

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Mete Duman

Eylül 2022

Geleceğin kablosuz iletişiminin; 5G, sanal gerçeklik, uç hesaplama, nesnelerin

interneti gibi bir dizi yeni teknolojiyle birlikte önemli değişiklikler getirmesi bek-

leniyor. Bu gelişmeler, kablosuz iletişim ve sistemlerde kapasite, kapsama alanı,

gecikme, verimlilik, esneklik, uyumluluk, deneyim kalitesi açısından gittikçe ar-

tan talepler doğurmaktadır. Makine öğrenimi (ML) teknikleri; büyük verileri

yönetme, doğrusal olmayan eşlem ve dağıtılmış bilgi işlem yeteneği nedeniyle bu

zorluğun üstesinden gelmek için çok umut verici bir araç olarak kabul ediliyor.

Makine öğrenimi algoritmalarının farklı yönlerini ve bunların kablosuz iletişimle

olan bağlantılarını ele alan birçok araştırma bulunsa da hala ele alınması gereken

çeşitli problemler vardır. Özellikle hafızalı iletişim sistemleri için kullanımları tam

olarak araştırılmamıştır. Bu motivasyonla, bu tez özellikle semboller arası girişim

(ISI) kanalları için derin öğrenme methodlarını ele almaktadır ve bu çözümleri

çoklu giriş çoklu çıkış sistemleri (MIMO) için de genişletmektedir.

Bu tezde, ISI kanalları için derin öğrenme (DL) tabanlı kanal eşitleme algorit-

maları öneriyoruz. Biz üç farklı derin öğrenme tabanlı ISI dedektör modellerini

(Sli-BiLSTM, Sli-MLP, Sli-Iterative) tanıtıyoruz ve bunların hesaplama açısından

daha verimli olduklarını ve temel kanal modelini bilerek çeşitli kanal koşulları

altında algılama gerçekleştirebileceklerini gösteriyoruz. Ayrıca sabit ISI kanalları

ile kullanımı daha uygun olan Sli-BiGRU ve Sli-MLP modellerini kullanıyoruz.

Buna ek olarak, MIMO ISI kanalları için de DL tabanlı eşitleme tekniklerini de

inceliyoruz. Sayısal sonuçlar, önerilen modellerin, ISI uzunluğu aşırı olmadığı

sürece, tam veya hatalı kanal bilgisiyle (CSI) ve geniş bir sinyal-gürültü oranı

(SNR) seviyelerinde ISI kanallarının eşitlemesi için oldukça uygun olduğunu

göstermektedir. Ayrıca önerilen derin öğrenme tabanlı ISI dedektörlerinin,

v

vi

Viterbi algoritması ile uygulanan maksimum olabilirlik dizisi tespiti (MLSE) olan

optimal çözüme çok daha az karmaşıklığa sahip olurken oldukça yakın performans

gösterdiği ve MMSE-tabanlı kanal eşitleme yöntemine göre üstün performansa

sahip olduğu gösterilmiştir.

Anahtar sözcükler : Derin öğrenme, sinir ağları, semboller arası girişim, çoklu giriş

çoklu çıkış, kanal denkleme, kablosuz haberleşme.

Acknowledgement

Prior to anything else, I would like to convey my profound gratitude to my advisor

Prof. Tolga M. Duman for his tireless assistance, vast knowledge, inspiration, and

patience throughout my M.S. studies. He helped and inspired my research with

enlightening conversations and suggestions, and I would like to thank him for

that. Without his valuable support, I would not have been able to conduct this

research, thus I consider it a great privilege to have worked with him for three

years.

This work was supported by Türk Telekom through BTK 5G and Beyond

graduate research fellowship program, and I gratefully acknowledge this support.

I would also want to express my sincere gratitude for the financial assistance

provided by the 2210-A program of The Scientific and Technological Research

Council of Turkey (TÜBİTAK).

I would like to thank all the members of the Bilkent Communication Theory

and Application Research (CTAR) Lab, Mohammad Kazemi, Javad Haghighat,

Mert Özateş, Ozan Aygün, Sadra Charandabi, Büşra Tegin, Muhammad Atif Ali,

and Mohammad Javad Ahmadi.

I would like to thank my friends Eren Kurkut, Evren Bayram, Gökalp Şerbetçi,

Cenk Cidecio, Ege Köknaroğlu, Kaan Özkara, and Yılmaz Korkmaz for both their

ideas and support.

Last but not least, I would like to thank my beloved family for their invaluable

support and encouragement.

vii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Outline . 3

2 Preliminaries and Literature Review 5

2.1 Machine Learning and Wireless Communications 6

2.2 Neural Network Models For Deep Learning 8

2.2.1 Multilayer Perceptron . 8

2.2.2 Convolutional Neural Networks 11

2.2.3 Autoencoders . 12

2.2.4 Recurrent Neural Networks 13

2.3 Deep Learning for ISI Channels 17

2.3.1 Sequence Detectors for ISI Channels 20

2.4 Deep Learning for MIMO Communications 23

viii

CONTENTS ix

2.5 Deep Learning for End-to-End Communications 26

2.6 Other Applications . 27

2.7 Chapter Summary . 28

3 Deep Learning Based Channel Equalization for SISO ISI Chan-

nels 30

3.1 System Model . 31

3.1.1 Fixed vs. Varying Channel Models 33

3.1.2 Perfect vs. Noisy CSI . 34

3.2 Proposed Deep Learning Based Detectors for Varying Channels . 35

3.2.1 Sliding Bi-LSTM ISI Detector 35

3.2.2 Sliding MLP ISI Detector 41

3.2.3 Sliding Iterative ISI Detector 42

3.3 Proposed Deep Learning Based Detectors for Fixed Channels . . . 48

3.4 Numerical Experiments . 49

3.4.1 MMSE and Viterbi Algorithm Results 49

3.4.2 Complexity Analysis of Proposed Detectors 51

3.4.3 Simulation Results . 52

3.5 Chapter Summary . 59

CONTENTS x

4 Deep Learning Based Channel Equalization for MIMO ISI Chan-

nels 60

4.1 System Model . 61

4.2 Proposed Deep Learning Based Models 63

4.2.1 Sliding Bi-LSTM Equalizer MIMO ISI Channels 63

4.2.2 Sliding MLP Equalizer MIMO ISI Channels 65

4.2.3 Sliding Iterative Equalizer MIMO ISI Channels 65

4.3 Simulation Results . 65

4.4 Chapter Summary . 69

5 Conclusions and Future Work 71

List of Figures

2.1 Perceptron. 9

2.2 An example of an MLP network 11

2.3 Diagram of a simple autoencoder. 12

2.4 Diagram of an RNN. 13

2.5 The repeating module in a standard RNN. 14

2.6 Structure of an RNN cell. 14

2.7 The repeating module in an LSTM. 16

2.8 Structure of LSTM cell. 16

2.9 Model of a Bi-LSTM network. 17

2.10 The sliding BRNN detector. 18

2.11 The network architecture for proposed PR-NN. 19

2.12 ViterbiNet receiver with joint symbol detection and channel de-

coding. 19

2.13 The system architecture of CNN equalizer. 20

xi

LIST OF FIGURES xii

2.14 Symbol-by-Symbol Detector. 21

2.15 RNN architecture for detection. 22

2.16 A flowchart representing a single layer of DetNet. 24

2.17 A communication system over an AWGN channel is represented as

an autoencoder. The input s is encoded as a one-hot vector, and

the output is a probability distribution over all possible messages,

the most likely of which is chosen as the output ŝ. 26

2.18 Training architecture for conditional variational-GAN based learn-

ing of stochastic channel approximation function. 27

3.1 System model. 31

3.2 The network architecture of Sliding Bi-LSTM ISI detector. 37

3.3 The neural network design to find corresponding window weights. 39

3.4 Training dataset. 41

3.5 The network architecture of Sliding MLP ISI detector. 42

3.6 The network architecture of Iterative Detector. 44

3.7 Sliding estimates. 48

3.8 The network architecture of Sliding Bi-GRU ISI detector for fixed

channels. 49

3.9 BER results of the Sli-BiLSTM model for the varying channels,

L = 3, and different window lengths. 54

LIST OF FIGURES xiii

3.10 BER results of the Sli-BiLSTM and Sli-MLP model for the varying

channels, L = 3, N = 10, and the weighted or direct averages are

used. 55

3.11 Learned window weights ŵ
(j)
k . 55

3.12 BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative model

for the varying channels, L = 5 and N = 10. 56

3.13 BER results of the Sli-BiLSTM model for the varying channels

L = 3, N = 10, and different channel state information error levels. 57

3.14 BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative model

for the varying channels, L = 5, N = 10, and λ = 0.4. 57

3.15 BER results of the Sli-BiGRU and Sli-MLP model for a fixed chan-

nel with L = 7. 58

4.1 The network architecture of Sliding Bi-LSTM MIMO ISI detector. 64

4.2 The Sliding Bi-LSTM Detector for N=3 and nR=2. 64

4.3 BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative detec-

tors for MIMO ISI, varying channels, L = 2 and nR=nT=2. 67

4.4 BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative detec-

tors for MIMO ISI, varying channels, L = 3 and nR=nT=2. 67

4.5 BER results of the Sli-BiLSTM,Sli-MLP and Sli-Iterative detectors

for MIMO ISI, varying channels, L = 3, nR=nT=2 and λ = 0.4. . 68

4.6 BER results of the Sli-BiGRU and Sli-MLP detectors for a fixed

channel MIMO ISI channel, L = 3, and nR=nT=2. 69

List of Tables

3.1 Hyperparameter search for Sli-BiLSTM Model 40

3.2 Hyperparameter search for Sli-MLP Model 43

3.3 Hyperparameter search for Sli-Iterative Model 46

3.4 Detection complexity comparison 52

3.5 Test set parameters . 53

4.1 The test set parameters for MIMO setup 66

xiv

List of Acronyms

AE Autoencoder

ANN Artificial neural network

AWGN Additive white Gaussian noise

BER Bit error rate

Bi-GRU Bidirectional gated recurrent unit

Bi-LSTM Bidirectional long-short-term memory networks

BRNN Bidirectional recurrent neural network

CNN Convolutional neural network

CSI Channel state information

DL Deep learning

ISI Intersymbol interference

MIMO Multiple-input multiple-output

ML Machine learning

MLP Multilayer perceptron

MLSE Maximum likelihood sequence estimation

MMSE Minimum mean square error

xv

LIST OF TABLES xvi

NN Neural network

ReLU Rectified linear unit

RNN Recurrent neural network

SISO Single-input single-output

SNR Signal-to-noise ratio

Chapter 1

Introduction

1.1 Overview

Future wireless communications is anticipated to bring about major changes along

with several developing technologies including 5G, virtual reality, edge comput-

ing, and internet of things (IoT). These innovations place unheard of demands

on capacity, coverage, latency, efficiency (in terms of power, frequency spectrum,

and other resources), flexibility, compatibility, quality of experience, and silicon

convergence of wireless communication systems. Due to their capacity to handle

large amounts of data, strong nonlinear mapping, and distribution processing ca-

pabilities, machine learning (ML) techniques are viewed as promising solutions to

meet this challenge. One of the advantages of deep learning (DL)-based methods

is that once the model is trained, the classification (or, regression) task can be

completed in one shot without the need for additional iterations, incurring only

minimal latency. Modern iterative receivers in wireless communication networks,

on the other hand, might lengthen the latency, which makes them impractical in

some applications such as ultra-reliable low latency communications (URLLC)

[1].

Recently, DL-based symbol detectors have attracted significant interest due

1

to their relatively low-complexity algorithms compared to traditional and model-

based ones. Most signal processing algorithms for communication systems have

a solid foundation in statistics and information theory, and many are generally

demonstrably optimal for traceable mathematical models. Although real systems

have a lot of imperfections and non-linearities, simplified models usually have

linear, stationary, and Gaussian statistics. DL-based communication systems do

not need a mathematically traceable model and can provide better optimiza-

tion over practical scenarios. Since NNs are universal function approximators

[2], functional operations in different blocks of a communication system (e.g.,

source/channel coding, modulation, channel estimation, detection, equalization)

can be processed using DL-based models. While DL-based models are suitable for

optimizing these blocks individually or jointly, traditional designs require com-

putationally complex operations for joint optimization.

Channel detection algorithms, which infer the transmitted symbols from a

noisy and distorted version of the transmitted signals observed at the receiver are

one of the crucial components in the reliable recovery of data transmitted over a

communication channel. One of the common problems in wireless communication

is to detect the transmitted symbols received through channels that experience

inter-symbol interference (ISI) caused by multipath signal propagation. Some

of the traditional detectors and decoders require likelihoods and channel state

information (CSI) as side information, they may fail to achieve the required per-

formance when these are missing. ML algorithms, however, directly learn the

channel detectors or decoders from training data and are shown to be robust

to lack of likelihoods or CSI [3]. Another advantage of DL-based algorithms is

that the adaptive signal processing capabilities of these algorithms allow them

to function in time-varying wireless communication environments. Although the

maximum likelihood (ML) detector is optimal in these situations, it involves an

exhaustive search. Suboptimal detection algorithms are being implemented with

great interest to reduce the computational complexity of typical maximum like-

lihood detectors because they offer a more flexible accuracy versus complexity

trade-off. DL-based models are suitable for use as some of the suboptimal detec-

tion algorithms.

2

Channel equalization is the primary method used in wireless communications

to combat the effect of ISI. There have been various channel equalization tech-

niques suggested and implemented that can be used to address the ISI. Channel

equalization approaches can be divided into two categories: linear and nonlinear

equalization techniques. The most frequently used equalizers within the family of

linear equalizers are zero-forcing (ZF) and minimum mean-square error (MMSE)

equalizers. Nonlinear equalizers are used whenever channel distortion cannot be

resolved using linear equalizers, for instance, for channels with deep spectral nulls.

Nonlinear equalizers typically perform better but suffer from higher complexity.

The decision feedback equalizer (DFE), the maximum likelihood symbol detec-

tion (MLSD) based equalizer, and the maximum likelihood sequence estimation

(MLSE) based equalizer are the three most common nonlinear approaches devel-

oped [4], [5]. The MLSE equalizer is optimal in terms of minimizing the sequence

error but the complexity of the equalizer grows exponentially with the number of

channel taps.

The subject of this thesis, the DL-based solutions as channel equalizers, have

been recommended to reduce the computational cost of traditional equalizers.

Recurrent neural networks (RNNs), multilayer perceptron (MLP), and neural

network-based iterative detectors are proposed as DL techniques for channel

equalization for different set-ups. In this thesis, we introduce new DL-based

ISI equalizers and demonstrate that they are computationally efficient and ca-

pable of performing equalization under a variety of channel conditions with the

knowledge of the underlying channel taps.

1.2 Thesis Outline

The thesis is organized into five chapters.

In Chapter 2, we provide an overview of the fundamental basis and current

state of machine learning techniques with potential wireless communications ap-

plications, with a focus on ISI channels and MIMO communications.

3

In Chapter 3, we first investigate an uncoded digital communication system

over discrete-time dispersive channels with ISI and additive white Gaussian noise

(AWGN). We offer models for both fixed and time-varying ISI channels. We

formulate the channel equalization for ISI channels as a supervised regression

problem within a machine learning framework. We outline the design of three DL-

based models for channel equalization: Sli-BiLSTM, Sli-MLP, and Sli-Iterative.

In addition to these, we present the Sli-GRU and Sli-MLP networks for the fixed

ISI channels. In order to evaluate the robustness of the proposed detection algo-

rithms, we also consider the case of imperfect CSI. Based on the idea that each

window weight in the final estimation process should have a different weight, we

introduce an NN-based window weight network, and the performance of weighted

average and direct average based solutions are compared. In the last part of the

chapter, extensive numerical results based on the proposed models are compared

with the MMSE and Viterbi Algorithm based solutions for channel equalization.

In Chapter 4, we investigate ISI channels for MIMO communication systems,

and extend the proposed models to the case of MIMO communications. The

bit error rate results of the proposed DL-based models are compared with the

results of the Viterbi and MMSE algorithms, and it is found that the proposed

models produce close results with the Viterbi Algorithm while they have superior

performance compared to the MMSE equalizer.

Finally, in Chapter 5, we summarize our conclusions and offer suggestions for

further research.

4

Chapter 2

Preliminaries and Literature

Review

In this chapter, we provide the necessary preliminaries and a literature review.

We provide an overview of the applications of machine learning (ML) approaches

in wireless communications. We then present an overview of basic neural network

(NN) models for deep learning as different NN models are employed in the thesis.

Deep learning (DL)-based solutions for intersymbol interference (ISI) channel

and multiple input multiple output (MIMO) communications are investigated

separately, as they form the basis of Chapters 3 and 4. We also review DL for

end-to-end communications and other applications.

The chapter is organized as follows. In Section 2.1, ML algorithms and their

connections to wireless communications are explained. Section 2.2 presents NN

models for DL. Section 2.3 reviews DL applications for ISI channels. Section 2.4

reviews DL for MIMO communications, especially DetNet is examined in some

detail. Section 2.5 reviews DL for end-to-to communications, mostly autoencoder-

based solutions. Section 2.5 investigates other DL applications such as channel

coding and decoding and modulation classification. The chapter is concluded

with a summary in Section 2.7.

5

2.1 Machine Learning and Wireless Communi-

cations

Machine learning algorithms may be categorized in two different ways. We briefly

review these categorizations and express their connections to wireless communica-

tions problems. The first approach is to categorize machine learning algorithms

into classification and regression problems. Classifiers are networks that map

each input to a proper class, i.e., a classifier has a finite number of possible out-

puts. In wireless communications, classifiers may be applied to design detectors

[6], demodulators, or decoders [7], [8], [9] where the task is to map the received

signal into one of the constellation points or one of the codewords. This ap-

proach is useful when a sufficiently accurate mathematical model for the system

does not exist, and therefore, calculation of likelihoods or channel state informa-

tion estimation is not possible. Since traditional detectors and decoders require

likelihoods and CSI as side information, they may fail to achieve the required

performance in such scenarios. DL algorithms, however, directly learn detectors

or decoders from training data and are shown to be robust to lack of likelihoods

and CSI. Unlike classification, in regression, the network outputs a continuous

value. Regression may be applied in applications such as user localization [10].

In all the aforementioned cases, a machine learning model is trained to minimize

a loss function, e.g., mean squared error or cross-entropy. One favorite feature of

machine learning-based methods is that as soon as the model is trained, the clas-

sification (or regression) task may be performed at one shot without any further

iterations and hence with negligible delay. This is in contrast to the state-of-the-

art iterative receivers in wireless networks which potentially increase the delay.

The second approach to categorize machine learning algorithms is to view them

as supervised, unsupervised, and reinforcement learning algorithms. Supervised

learning refers to learning methods where data is labeled; such as detection prob-

lems where the dataset specifies the corresponding transmitted signal for each

received signal. Unsupervised learning refers to learning methods where data is

6

not labeled. Unsupervised learning is very powerful in feature extraction, cluster-

ing, and dimensionality reduction and has many potential applications in wireless

communications. For example, it is known that data transmitted by users in a

wireless network are correlated, and if these correlations are properly extracted, it

may be possible to optimize different performance metrics [11]. However, for large

heterogeneous networks, it is hard, if not impossible, to mathematically model

such correlations. Since deep neural networks are known to be exceptionally

good in automatic feature extraction [12], they can be applied for such purposes.

Automatic modulation classification is another well-known application of unsu-

pervised learning [13], [14] since it is a clustering problem. Data compression is

another possible application of unsupervised learning since data compression can

be viewed as a dimensionality reduction problem.

Autoencoders are the most common approach to unsupervised learning in DL.

Deep NNs require labeled data for training purposes; however, labels are not

provided in unsupervised learning. To overcome this problem, the autoencoder is

trained to learn the data itself; i.e., it assumes that each data is labeled by itself.

When fully trained, the autoencoder’s output is a close estimate of its input

(ideally it is the same as the input). In addition, the autoencoder is designed

in a way that the number of neurons gradually decreases from the first to the

middle layer and reaches its minimum in the middle layer, then gradually increases

from the middle to the last layer. The genius behind this idea is that if the

autoencoder succeeds to reconstruct the input data at the output with sufficient

accuracy, then the compact middle layer contains a compressed version of data

[15]. Autoencoders are successfully applied to several compression problems in

wireless communications; e.g., to compress the CSI at the receiver and feed it

back to the transmitter in massive MIMO systems [16].

The structure of an autoencoder has also inspired researchers to explore a more

ambitious goal, named end-to-end communications [6],[17], [18], [19], [20]. The

ultimate goal of communications is to reconstruct a transmitted message at some

other point, known as the receiver, with sufficient accuracy. Researchers made

an interesting observation that the first part of an autoencoder, from the first to

7

the middle layer, may be viewed as a transmitter that integrates all the transmis-

sion tasks, including compression, coding, modulation, etc., and jointly optimizes

them as a neural network. Furthermore, the second part of the autoencoder may

be viewed as a receiver that is optimized jointly with the transmitter. However,

we must note that the effect of the communication channel has to be modeled

as an additional stochastic layer, and then the network could be optimized via

training for end-to-end communication purposes.

In addition to supervised and unsupervised learning, reinforcement learning

is also receiving increasing attention in wireless communications. Reinforcement

learning is a learning approach where the neural network is trained via interac-

tions of an agent with an environment [21]. At each time, the agent that is in

a specific state takes an action from a possible set of actions. The environment

responds by rewarding the agent and taking the agent from its current state

to another state. Through training, the agent learns what sets of actions will

maximize its cumulative reward. Reinforcement learning is applicable to wireless

communications problems such as resource allocation [22], where the users act as

agents and are trained to optimize some specific metrics. For example, in power

control problems, the user may learn how to pick proper transmit powers at each

time to maximize the signal to interference plus noise ratio.

2.2 Neural Network Models For Deep Learning

2.2.1 Multilayer Perceptron

Perceptron is the basic unit of a single-layer artificial neural network. It consists

of a single artificial nerve cell that can be trained. It is a supervised learning

algorithm. A perceptron consists of four parts: input values, weights and biases,

weighted sum, and activation function. Given input and output values, the neural

network is expected to learn their relation. The mathematical expression of the

perceptron, which is the smallest learning unit of artificial neural networks, is as

8

.

.

.

x0

x1

x2

xn

w0=b

w1

w2

wn

=1

Σ f(.) output

Activation function

Figure 2.1: Perceptron.

follows:

output = f

(
n∑

i=0

wixi

)
= f(w · x), (2.1)

wherew is a vector of real-valued weights, n is the number of features of the input,

w·x is the dot product, and w0 is the bias. Fig. 2.1 shows the basic architecture of

the perceptron. In order to make an accurate classification using the perceptron

model, a threshold value is required. The activation function labels above this

threshold value as a class and below it as another class. Perceptron usually allows

data to be split into two parts, hence it is also called a linear binary classifier.

The purpose of the perceptron learning algorithm is to create a decision bound-

ary (line) that can correctly classify positive inputs and negative inputs. The aim

is to learn weights and bias parameters, which provide the best classification.

We first define the variables to be used in the perceptron learning algorithm:

• y = f(x) denotes the perceptron output when input is vector x.

9

• D = {(x1, d1), . . . , (xs, ds)} is training set containing s elements, where xj

is the n-dimensional input vector and dj is the desired output value (label)

for that input.

• xj,i is the value of the ith feature of the jth training input vector, with

xj,0=1 for bias.

• wi(t) is the ith value in the weight vector at time t, with w0(t) being the

bias constant.

• r is the learning rate of the perceptron. The learning rate is a tuning

variable in an optimization process that determines the step size at each

iteration while moving toward the minimum of a loss function.

Algorithm 1: Perceptron learning algorithm

1 Initialize the weights.

2 Perform the following steps over each data input:

(I) Calculate the actual output:

yj(t) = f(w(t) · xj)

= f(w0(t)xj,0 + w1(t)xj,1 + w2(t)xj,2 + · · ·+ wn(t)xj,n)

(II) Update the weights:

wi(t+ 1) = wi(t) + r.(dj − yj(t))xj,i, 0 ≤ i ≤ n

3 The second step should be repeated until the user-specified error

threshold is reached or until a predetermined number of iterations have

been completed.

error =
1

s

s∑
j=1

|dj − yj(t)|

The multilayer perceptron (MLP) is the most well-known and widely used

neural network model. MLP is a feedforward neural network, consisting of three

types of layers, namely, the input layer, the output layer, and the hidden layer,

as shown in Fig. 2.2. The input layer receives the input signal to be processed.

10

The hidden layers, located between the input and output layers, are the actual

computational engine of the MLP. The neurons in the MLP are trained using

the backpropagation learning algorithm. Backpropagation helps in adjusting the

weights of the neurons to get an output that is closer to the expected one. MLPs

are designed to approximate any continuous function and can also solve prob-

lems that are not linearly separable. The main use cases of MLP are pattern

classification, recognition, prediction, and approximation.

.

.

.

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

Figure 2.2: An example of an MLP network

2.2.2 Convolutional Neural Networks

Convolutional neural networks are neural networks that use convolution instead

of general matrix multiplication in at least one of their layers. Convolutional

neural networks are often used to analyze visual information, with common usage

areas such as image and video recognition, suggestive systems image classification,

medical image analysis, and natural language processing.

11

2.2.3 Autoencoders

An autoencoder is a type of artificial neural network used for unsupervised learn-

ing. The purpose of the autoencoder is to learn a symbolic vector that represents

the data. In its general architecture, it includes encoder and decoder modules.

While the encoder module creates a representative vector that assimilates the

data, the decoder module creates new data again using this representative vector.

The problem is to learn the functions A : Rn → Rp (encoder) and B : Rp → Rn

(decoder) that satisfy

ŝ = argminA,BE[F (x,B ◦ A(x))] (2.2)

where E is the expectation over the distribution of x, and F is the reconstruction

loss function, which measures the distance between the output of the decoder and

the input. Fig. 2.3 illustrates diagram of an autoencoder model.

x x’h

ENCODER

DECODER

In
p

u
t

La
ye

r

O
u

tp
u

t
La

ye
r

Code

Figure 2.3: Diagram of a simple autoencoder.

12

2.2.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of artificial neural networks in

which the connections among the nodes form a directed loop. This allows the

RNN to exhibit dynamic temporal behavior. Unlike the feedforward neural net-

works, RNNs can use their input memory to process arbitrary sequences of inputs.

Fig. 2.4 shows a diagram of an RNN. The main purpose of recurrent neural net-

works is to process sequential information. RNNs repeat the same task for each

element of a sequence, however, the output depends on the previous computa-

tions. Another way to think of RNNs is that they contain “memory” that collects

information about what has been calculated so far.

xt

ht

x0 x1 x2

Rolled RNN Unrolled RNN

Input layer

Hidden layers

Output layer

Time

xt…

h0

A A A A A

h1 h2 ht

Figure 2.4: Diagram of an RNN.

All RNNs have the form of a chain of repeating neural network modules. In

standard RNNs, this repeating module has a very simple structure, such as a

single “tanh” layer.

13

tanh

xt-1

ht-1

tanh

xt

ht

A tanh

xt+1

ht+1

A

Figure 2.5: The repeating module in a standard RNN.

Fig 2.5 shows the repeating module in a standard RNN. First, x0 is taken from

the input sequence, which results in h0 as the output. Then, h0 and x1 are given

as the input for the next step, and so on.

tanh

xt

xht-1

+
x

ht
Whhht-1

Wxhxt

x

yt

Whyht

Figure 2.6: Structure of an RNN cell.

The mathematical operations inside an RNN cell are shown in Fig. 2.6, where

Whh contains the weights of the previous hidden state, Wxh contains the weights

of the input, Why denotes the output weights of the current state, h is the single

hidden vector, x is the input sequence, y is the output sequence, tanh is the

activation function implementing a non-linearity that limits the activations to

the range [−1, 1]. The output becomes

14

ht = tanh(Whhht−1 +Wxhxt), (2.3)

yt = Whyht. (2.4)

LSTM networks are a modified version of recurrent neural networks that make

it easier to remember past data. They were introduced to avoid the problem

of long-term dependence. LSTM is well suited for classification, processing, and

prediction of time series with an unknown duration such as speech recognition

[23], natural language processing [24], image captioning [25], machine translation

[26], and time series prediction [27]. Fig. 2.7 shows the repeating module in an

LSTM and Fig. 2.8 illustrates the mathematical operations inside the LSTM cell,

which includes four neural network layers (dark blue boxes). The notation is as

follows:

• ht, Ct: hidden layer vectors.

• xt: input vector.

• bf ,bi,bC,bo: bias vector.

• Wf ,Wi,Wc,Wo: weight matrices.

• ⊙: element-wise matrix multiplication.

• [a, b]: the concatenation operation.

• σ, tanh: activation functions.

In an LSTM cell, three gates are present:

i) Forget gate discovers what details are to be discarded from the block. The

sigmoid function decides which values to forget. Its input-output relation

can be written as:

15

x +

x

tanh

σ
σ σ

x

tanh

x +

x

tanh

σ

xt-1

σ σ

x

tanh

x +

x

tanh

σ
σ σ

x

tanh

xt xt+1

ht-1
ht

A A

Input Gate Output Gate

Forget Gate

ht+1

Figure 2.7: The repeating module in an LSTM.

ft = σ(Wf · [ht−1,xt] + bf), (2.5)

x +

x

tanh

σ
σ σ

x

tanh

xt

ht-1

Ct-1

ft it

ht

ot

ht

Ct

C̃t

Figure 2.8: Structure of LSTM cell.

ii) Input gate determines which value from the input to use to modify the mem-

ory. The sigmoid function decides which values are passed, and tanh function

gives weights to the values and decides their importance in the range from

−1 to 1, as follows.

it = σ(Wi · [ht−1,xt] + bi), (2.6)

C̃t = tanh(WC · [ht−1,xt] + bC). (2.7)

16

iii) Output gate filters the cell state as:

Ct = ft ⊙Ct1 + it ⊙ C̃t, (2.8)

ot = σ(Wo · [ht−1,xt] + bo), (2.9)

ht = ot ⊙ tanh(Ct). (2.10)

Bidirectional Bi-LSTM networks are based on the idea that the outputs at

time t may depend on future elements as well as the previous ones. For example,

one would want to look at both left and the right content to guess a missing word

in a string. Bidirectional LSTMs can be regarded as two LSTMs stacked on top

of each other. The outputs are then calculated based on the latent state of both

LSTMs. The Bi-LSTM structure is shown in Fig. 2.9.

LSTM

LSTM

LSTM

LSTM

…

…

…

…

LSTM

LSTM

xt+1

yt+1

xt

yt+1

xt+T

yt+T

h0 hT

hT
’ h0

’

Forward layer

Backward layer

Figure 2.9: Model of a Bi-LSTM network.

2.3 Deep Learning for ISI Channels

In principle, an RNN can map past inputs to each output via a feedback link. This

feature can be used for symbol detection over channels inter-symbol interference.

17

The authors in [3] succeed in detecting the symbols using only the received signal

vector over a channel with inter-symbol interference employing a Sliding BiLSTM

network. Since the data stream reaching the receiver can be of any length, they

propose the idea of using shifting bidirectional RNN (BRNN) to generate the

predictions symbol by one symbol as depicted in Fig. 2.10.

y1 y2 y3 y4 y5 y6 y7 y8 y9

BRNN

BRNN

BRNN

BRNN BRNN BRNNBlock Detector

Stream of
observed signals

Sliding BRNN
Detector

Figure 2.10: The sliding BRNN detector.

The authors in [28] investigate the use of RNNs for symbol detection over mag-

netic recording channels, which exhibit ISI. They propose a detection method for

partial-response equalization, called partial-response neural network (PR-NN).

They use Bi-GRUs to recover the ISI channel inputs from noisy channel output

sequences, along with a sliding window model as in [3] to process streaming data.

The proposed network architecture of PR-NN is depicted in Fig. 2.11.

The authors in [29] propose the so-called ViterbiNet receiver for joint equaliza-

tion and channel decoding, which simultaneously accounts for both code structure

and channel effects to achieve a global optimum with a 3 dB gain compared to

the block-based design. ViterbiNet receiver for joint symbol detection and chan-

nel decoding is shown in Fig. 2.12. Moreover, a special neural network model is

proposed to avoid the need for perfect CSI. This network is shown to be more

robust under CSI uncertainty with a gain of 1.7 dB over the Viterbi Algorithm-

based receiver using noisy CSI. The ViterbiNet receiver includes three dense layers

18

Dense1

Mult-layer Bi-GRU Cells

Dense2

Sigmoid

Figure 2.11: The network architecture for proposed PR-NN.

whose activation functions are sigmoid, ReLU, and softmax, respectively. The

likelihood function is calculated using the result of ViterbiNet and a probability

density function estimator. The channel is assumed to be a tapped delay line

model with fixed coefficients.

Convolutional
encoder

Channel
ViterbiNet
Receiver+

n

yx û

Figure 2.12: ViterbiNet receiver with joint symbol detection and channel decod-

ing.

In many studies, successful predictions are produced for the output by giving

the signal vector received through a channel with ISI as input to a BRNN net-

work. The authors [30], [31] evaluate three BRNN models, namely, the bi-LSTM,

bi-GRU, and bi-Vanilla-RNN as post-processing units for the compensation of

fiber nonlinearities in coherent digital systems carrying polarization. For symbol

detection at time t they feed the previous k and following k symbols as inputs to

bidirectional RNNs to track inter-symbol dependencies where N stands for the

overall length of the sequence with N = 2k + 1.

The authors in [32] propose a Bi-LSTM architecture to characterize the ISI

19

introduced by faster-than-Nyquist (FTN) signaling. Simulation results show that

the bit error rate performance of the proposed Bi-LSTM model is close to the

theoretically optimal MLSE when the symbol rate is within the Mazo Limit.

The authors in [33] consider the ISI channel H(z), nonlinearities g(v), and

AWGN as sources of channel distortion. CNNs are used to recover the transmitted

symbol sequence as shown in Fig. 2.13.

H(z) g(v) +

CNN Equalizer

noise

s

Channel

C
o

n
v

+
R

el
u

…

C
o

n
v

ŝ

C
o

n
v

+
R

el
u

Figure 2.13: The system architecture of CNN equalizer.

The authors in [34] propose autoencoders for end-to-end physical layer commu-

nications in the presence of ISI and AWGN. Both the proposed transmitter and

the proposed receiver employ Bi-GRU layers. The transmitter learns customized

signal constellations for transmission while the receiver performs equalization and

demodulation simultaneously.

2.3.1 Sequence Detectors for ISI Channels

The simplest architecture that uses fully connected NN layers for a symbol by

symbol detector is shown in Fig. 2.14 (a), and the CNN architecture that can

be used to process more complex signals such as images is depicted in Fig. 2.14

(b). In both architectures, The final layer’s output has a length of m, (i.e., the

cardinality of the symbol set). Note that, the softmax activation is used for the

final layer if m is greater than 2. However, the effects of ISI cannot be taken into

20

Dense Layer
(softmax,sigmoid or tanh)

⋮

yk

ŝk

(a)

Dense Layer 2

Dense Layer 1

Dense Layer
(softmax,sigmoid or tanh)

⋮

yk

ŝk

(b)

Pooling Layer

Conv Layer(s)

Figure 2.14: Symbol-by-Symbol Detector.

consideration by these symbol-by-symbol detectors. RNNs, which work well for

sequence estimation, can be used in this case to perform sequence detection.

Consider a (time) sequence of input data vectors (received vector in this case)

y =
[
y1, · · · , yT

]T
,

and a sequence of corresponding output data vectors (transmitted symbols)

s =
[
s1, · · · , sT

]T
,

with neighboring data pairs (in time) being correlated. The goal is to learn the

rules to predict the output data given the input data using the time sequences

and the training data [35].

The block diagram of an RNN is shown in Fig. 2.15. After training, the RNN

detector can perform detection on data streams of different lengths, which is one

of its key advantages. Since RNNs are feed-forward only, the observations from

21

RNN
Layer 2

RNN
Layer 1

⋮

Dense
softmax

yk-1

hk-1
(1)

hk-1
(2)

⋮

ŝk-1

RNN
Layer 2

RNN
Layer 1

⋮

Dense
softmax

yk

hk
(1)

hk
(2)

ŝk

RNN
Layer 2

RNN
Layer 1

⋮

Dense
softmax

yk+1

hk+1
(1)

hk+1
(2)

ŝk+1

hk+2
(1)

hk+2
(2)

⋮

Figure 2.15: RNN architecture for detection.

previous symbols can be used to generate predictions for the kth symbol [3], i.e.,

one can produce an estimate of sk as

ŝk =

PRNN(sk = l1 | yk, yk−1, . . . , y1)

PRNN(sk = l2 | yk, yk−1, . . . , y1)
...

PRNN(sk = lm | yk, yk−1, . . . , y1)

 , (2.11)

where PRNN denotes the likelihood of predicting each symbol using the RNN

model, and li represents the elements in the symbol set. Due to delays in signal

arrival as a result of ISI, the received signal during the jth transmission slot, yj

where j > k, may contain information about the kth symbol sk. BRNN can be

trained to utilize all available input data in the past and future of a particular

time frame to get around the drawbacks of a standard RNN. The concept is to

divide a typical RNN’s state neurons into two sections: one that is in charge of

the positive time direction (forward states), and the other that is in charge of the

negative time direction (backward states) [35].

22

2.4 Deep Learning for MIMO Communications

Samuel et. al. propose deep neural networks for MIMO detection [36],[37]. They

design two different types of deep neural networks, a standard fully connected

multi-layer network, and a detection network (DetNet) that is designed by un-

folding the iterations of a projected gradient descent algorithm into a network.

For the varying channel model, their experience with a fully connected MLP net-

work with the channel matrix H, reconfigured as a vector, as the input is reported

to be unsuccessful. The dependencies of varying channels were not adequately

captured by the network. For this reason, they use the compressed sufficient

statistics instead of the received vector directly. That is, the given channel input-

output relationship

y = Hx+w, (2.12)

where y is the received vector, H is the channel matrix, x is the transmitted

symbol vector, and w is the noise, both sides are multiplied by HT, i.e.,

HTy = HTHx+HTw, (2.13)

is obtained. This suggests that HTy and HTHx should be the two key compo-

nents of the architecture. The foundation of their design is a projected gradient

descent-like maximum likelihood optimization solution. Such an algorithm would

lead to iterations of the form [37]

x̂k+1 = Π

[
x̂k − δk

∂||y −Hx||2

∂x

∣∣∣∣∣
x=x̂k

]
= Π[x̂k − δkH

Ty + δkH
THx̂k],

(2.14)

where Π[.] is a nonlinear projection operator, δk is a step size, and x̂k is the

estimate in the kth iteration. Each iteration of DetNet is composed of a linear

23

combination of the xk, H
Ty and HTHx̂k followed by a non-linear projection.

HTy

HTH

xk

vk

x

δ1,K

x +

δ2,K

Con

W1,K

x

b1,K

+

Relu x +

x +

W3,K b3,K

b2,KW2,K

xoh,k+1 foh xk+1

vk+1

Figure 2.16: A flowchart representing a single layer of DetNet.

Th flowchart of a single layer of DetNet is given in Fig. 2.16, where the learnable

parameters are shown in blue boxes. The parameters W stand for weights and

b stands for biases. The symbol (x) indicates multiplication, (+) indicates the

addition operation, foh indicates the one hot function, con is concatenation, and

ReLU is the ReLU activation function. Considering that there are L layers,

trainable parameters are as follows:

θ = {W1,k,b1,k,W2,k,b2,k,W3,k,b3,k, δ1,k, δ2,k}Lk=1. (2.15)

Simulations demonstrate that DetNet produces sufficiently accurate soft decisions

after a single training, with low computational complexity and without any prior

knowledge of signal-to-noise ratio (SNR).

Sholev et. al. employ a deep learning method to study the same problem [38].

The structure in a single iteration in DetNet is replaced with layers as in Fig. 3.6,

which is explained in detail in Chapter 3. They show that a single trained model

is appropriate for the detection of both coded and uncoded data, with or without

impairments, for a wide range of SNR levels without prior SNR knowledge [38].

He et. al. investigate the model-driven deep learning for MIMO detection [39].

They design a neural network by unfolding an iterative algorithm. Furthermore,

24

they investigate joint MIMO channel estimation and signal detection (JCESD),

where the detector considers channel estimation impairments. This model signif-

icantly improves upon the performance of traditional iterative detectors.

Yan et. al. address the problem of signal detection in MIMO-OFDM with

the aid of autoencoders [40]. They employ an autoencoder as a feature extractor

along with an extreme learning machine (ELM), for signal classification. Their

design obtains higher detection accuracy than several traditional methods while

maintaining a similar complexity. O’Shea et. al. introduce a novel physical layer

design for single-user MIMO communications based on deep autoencoders [41].

Their design includes a transmitter consisting of an MLP followed by a normal-

ization layer to ensure power constraints, and a receiver including another MLP

to decode messages. They discuss how their proposed scheme can be used for

open-loop and closed-loop operations in spatial diversity and multiplexing modes

with compact binary CSI as feedback. In [42], the authors build autoencoders

for both SISO and MIMO systems over flat-fading channels by exploiting the

structure of the interference to minimize the symbol error rate. The results are

compared with the performance of the standard communication systems with no

interference. The performance of the autoencoder-based unsupervised DL com-

munication system is shown to be promising for both single and multi-antenna

cases. Wiyaja et. al. employ deep learning to optimize the transmit power levels

at the base stations in order to prevent degradation of network performance due

to inter-cell interference [43]. Since the capacity of MIMO channels is severely

degraded without careful interference management, they suggest employing MLP

networks to suppress the resulting inter-cell interference. Their results show that

the performance of the proposed network is superior to that of the belief propa-

gation algorithm.

25

2.5 Deep Learning for End-to-End Communica-

tions

O’Shea et. al. discuss several novel applications of deep learning for the physical

layer. They model an end-to-end communications system as an autoencoder that

jointly learns efficient transmitter and receiver implementations. However, their

approach is restricted to short blocklength schemes [17],[6].

N
o

is
e

la
ye

r

M
u

lt
ip

le
d

en
se

 la
ye

rs

M
u

lt
ip

le
d

en
se

 la
ye

rs

N
o

rm
al

iz
at

io
n

la
ye

r

0
0
.
.
.
1
0
0
.
.
.
0

Transmitter Channel Receiver

D
en

se
 la

ye
r

w
it

h
so

ft
m

ax
ac

ti
va

ti
o

n
fu

n
ct

io
n

0.02
0.06
0.03
.
.
.
0.83
.
.
.
0.01

p

s ŝ

1s

x y

p(y|x)f(s) g(y)

Figure 2.17: A communication system over an AWGN channel is represented as

an autoencoder. The input s is encoded as a one-hot vector, and the output is

a probability distribution over all possible messages, the most likely of which is

chosen as the output ŝ.

Cammerer et. al. propose a transition from symbol-wise to bitwise autoen-

coders [18]. Furthermore, they present a fully differentiable neural iterative de-

mapping and decoding structure that achieves promising gains over AWGN chan-

nels using a standard 802.11n low-density parity check (LDPC) code.

End-to-end learning of communications systems through NN-based autoen-

coders requires a differentiable channel model. Hoydis et. al. propose a modified

training algorithm that does not require any mathematical model of the channel.

The algorithm iterates between the supervised training of the receiver and the

26

reinforcement learning-based training of the transmitter. They demonstrate that

this method works well on AWGN and Rayleigh block fading (RBF) channels.

Moreover, their approach can be applied to any type of channel without prior

knowledge [19]. Channel modeling is a significant part of the communications

systems while evaluating the system performance. As mentioned earlier, most

prior designs are based on simplified channel models such as AWGN and Rayleigh

fading channels. In order to capture more realistic channel models, O’Shea et. al.

utilize generative adversarial networks (GANs) to approximate wireless channel

responses. They introduce variational GANs to provide suitable architectures

and loss functions that accurately capture stochastic channel behaviors. They

also illustrate that a range of different types of stochastic channel models can be

accurately learned from measurements [44].

x

Channel measurement

h(x, Θh) approximation

D(x,y, ΘD) approximation

y

ŷ

True/False label

Figure 2.18: Training architecture for conditional variational-GAN based learning

of stochastic channel approximation function.

In [20], the transmission medium is modeled as an AWGN channel with addi-

tive radar interference. An autoencoder is then applied to design constellations

and corresponding receivers for this system, and it is shown that the autoencoder

can produce solutions that outperform the results of standard approaches.

2.6 Other Applications

Gruber et. al. use autoencoders for one-shot decoding of random and structured

codes, such as polar codes [45]. Their designs demonstrate performances close to

27

maximum a posteriori (MAP) decoding for short codeword lengths. They further

show that when the code is sufficiently structured, neural networks can success-

fully decode codewords that are not seen during the training process. Therefore,

they provide some evidence that NNs can learn a form of decoding algorithm for

structured codes. Ninkovic et. al. present a novel autoencoder-based approach

for designing codes that provide unequal error protection (UEP) capabilities.

Their design is based on switching from a categorical cross-entropy loss function

to a weighted categorical cross-entropy loss function. They design codes for both

message-wise and bit-wise UEP scenarios. The proposed method is compared

with UEP rateless spinal codes and the superposition of random Gaussian codes.

In both cases, the autoencoder-based codes show superior performance while

providing design flexibility and simplicity [46]. Lyu et al compare the decoding

performance of MLPs, CNNs, and RNNs. They conduct experiments using dif-

ferent settings. Their numerical results show that RNNs offer the best decoding

performance but require the highest computational burden [47]. Nachmani et. al.

introduce neural network architectures for decoding linear block codes with short

to moderate lengths. They design RNNs by unfolding belief-propagation (BP)

iterations. These architectures yield appreciable improvements over the standard

BP and min-sum decoders [48].

O’Shea et. al. perform modulation classification using deep CNNs and LSTM

networks, with domain-specific transforms and layer configurations. LSTM is

shown to achieve the highest modulation recognition accuracy [49]. Peng et. al.

use two different CNN-based pre-trained networks, AlexNet and GoogLeNet, for

modulation classification.

2.7 Chapter Summary

In this chapter, we have discussed ML approaches for different communication

problems that will be helpful in subsequent chapters. We first examined machine

learning techniques and discussed how some (wireless) communication problems

can be solved by them. Secondly, we provided a literature review on DL-based

28

approaches for specific communication problems including transmission over ISI

channels and MIMO communications. The rest of the thesis presents our novel

studies on this subject.

29

Chapter 3

Deep Learning Based Channel

Equalization for SISO ISI

Channels

In this chapter, we use the idea of detecting data streams that can be thousands

or even millions in length by processing them using a sliding window. Specifically,

three different DL-based methods for ISI channels, namely, Sli-BiLSTM, Sli-MLP,

and Sli-Iterative are proposed for time-varying ISI channels based on the sliding

window idea. We show that the newly designed ISI detectors are computationally

efficient, and can perform detection under perfect or noisy CSI. Based on the idea

that each window used in a symbol’s estimation process should have a different

weight, we further introduce a single-layer NN-based window weight network to

learn corresponding window weights. Moreover, we employ Sli-BiGRU and Sli-

MLP networks for fixed ISI channels. We evaluate the computational complexity

of the proposed models and compare them with the results of the MMSE based

equalizers as well as MLSE based solutions.

The chapter is organized as follows. Section 3.1 describes the system model.

In Section 3.2, Sliding Bi-LSTM, Sliding MLP, and Sliding Iterative models are

30

presented for ISI channel equalization. In Section 3.3, we employ Sliding Bi-

BiGRU and Sliding MLP, which are more efficient for use with fixed ISI channels.

We present our numerical results in Section 3.4, and conclude the chapter in

Section 3.5.

3.1 System Model

In this section, we investigate an uncoded digital communication system over

discrete-time dispersive AWGN channels with ISI. The corresponding system

model is shown in Fig. 3.1, where the transmitter consists of only a modula-

tion module. The input sequence with K information bits is denoted by x ∈
{0, 1}K , and s is the modulated signal with BPSK.

ISI ChannelTransmitter
Proposed ISI

Detector
+

Noise

x s y x ̂

Figure 3.1: System model.

The received vector contains intersymbol interference and AWGN, which can

be written as:

yk =
L−1∑
l=0

glsk−l + zk, (3.1)

where zk is the AWGN distributed as N (0, 1/ρ), and ρ represents the signal-to-

noise ratio (SNR), L is the number of channel taps and gl is the discrete-time

equivalent impulse response of the lth tap. When modeling baseband communi-

cation, the channel taps (gl’s) should be modeled as complex random variables.

However, we model the channel as real for simplicity and argue that the same

31

ideas can be extended for complex channels as well. We assume that the lth chan-

nel tap has a zero mean Gaussian distribution whose power follows an exponential

delay profile, i.e.,

gl ∼ N (0, σ2
l), (3.2)

with

σ2
l =

e−γ×l

L−1∑
l=0

e−γ×l

, (3.3)

where γ is a coefficient that depends on the wireless channel environment as in

[50]. If the reflections do not cause much power loss, γ can be chosen small,

however, if the reflections result in significant power loss, γ can be chosen large.

Note that the selection of this exponential profile is not critical, and the general

approach would be applicable for any power delay profile.

The sliding-window model for the received vector is as follows:

yn = Gsn + zn, (3.4)

where considering the N1 previous and N2 following received symbols, we have:

yn ≜
[
yn−N1 , yn−N1+1, . . . , yn+N2−1, yn+N2

]
N×1

sn ≜
[
sn−N1−L+1, sn−N1−L+2, . . . , sn+N2−1, sn+N2

]
(N+L−1)×1

(3.5)

32

zn ≜
[
zn−N1 , zn−N1+1, . . . , zn+N2−1, zn+N2

]
N×1

.

The channel matrix is then defined as:

G =

gL−1 · · · g0 0 · · · · · · 0

0 gL−1 · · · g0 0 · · · 0
...

.
...

0 · · · · · · 0 gL−1 · · · g0

N×(N+L−1)

(3.6)

where N = 1 + N1 +N2 is the window length. Considering the entire sequence

of length K, we can write

y = Gbigs+ z, (3.7)

where signal vectors are defined as y = [y0, y1, . . . , yK−1], s = [x0, y1, . . . , xK−1],

z = [z0, y1, . . . , zK−1], and Gbig is given by

Gbig =

g0 · · · · · · 0 · · · · · · 0

g1 g0 · · · 0 · · · · · · 0
...

.
...

gL−1 · · · g0 0 · · · · · · 0

0 gL−1 · · · g0 0 · · · 0
...

.
...

0 · · · · · · 0 gL−1 · · · g0

K×K

. (3.8)

3.1.1 Fixed vs. Varying Channel Models

We use two different channel models similar to [37] in our work.

33

i) In the fixed channel scenario, G is deterministic and constant (or, a realiza-

tion of a distribution that takes only a single value). The coefficients of the

channel (gl’s) do not change over time and all realizations are obtained with

the initial channel realization. We take {D(z)}Zz=1 as a set containing the

input symbols, the channel outputs (received vector), and the initial channel

taps, i.e., {D(z)} = {x(z)
0:K−1, y

(z)
0:K−1 g0:L−1}. We suppose that each dataset

D(z) is produced from a fixed channel (gl’s are the same for all datasets)

with independent additive noise.

ii) In the varying channel scenario, we model the multipath channels with ex-

ponential–decay power–delay profiles. We assume that each gl is a random

variable and has a known continuous distribution as given in (3.2). It is either

fully known (perfect CSI) or the channel coefficients are estimated at the re-

ceiver side with error (noisy CSI). In both cases, delay taps change with each

dataset, i.e, {D(z)} = {x(z)
0:K−1, y

(z)
0:K−1, g

(z)
0:L−1}. Therefore, it is necessary to

develop a single detection system for all potential datasets. In other words,

the channel is sampled from (3.2) so the network must be able to generalize

across the complete distribution of potential channels.

3.1.2 Perfect vs. Noisy CSI

We take into account the following two scenarios to examine the robustness of

various detection algorithms against CSI error: (i) perfect CSI, which means that

the channel G is known exactly at the time of detection (ĝl = gl for l = 0, . . . , L)

(ii) imperfect CSI, where the CSI at the receiver is modeled as [51]

ĝl = gl + n, (3.9)

where n is an additive Gaussian noise distributed asN (0, λ/ρ), where λ coefficient

denoting the CSI error level. In this model, as the SNR increases, the CSI is

obtained with a smaller error.

34

3.2 Proposed Deep Learning Based Detectors

for Varying Channels

In this section, we formulate the equalization problem for ISI channels as a super-

vised regression problem in the ML framework. The first step in machine learning

is to select a class of possible detectors, also called the architecture. A network ar-

chitecture is a function ŝ = f(G,y; θ) parameterized by θ. We find the network’s

parameter θ by minimizing the loss function over the model distribution:

min
θ

E{loss(s; f(G,y, θ))}, (3.10)

where the expectation is taken with respect to all the random variables in (3.4),

G, s, and z. A loss function that can measure the distance between the network

output (̂s) and the true label (s). L1 and L2 norms are mostly used in loss

functions in machine learning. We use mean squared error (squared L2 norm)

in our simulations. Our goal is to find the best parameters θ of the network

architecture which minimize the expected loss over the distribution in (3.4), i.e.,

min
θ

E{(s− ŝ)2}. (3.11)

We propose different models for both the fixed and the varying channels. We

employ three different NN models for channel equalization. Firstly, we introduce

the Sliding Bi-LSTM (Sli-BiLSTM) ISI detector. Secondly, we use the standard

multi-layer perceptron (Sli-MLP) rather than Bi-LSTM layers. Finally, Sliding

Iterative (Sli-Iterative) is also utilized.

3.2.1 Sliding Bi-LSTM ISI Detector

In this section, we explain the difference between the Bi-LSTM network and the

sliding Bi-LSTM network, and describe the use of the Sli-BiLSTM network for

35

channel equalization. A Bi-LSTM network connects the forward and backward

nodes of the LSTM which allows the output to depend on both past and future

elements of the received signal vector. The block diagram of such a network

was presented in Fig. 2.9. In the Bi-LSTM network, all the information in the

received sequence is exploited when generating a prediction for the kth symbol

for a sequence of length K, hence ŝk can be written as

ŝk = f(G, yK − 1, yK−2, . . . , y0; θ) (3.12)

where k ≤ K. It is not possible to use this model for data streams whose lengths

can be from tens of thousands to millions. Since each element of the received

vector contains information for the kth symbol, a re-estimation must be generated

for the kth symbol when a new sample of the received signal arrives. Moreover,

as the input size increases, the complexity of the model becomes a problem.

For the reasons mentioned above, the sliding Bi-LSTM network is introduced.

In this network, we fix the Bi-LSTM length to a certain size, with a maximum

length of N . The simplest method would be to detect the stream of data in fixed

blocks of length N after training. Although n ≤ N values can also be utilized

for training, we use the longest value of N in our network design for the best

outcome. After detecting N symbols, Bi-LSTM slides ahead by one symbol [3],

and the same process is repeated. Fig. 2.10 shows an example of this process

with N=3. Note that the N value must be greater than the memory length of the

ISI channel. The model evaluates N -length windows on the received vector and

generates predictions for the transmitted symbols. One of the disadvantages of

this scheme is that the symbols outside the window cannot be used directly, even

though they contain information about the symbols within the window. Another

disadvantage is that the (k +N − 1)th symbol must be received to complete the

estimation of the kth symbol.

We now design an ISI detector to perform channel equalization based on the

sliding Bi-LSTM idea. For time-varying channels, the channel coefficients are

also given as input, along with the received data sequence. The output of the

36

Channel taps Stream of observed
signals

concatenate

… yt yt+1 yt+2 … yt+τ yt+τ+1 …

…

g0 … gL-1

Multi-layer Bi-LSTM Layers

Time Distributed tanh Dense Layer

Final Decision Block

… ŝt ŝt+1 ŝt+2 … ŝt+τ ŝt+τ+1 …

… xt̂ xt̂+1 x̂t+2 … x̂t+τ x̂t+τ+1 …

…

Figure 3.2: The network architecture of Sliding Bi-LSTM ISI detector.

detector is an estimate of the transmitted data sequence. The loss function

that the detector is trained on is the mean squared error (MSE) between the

transmitted and estimated data sequences. The neural network architecture for

our equalizer uses multi-layer Bi-LSTMs. Our network also has a time-distributed

dense layer which is used after the Bi-LSTMs to flatten the output by applying the

same fully connected dense layer to every time step during LSTM cell unrolling.

We consider BPSK modulation which transmits 1 bit per symbol, so there are 2

different classes for each symbol. For this reason, we use tanh activation function

instead of the softmax activation function. It is more appropriate to use softmax

for higher modulation orders where there are more than two classes. The designed

Sliding Bi-LSTM ISI detector is shown in Fig. 3.2.

3.2.1.1 Final Decision Block and Window Weight Network

The set of all feasible beginning positions for a Bi-LSTM detector of length N ,

such that the detector window overlaps with the kth symbol, is Jk = {j | j ≤

37

min(k,K −N + 1) and j ≥ max(k −N + 1, 0)}. Let ŝk be the vector containing

the entire predictions generated for sk:

ŝk =

ŝ
(k−N+1)
k

ŝ
(k−N+2)
k

...

ŝ
(k)
k

 , (3.13)

where ŝ
(j)
k the prediction produced by the window starting with j ∈ Jk and ŵ

(j)
k

is the corresponding window weight for the kth symbol. There are |Jk| different
predictions for each bit, whose direct or weighted average produces the final

estimate for the kth symbol:

ŝk = sgn

(
1

|Jk|
∑
j∈Jk

ŵ
(j)
k ŝ

(j)
k

)
. (3.14)

where the sign function is indicated by sgn(.). It seems more reasonable to take

the weighted average of these values than to take the direct average because it is

expected that the windows that place the kth symbol closer to the center can give

better results. We use a single layer at the last stage to find these weights. For a

sequence of length K, provided that N ≤ k ≤ K −N + 1, the vector containing

the predictions of each symbol is given as input to the network, as shown in Fig.

3.3, and the weights of the corresponding windows are learned.

38

.

.

.

ොsk
(k−N+1)

ොsk
(k−N+2)

ොsk
(k−N+3)

ොsk
(k)

ෝwk
(k−N+1)

ෝwk
(k−N+2)

ෝwk
(k−N+3)

ෝwk
(k)

ŝk

Figure 3.3: The neural network design to find corresponding window weights.

In the case where we take the direct average, all weights are considered equal to

one, so the estimate can be written as:

ŝk = sgn

(
1

|Jk|
∑
j∈Jk

ŝ
(j)
k

)
. (3.15)

The final estimate of x̂k is produced by simply using

x̂k =

1, if ŝk = 1,

0, if ŝk = −1.
(3.16)

3.2.1.2 Training Methodology

In this subsection, we describe the training methodology for a specific ISI chan-

nel length and a window size to explain how the hyperparameters are selected.

Specifically, we perform the hyperparameter search for L = 5 and N = 10, and

we use the selected model for other parameters as well. We use a hyperparameter

search [52] since the design space of the hyperparameters is very large. 1920 dif-

ferent models (which are all possible combinations of the search space, i.e., for our

39

case 5×4×2×4×4×3 = 1920) need to be tried when grid search is used in the

search space even though it is narrowed down beforehand. Random search differs

significantly from grid search in that not all the combinations are evaluated, and

those that are tested are chosen at random. We only test 30 different models due

to the computation time problem, i.e., the random search will randomly sample

30 values to test. We do not give a uniform distribution for each value in the

search space because we have an initial idea due to the results in [28], [50] about

which values might work better. Although random search does not attempt every

possible combination of hyperparameters, it provides a reasonably good perform-

ing model in a noticeably shorter amount of time. The search space and the best

hyperparameters are summarized in Table 3.1. Although many models give very

close results, the choice of training SNR plays an important role in the results

of the test part. If it is trained at a low SNR, the model has difficulty in the

learning part and cannot produce successful results at high SNR values in the test

part. If it is trained at a high SNR, it cannot learn the effect of the AWGN chan-

nel sufficiently well. Training at different SNR values gives the most successful

results.

Table 3.1: Hyperparameter search for Sli-BiLSTM Model

Parameter Search Space Chosen

Bi-LSTM layers 2-6 4
forward-backward states {25,50,100,200} 100
activation function in the last layer {sigmoid,tanh} tanh
training SNR {5,7,U(7,14),14}dB U(7,14)dB
learning rate {10−2, 10−3, 10−3 − 10−5, 10−5} 10−3 − 10−5

batch size {250,1000,2000} 250

The inputs are fed into four layers of a Bi-LSTM network. In our specific

design example, these four layers have sizes of 100, 100, 50, and 100 units for

each forward and backward state. The outputs of forward and backward states

are concatenated together as a merge mode, it gives twice the state size as input

to the next layer. This is then fed into time-distributed dense layers which have

the tanh activation function.

40

The training set includes 5,000,000 different sequences to learn from many

different channel distributions. In the training, we start the window from the Lth

symbol to see the ISI effect in the leading symbols. If the sequence length is K,

there are K −N −L+2 windows for each sequence. We set the sequence length

as N + L− 1 in the training part, ({D(z)}5000000z=1 = {x(z)
0:N+L−2, y

(z)
0:N+L−2, g

(z)
0:L−1}).

In this case, there is only one window that needs to be trained for the sequence

in each dataset.

In Fig. 3.4, we show how the training dataset is obtained. For each sequence,

SNR in dB was sampled from a uniform distribution U(7, 14) for training. Train-

ing is done using the Adam optimizer with a piecewise constant decay scheduler,

assigning a learning rate of 0.001 to the first 75% of steps and a learning rate of

0.00001 to the subsequent steps.

L-1 N g0
(1) … gL-1

(1)D(1)

L-1 N g0
(2) … gL-1

(2)D(2)

⋮

L-1 N

Channel tapsConcatenate

g0
(5m) … gL-1

(5m)D(5000000)

Received vector

Figure 3.4: Training dataset.

3.2.2 Sliding MLP ISI Detector

In this part, we use MLP instead of the multi-layer Bi-LSTM for channel equal-

ization. The size of the input vector is the sum of the window length and the

number of delay taps (N + L), while the length of the output vector is only the

length of the window (N) as in the Sli-BiLSTM model. The resulting network

architecture of the Sli-MLP model is shown in Fig. 3.5. The Sli-MLP network

contains seven fully connected dense layers and activation functions are as shown

41

in Fig. 3.5.

The reason we use this model is that MLP has a relatively small number of

parameters to optimize. For the specific networks designed for L = 5 and N = 10,

the search space and the chosen hyperparameters are summarized in Table 3.2.

As the memory length of the ISI channel (L) increases, the deeper MLP model

gives better results up to a point. When we deepen the model shown in Fig. 3.5,

the network converges to almost the same point, so we decide to use this layer

arrangement with 200 neurons in each hidden layer . Other training settings and

creation of training dataset ({D(z)}5000000z=1 = {x(z)
0:N+L−2, y

(z)
0:N+L−2, g

(z)
0:L−1}) are the

same as those in the previous section.

Channel taps Stream of observed
signals

concatenate

… yt yt+1 yt+2 … yt+τ yt+τ+1 …

…

g0 … gL-1

Multi-layer Perceptron

Final Decision Block

… ŝt ŝt+1 ŝt+2 … ŝt+τ ŝt+τ+1 …

… xt̂ x̂t+1 x̂t+2 … x̂t+τ x̂t+τ+1 …

…

ReLU Dense Layer

Linear Dense Layer

ReLU Dense Layer

ReLU Dense Layer

ReLU Dense Layer

Linear Dense Layer

Tanh Dense Layer

Figure 3.5: The network architecture of Sliding MLP ISI detector.

3.2.3 Sliding Iterative ISI Detector

We take a similar approach as in [37], [38] and use an iterative model as well.

The idea is to use a projected gradient approach to solve the detection problem

in (3.4). Even though we model the channel as real in our simulations, here we

consider a more general case and show how this can be accomplished for complex

channel taps. Computing the gradient of (3.4) with respect to s results in

42

Table 3.2: Hyperparameter search for Sli-MLP Model

Parameter Search Space Chosen

MLP layers 3-9 7
neurons in layers {25,50,100,200} 200
activation function {ReLU,linear,sigmoid} ReLU
training SNR {5,7,U(7,14),14}dB U(7,14)dB
learning rate {10−2, 10−3, 10−3 − 10−5, 10−5} 10−3 − 10−5

batch size {250,1000,2000} 250

∂||y−Gs||2

∂s
= −[G∗(y−Gs)], (3.17)

where G∗ indicates the conjugate transpose operation. The design is based on

mimicking the projected gradient descent as a solution to maximum likelihood

optimization. Such an algorithm suggests building a solution in an iterative way,

using

ˆsk+1 = Π(θ1ŝk + θ2G
∗y + θ3G

∗Gŝk), (3.18)

where θ1,θ2,θ3 are learnable parameters and Π is a nonlinear function. The un-

known value ŝ0 is started randomly to calculate the following input features:

(
Re{ŝ0}
Im{ŝ0}

)
,

(
Re{G∗y}
Im{G∗y}

)
,

(
Re{G∗Gŝ0}
Im{G∗Gŝ0}

)
. (3.19)

We use a real-valued neural network model so we split each input feature into

its real and imaginary parts and concatenate them. The iterative model outputs

soft probabilities for the real and imaginary parts of each of the transmitted

symbols in each iteration:

43

P(Re{s1}=l1)
P(Re{s1}=l2)
.
.
.
P(Re{s1}=lc)
P(Re{s2}=l1)
.
.
.
P(Re{sNt}=l2)
.
.
.
P(Im{sNt}=l2)

FC
3
+S

o
ft
m
ax

FC
2
+B

N
+
R
el
u

FC
1
+B

N
+
R
el
u

In
p
u
t
La
ye

r

P
ro
b
-v
al

H
ig
h
w
ay

G
*
G
()

G*y

G*Gŝk

ŝk

G*y

G*Gŝk+1

ŝk+1

…

[2Nt]

[2Nt]

[2Nt]

[6Nt] [L1] [L2] [2Ntc] [2Nt]

[2Nt] [2Nt]

[2Nt]

[2Nt]

FC
3
+S

o
ft
m
ax

FC
2
+B

N
+R

el
u

FC
1
+B

N
+
R
el
u

In
p
u
t
La
ye

r

G*y

G*Gŝi-1

ŝi-1

[2Nt]

[2Nt]

[2Nt]

[6Nt] [L1] [L2] [2Ntc]

i-iterations
(k+1)th iteration ith iteration

Figure 3.6: The network architecture of Iterative Detector.

P (Re{s1} = l1)

P (Re{s1} = l2)
...

P (Re{s1} = lc)

P (Re{s2} = l1)
...

P (Re{sNt} = lc)
...

P (Im{sNt} = lc)

. (3.20)

The values that the real and imaginary part may take are symbolized as l1,l2,...lc

where c =
√

|M |. As we mentioned before, when we only take the real parts,

vector dimensions indicated by 2Nt (Nt = N +L− 1) in Fig. 3.6 will be replaced

by Nt.

At the kth iteration, the model performs the following operations:

(i) The input values enter two fully connected layers with batch normalization

and ReLU activation function.

(ii) The outputs from the ReLU layer enter a fully connected softmax layer and

the result in (3.20) is obtained.

(iii) The output probabilities go into a block called “probabilities to values”,

which performs the following operations:

44

Re{ŝn} =
c∑

d=1

ldP (Re{sn} = ld), n = 1, 2, ..., Nt. (3.21)

Im{ŝn} =
c∑

d=1

ldP (Im{sn} = ld), n = 1, 2, ..., Nt.

(iv) Highway layers have been used to facilitate gradient flows in very deep

neural networks as in [53]. A new estimate (̂sk) is obtained by combining

the estimate from the previous iteration (̂sk−1) with the soft output from

the “probabilities to values” block. That is, the highway layers perform the

following operations:

ŝk = Π(̂sk−1,G
∗y,G∗Gŝk−1,Wk) · σ(̂sk−1,W

1
k) + ŝk−1 · (1− σ(̂sk−1,W

2
k)),

(3.22)

where W1
k and W2

k are all learnable parameters of the kth iteration.

(v) After ŝk is obtained, it is multiplied with G∗G to obtain the missing input

feature. Finally, the input features G∗y, G∗Gŝk, ŝk are concatenated and

fed-back to the (k + 1)th iteration as shown in Fig. 3.6.

3.2.3.1 Training Methodology

In this subsection, we consider the same set-ups as in Section 3.2.1.2 and describe

the training methodology for a specific ISI channel length and a window size to

explain the optimization of hyperparameters. That is, we perform the hyperpa-

rameter search for L = 5 and N = 10, and we use the selected model for other

parameters as well. The search space and the chosen hyperparameters for train-

ing are summarized in Table 3.3. The network parameters L1 and L2 in Fig. 3.6

are chosen as L1 = 200 and L2 = 100. Batch normalization was applied before

the ReLU layers and a 0.2 rate dropout layer was applied after the first ReLU

layer in each iteration. In cases where the number of channel taps is not high

(e.g., L = 3, 5), we found that 10 iterations with 200 neurons in the first layer and

45

100 neurons in the second layer provide the best performance-complexity trade-

off. Training set includes 5,000,000 different (N + L − 1) length sequences. As

in (3.6), 5 million different G matrices are produced and the training dataset is

obtained, {D(z)}5000000z=1 = {x(z)
0:N+L−2, y

(z)
0:N−1,G

(z)}. For each sequence, SNR in dB

is sampled from the U(7, 14) distribution for training. Training is done using an

Adam optimizer with a piecewise constant decay scheduler as in the Sli-BiLSTM

model. The MSE loss function given by

[
Nt=N+L∑

j=1

c∑
q=1

(1{Re{sj} = lq} − P (Re{ŝj} = lq))
2

+
Nt=N+L∑

j=1

c∑
q=1

(1{Im{sj} = lq} − P (Im{ŝj} = lq))
2

] (3.23)

.

is used. Here 1 denotes the indicator function which takes on the value of 1 when

its argument is true and 0 when it is false.

Table 3.3: Hyperparameter search for Sli-Iterative Model

Parameter Search Space Chosen

iterations {5,10,20,50} 10
neurons (L1) {25,50,100,200} 200
neurons (L2) {25,50,100,200} 100
training SNR {5,7,U(7,14),14}dB U(7,14)dB
learning rate {10−2, 10−3, 10−3 − 10−5, 10−5} 10−3 − 10−5

batch size {250,1000,2000} 1000

3.2.3.2 Test Methodology

In this subsection, we examine an example for N = 3, L = 3, and K = 10 to

show the algorithm of the Sli-Iterative model in the test part. For these values,

the G and Gbig matrices become

46

Gbig =

g0 0 0 0 0 0 0 0 0 0

g1 g0 0 0 0 0 0 0 0 0

g2 g1 g0 0 0 0 0 0 0 0

0 g2 g1 g0 0 0 0 0 0 0

0 0 g2 g1 g0 0 0 0 0 0

0 0 0 g2 g1 g0 0 0 0 0

0 0 0 0 g2 g1 g0 0 0 0

0 0 0 0 0 g2 g1 g0 0 0

0 0 0 0 0 0 g2 g1 g0 0

0 0 0 0 0 0 0 g2 g1 g0

10×10

, (3.24)

G =

g2 g1 g0 0 0

0 g2 g1 g0 0

0 0 g2 g1 g0

3×5

. (3.25)

When we shift the values in (3.5) to the right by one symbol, the G matrix

does not change. For the new yn and sn values in (3.5), we have to generate

predictions for the sn vector by running the model in Fig. 3.6. It is necessary to

perform this operation (K −N − L + 2) = 6 times to make predictions for that

part of the sequence. Corner samples seem to be a problem for this short block

length, but in reality, there are N +L− 1 estimates for almost all the samples as

the sequence length increases.

The set of all feasible beginning positions for a Sli-Iterative detector of length

(N +L−1), such that the detector overlaps with the kth symbol, is Jk = {j | j ≤
min(k+L− 1, K−N) and j ≥ max(k−N +1, L− 1)}. Moreover, ŝ

(j)
k indicates

the prediction produced by the window starting with j ∈ Jk P (Re{ŝk} = 1),

ŵ
(j)
k is the corresponding window weight for the kth symbol, xk indicates the final

predictions for transmitted symbols in Fig. 3.1 for k = 0, 1, ..., K − 1. The final

decision block performs the following operation:

47

ŝ1
(2) ŝ2

(2) ŝ3
(2) ŝ4

(2)

ŝ1
(3) ŝ2

(3) ŝ3
(3) ŝ4

(3) ŝ5
(3)

ŝ2
(4) ŝ3

(4) ŝ4
(4) ŝ5

(4) ŝ6
(4)

ŝ3
(5) ŝ4

(5) ŝ5
(5) ŝ6

(5) ŝ7
(5)

ŝ4
(6) ŝ5

(6) ŝ6
(6) ŝ7

(6) ŝ8
(6)

ŝ5
(7) ŝ6

(7) ŝ7
(7) ŝ8

(7) ŝ9
(7)

Final Decision Block

ŝ0
(2)ŷ3 ŷ4ŷ2

ŷ4 ŷ5ŷ3

ŷ5 ŷ6ŷ4

ŷ6 ŷ7ŷ5

ŷ7 ŷ2ŷ6

ŷ8 ŷ9ŷ7

x1̂ x̂2 x3̂ x̂4 x5̂ x̂6 x̂7 x̂8 x̂9x̂0

Figure 3.7: Sliding estimates.

ŝk = sgn

((
1

|Jk|
∑
jk

ŵ
(j)
k ŝ

(j)
k

)
− 0.5

)
. (3.26)

3.3 Proposed Deep Learning Based Detectors

for Fixed Channels

For the fixed channel model, the channel coefficients do not need to be given as the

input. The complexity of the problem and model is less than the varying channel

case so we use a simpler Bi-GRU network rather than a Bi-LSTM network. The

network architecture of the Sliding Bi-GRU ISI detector is shown in Fig. 3.8. We

use three Bi-GRU layers with the state sizes of 100, 50, and 100 units, respectively,

for each forward and backward state. Moreover, we use the Sli-MLP model, which

is also used for the varying channel model, without giving the channel taps as

input. The training settings are the same as those of the models used for the

varying channels.

48

Stream of observed
signals

… yt yt+1 yt+2 … yt+τ yt+τ+1 …

…

Multi-layer Bi-GRU Layers

Time Distributed tanh Dense Layer

Final Decision Block

… ŝt ŝt+1 ŝt+2 … ŝt+τ ŝt+τ+1 …

… xt̂ x̂t+1 x̂t+2 … x̂t+τ x̂t+τ+1 …

…

Figure 3.8: The network architecture of Sliding Bi-GRU ISI detector for fixed

channels.

3.4 Numerical Experiments

3.4.1 MMSE and Viterbi Algorithm Results

The proposed ISI detectors are compared with the results of MMSE equalization

and the maximum likelihood sequence detection implemented via the Viterbi

Algorithm.

Consider the model

y = Gs+ z, (3.27)

• MMSE solution is as follows:

ŝ = argmins||y −Gs||2, (3.28)

49

ŝ = GH(GGH + I/ρ)−1y. (3.29)

• The Viterbi Algorithm is the MLSE detector, which minimizes the proba-

bility of sequence error (assuming equiprobable transmitted symbols) with

independent and identically distributed Gaussian noise at the receiver.

Namely, it efficiently computes

ŝ = argmin(s∈SNt)||y −Gs||2, (3.30)

where the minimization is over s ∈ SNt ; i.e., over all possible transmitted

vectors.

In the Viterbi Algorithm, the number of cost values to be stored is equal to

the number of nodes in the trellis, which is equal to the number of possible

states 2L times the number of time instances, which is equal to the sequence

length for a single-input single-output (SISO) system. Therefore, the com-

plexity of the Viterbi Algorithm is O(K2L) without including floating point

operation calculations, which are linear in the number of time instances K

but grow exponentially with memory length L. One of the main issues with

the Viterbi Algorithm is that we might run out of memory when writing

the program for this decoder if there are a large number of channel taps,

which causes a storage complexity issue.

On the other hand, the computational complexity of the proposed models

(Sli-BiLSTM, Sli-MLP, and Sli-Iterative) is O(N(K −N −L+2)) because

the sliding detector of length N needs to process (K − N − L + 2) times

to scan the entire sequence as in (3.24). As a result, the computational

complexity for the conventional Viterbi Algorithm increases exponentially

with memory length L; however, the proposed DL-based detectors are linear

in window length and sequence length.

50

3.4.2 Complexity Analysis of Proposed Detectors

We can determine the total amount of calculations the model will need to carry

out in order to estimate the inference time for that model. The term floating

point operation (FLOP) is used here. Any operation involving a floating point

value, including addition, subtraction, division, and multiplication, is included

in this category. The total number of FLOPs will give us the complexity of the

proposed detectors. We calculate FLOPs approximately for each model. The

explanation of how we count the number of FLOPs is as follows:

• Any operation involving a floating point value, including addition, subtrac-

tion, division, and multiplication are counted as 1 FLOP.

• The number of flops in a fully dense layer network with input dimension A

and output dimension B is B(2A+ 1).

• The matrices are of the form (n× p) and (p×m), the number of FLOPs is

equal to nm(2p− 1).

• The LSTM cell contains 4 fully dense layers and 4 element-wise matrix

multiplications, the total number of FLOPs is (4B(2(A+B)+1)+4A), where

A is the number of hidden units of LSTM and B is the input dimension.

The number of FLOPs in Bi-LSTM is also twice that.

• The GRU cell contains 3 fully dense layers and 4 element-wise matrix mul-

tiplications, the total number of FLOPs is (3B(2(A+B)+ 1)+ 4A), where

A is the number of hidden units of GRU and B is the input dimension. The

number of FLOPs in Bi-GRU is also twice that.

In Table 3.4, we calculate the total number of FLOPs of the proposed models

for L = 3 and N = 10. Since the final decision block is almost the same for all

models, we neglect these FLOPs. When we compare the models, we see that the

Sli-MLP model has the lowest complexity. On the other hand, the Sli-BiLSTM

model is the most complex detector. We use the Sli-BiGRU detector only for

51

Table 3.4: Detection complexity comparison

Detector Calculations # FLOPs

Sli-BiLSTM [100(2(100+1)+1)×4) + 100× 4]× 2+
[100(2(200+100)+1)×4) + 100× 4]× 2+
[50(2(200+50)+1)×4) + 50× 4]× 2+
[100(2(100+100)+1)×4) + 100× 4]× 2 1.167.200

Sli-MLP 200(2×13 + 1) + 200(200× 2 + 1)× 5+
10(200×2 + 1) 410,410

Sli-Iterative 10[200(2×36 + 1) + 100(2× 200 + 1)+
24(2×100 + 1) + 12(2× 24− 1) + 3× 12] 601,240

Sli-BiGRU [100(2(100+1)+1)×3) + 100× 4]× 2+
[50(2(200+50)+1)×3) + 50× 4]× 2+
[100(2(100+100)+1)×3) + 100× 4]× 2 514,700

fixed channels and it has almost half the FLOPs compared to the Sli-BiLSTM

model.

3.4.3 Simulation Results

In this section, we evaluate the performance of the proposed DL-based mod-

els for ISI channels. We model the multipath channels with exponential–decay

power–delay profiles as given in (3.2) and γ = 5 in (3.3). Then, we numerically

evaluate the performance of the proposed algorithms. The parameters used in

the test part are shown in Table 3.5. We can increase the sequence length (over

thousands or millions) as long as computer memory allows, but since it takes time

to produce the simulation results and we want to see the error rate for many dif-

ferent gl realizations, we set K = 200+2(L− 1). We do not include the first and

the last (L− 1) time instances in the error calculation, since the amount of error

in the corner observations is high in a short sequence. This is not necessary in

cases where the sequence length is chosen long enough. The evaluation metric is

the bit error rate (BER) between input x and detection result x̂, which is defined

52

Table 3.5: Test set parameters

Parameter Selected Value

K 200+2(L-1)
γ 1/5
λ 0.4
test set size 5000
test SNR in dB {0,1,2,. . . ,20}

as

BER =
1

K − 2(L− 1)

K−L∑
m=L−1

1x̂m ̸=xm . (3.31)

In Fig. 3.9, we perform simulations for the Sli-BiLSTM network using different

window lengths (N) to decide on the optimal value to be used in the models.

As the window length increases, the results get closer to the Viterbi Algorithm

based equalization. However, as more time instances will be involved, it becomes

difficult for the model to resolve the relationship among them, which shows the

trade-off between the complexity of the model and the bit error rate. The number

of channel taps (L) also plays an important role in the selection of the window

length (N), as can be seen in Fig. 3.9, if we choose N more than twice of L

(N > 2L), we do not observe much difference. With this observation, we perform

our simulations for N = 10 unless otherwise stated.

53

0 2 4 6 8 10 12 14 16 18 20

SNR
dB

10
-3

10
-2

10
-1

B
it
 E

rr
o

r
R

a
te

N=3

N=5

N=7

N=10

N=20

MMSE

Viterbi

14 14.5 15 15.5 16

0.01

0.015

0.02

Figure 3.9: BER results of the Sli-BiLSTM model for the varying channels, L = 3,

and different window lengths.

In Fig 3.10, we compare the bit error rates when using weighted average or

direct average in the final decision block. The learned window weights for (3.14)

can be seen in Fig. 3.11 to be bell-shaped. The weight of the window becomes

larger for the symbols close to the center of the window. Although the weighted

average beats the direct average, in our extensive experiments, we observed no

significant difference. Even in some simulation results, the weighted average was

slightly worse. For this reason, we will use the direct average in the rest of the

simulations.

Fig. 3.12 illustrates the bit error rates of all three models. All the proposed

models outperform linear MMSE equalizers and give results close to the Viterbi

Algorithm based equalization in the SNR range of 0 − 6 dB. Although a clear

distinction cannot be made between the models for the 0− 6 dB SNR range, the

Sli-BiLSTM models have the best performance. The Sli-Iterative model performs

worse than Sli-MLP even though its structure is more complex. When the window

length (N) is selected as 10 for all the models, the Sli-BiLSTM model gives better

results than the others. As we mentioned before, if we increase the window

length (N), the result approaches those of the Viterbi Algorithm. For this reason,

54

0 2 4 6 8 10 12 14 16 18 20

SNR
dB

10-3

10-2

10-1
B

it
 E

rr
o
r

R
a
te

MMSE

Sli-BiLSTM direct

Sli-BiLSTM weighted.

Sli-MLP direct

Sli-MLP weighted

12 12.5 13 13.5 14

0.015

0.02

0.025

Figure 3.10: BER results of the Sli-BiLSTM and Sli-MLP model for the varying
channels, L = 3, N = 10, and the weighted or direct averages are used.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

w
(k-9)

k
w

(k-8)

k
w

(k-7)

k
w

(k-6)

k
w

(k-5)

k
w

(k-4)

k
w

(k-3)

k
w

(k-2)

k
w

(k-1)

k
w

(k)

k

Figure 3.11: Learned window weights ŵ
(j)
k .

55

0 2 4 6 8 10 12 14 16 18 20

SNR
dB

10
-3

10
-2

10
-1

B
it
 E

rr
o
r

R
a
te

MMSE

Sli-BiLSTM

Sli-BiLSTM N=20

Sli-MLP

Sli-Iterative

Viterbi

6 6.5 7 7.5 8

0.05

0.06

0.07

0.08

0.09

Figure 3.12: BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative model
for the varying channels, L = 5 and N = 10.

we also show the BER performance when N = 20 for the Sli-BiLSTM model,

and observe the result is the same as the one with the Viterbi Algorithm based

equalization. Evaluating the models among themselves, we conclude that the

Sli-BiLSTM network gives better results as the number of channel taps increases.

We next consider the effects of CSI error. In Fig. 3.13, we show how the BER

changes as the CSI error level increases for the Sli-BiLSTM model. Coefficient

λ denotes the CSI error level in (3.9). It is observed that the BER increases as

the error in the CSI increases as expected. Fig. 3.14 illustrates the performance

of all three proposed models when λ = 0.4. Since the Sli-Iterative model uses a

function of channel taps (G∗y and G∗Gŝk) instead of the direct channel taps as

input, it shows a smaller performance degradation compared to the other models

and offers slightly superior performance compared to other models in the 0− 10

dB SNR range. In the 10−20 dB SNR range, the Sli-BiLSTM model gives better

results than the other proposed models. In the 12 − 20 dB SNR range, the Sli-

BiLSTM model performs quite close to the Viterbi Algorithm based equalization,

while outperforming the linear MMSE equalizers by 2 dB, at a BER level of 10−2.

56

0 2 4 6 8 10 12 14 16 18 20

SNR
dB

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

Perfect CSI

 = 0.1

 = 0.2

 = 0.4

 = 0.8

Figure 3.13: BER results of the Sli-BiLSTM model for the varying channels
L = 3, N = 10, and different channel state information error levels.

0 2 4 6 8 10 12 14 16 18 20

SNR
dB

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

MMSE

Sli-BiLSTM

Sli-MLP

Sli-Iterative

Viterbi

6 6.5 7 7.5 8

0.16

0.18

0.2

0.22

Figure 3.14: BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative model
for the varying channels, L = 5, N = 10, and λ = 0.4.

57

In Fig 3.15, we produce results for a fixed channel realization with channel taps:

g0 = 0.273, g1 = 0.156, g2 = −0.094, g3 = −0.0026, g4 = −0.427, g5 = −0.206,

g6 = −0.149. In this case, we obtain very close results with the Viterbi Algorithm

based equalization. We can also produce results for a larger number of channel

taps (e.g., L = 7) compared to varying ISI channel examples. Since we use a

longer ISI length L = 7 compared to previous simulations, we produce bit error

rates for N = 20 as well. The performance gap between the proposed models and

the linear MMSE equalizers after 12 dB widens, providing a gain of more than

4 dB at a BER level of 10−2. Moreover, the proposed models produce results

as close as 1 dB to the Viterbi Algorithm based equalization for the same SNR

range.

0 2 4 6 8 10 12 14 16 18

SNR
dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

MMSE

Sli-BiGRU

Sli-BiGRU N=20

Sli-MLP

Sli-MLP N=20

Viterbi

Figure 3.15: BER results of the Sli-BiGRU and Sli-MLP model for a fixed channel

with L = 7.

58

3.5 Chapter Summary

In this chapter, we use sliding window based DL models to detect data streams

that received through an ISI channel. Specifically, we propose three different DL-

based methods, namely Sli-BiLSTM, Sli-MLP, and Sli-Iterative for time-varying

ISI channels. Based on the idea that each window used in a symbol’s estimation

process should have a different weight, we further introduce a single-layer NN-

based window weight network to learn the corresponding window weights. Fur-

thermore, we employ the Sli-BiGRU and Sli-MLP networks for fixed ISI channels.

We show that the newly designed ISI detectors are computationally efficient, and

can perform equalization under perfect or noisy CSI in an effective manner. We

evaluate the performance of the proposed models for different settings, and the

results show that the proposed models produce close results with the Viterbi Al-

gorithm based equalization while they have a superior performance compared to

linear MMSE equalizers.

59

Chapter 4

Deep Learning Based Channel

Equalization for MIMO ISI

Channels

In this chapter, we examine DL-based equalization techniques for multiple-input

multiple-output (MIMO) ISI channels, by extending the proposed models in the

previous chapter to the MIMO ISI case. We also discuss the complexities and

limitations of the newly developed models. To assess the performance of the

proposed solutions, the bit error rate results of the proposed DL-based models

are compared with those of the Viterbi Algorithm and linear MMSE equalizer.

The chapter is organized as follows. Section 4.1 describes the system model.

The models presented in Chapter 3 are extended for equalization of MIMO ISI

channels in Section 4.2. We present our numerical results in Section 4.3, and

conclude the chapter in Section 4.4.

60

4.1 System Model

We focus on transmission over a MIMO-ISI channel. We consider an nT × nR

MIMO system with nT transmitting and nR receiving antennas. When the num-

ber of transmitting and receiving antennas is one, the model becomes single-input

single-output (SISO), which is the setup considered in the previous chapter.

The received vector contains intersymbol interference and AWGN, which is

white in both time and space (i.e., independent across antennas). Then the

received sequence at the mth receiver and at time k = 0, . . .K − 1 becomes

y
(m)
k =

nT∑
n=1

L−1∑
l=0

g
(m,n)
l s

(n)
k−l + z

(m)
k . (4.1)

where s
(n)
k is the symbol sequence at the transmitter n, g

(m,n)
k is the impulse

response from the transmitter n to the receiver m.

The received signal vector can also be written as

y
(1)
k
...

y
(nR)
k

 =
L−1∑
l=0

Gl

s
(1)
k−l
...

s
(nT)
k−l

+

z
(1)
k
...

z
(nR)
k

 , (4.2)

where z
(1)
k ,z

(nR)
k are AWGN samples, and Gl is the discrete-time equivalent

impulse response of the lth tap, where Gl is defined as

Gl =

g
(1,1)
l · · · g

(1,nT)
l

...
. . .

...

g
(nR,1)
l · · · g

(nR,nT)
l

nR×nT

. (4.3)

We assume that the lth channel taps have a zero mean Gaussian distribution

whose power follows an exponential delay profile, i.e.,

61

g
(m,n)
l ∼ N (0, σ2

l). (4.4)

with

σ2
l =

e−γ×l

L−1∑
l=0

e−γ×l

(4.5)

where γ is a coefficient that depends on the wireless channel environment, i.e.,

following an exponentially decaying power delay profile, as also adopted in the

previous chapter. The sliding-window model for the received sample is as follows:

yn = Gsn + zn, (4.6)

where, for considering the N1 previous and N2 following received symbols, we

have:

yn ≜
[
y
(1)
n−N1

, ..., y
(nR)
n−N1

, ..., y
(1)
n+N2

, ..., y
(nR)
n+N2

]
(nRN)×1

sn ≜
[
s
(1)
n−N1−L+1, ..., s

(nT)
n−N1−L+2, ..., s

(1)
n+N2

, ..., s
(nT)
n+N2

]
nT (N+L−1)×1

(4.7)

zn ≜
[
z
(1)
n−N1

, ..., z
(nR)
n−N1

, ..., z
(1)
n+N2

, ..., z
(nR)
n+N2

]
(nRN)×1

.

The channel matrix is then defined as:

62

G =

GL−1 · · · G0 0 · · · · · · 0

0 GL−1 · · · G0 0 · · · 0
...

.
...

0 · · · · · · 0 GL−1 · · · G0

nRN×nT (N+L−1)

. (4.8)

where N = 1 + N1 +N2.

4.2 Proposed Deep Learning Based Models

We extend the three models proposed in Chapter 3 for the MIMO setup. We first

examine the Sliding Bi-LSTM detector, and then Sliding MLP. Finally, we also

use the idea of DetNet [37] and Iterative model [38] which are designed for MIMO

detection to solve the channel equalization problem in MIMO ISI channels.

4.2.1 Sliding Bi-LSTM Equalizer MIMO ISI Channels

In this section, we introduce the sliding Bi-LSTM equalizer for MIMO ISI chan-

nels. The input size of the network is different from the SISO case. Each channel

matrix contains nR × nT elements, hence a total of L× nR × nT elements should

be concatenated with part of the received vector of length N × nR as the input.

Therefore, the input length becomes (L × nR × nT) + (N × nR) and the output

length is N × nT . The resulting network architecture is shown in Fig. 4.1.

We perform the hyperparameter search for L = 3, N = 10, and nR=nT=2,

and we use the selected model for other parameters as well. In our specific design

example, the inputs are fed into four layers of a Bi-LSTM network, these four

layers have sizes of 100, 100, 50, and 100 units for each forward and backward

state, which is the same as the SISO model considered in the previous chapter.

By using an N×nR symbols long window and performing detection for N×nT

63

Channel taps Stream of observed
signals

Multi-layer Bi-LSTM layers

Time distributed tanh dense layer

concatenate

… yt
(1) yt

(2) … yt
(nR) … …

…

g0
(nR, nT) … gL

(nR, nT)g0
(1,1) …

…

… ŝt
(1) ŝt

(2) … ŝt
(nR) … …

Final Decision Block

… x̂t
(1) x̂t

(2) … x̂t
(nR) … …

ŝt+ τ
(1) ŝt + τ

(2)

x̂t + τ
(1) x̂t + τ

(2)

yt +τ
(1) yt +τ

(2)

Figure 4.1: The network architecture of Sliding Bi-LSTM MIMO ISI detector.

symbols, the Sli-BiLSTM network slides ahead by nR symbols, and the same

process is repeated. In Fig. 4.2, we show how the detector is shifted for N = 3,

and nR=2.

… yt
(1) yt

(2) yt+1
(1) yt+1

(2) yt+2
(1) yt+2

(2) yt+3
(1) yt+3

(2) yt+4
(1) yt+4

(2) …

Detector

Detector

Detector

Figure 4.2: The Sliding Bi-LSTM Detector for N=3 and nR=2.

64

4.2.2 Sliding MLP Equalizer MIMO ISI Channels

In this model, we use MLP instead of the multi-layer Bi-LSTM. We use the model

structure employed in the previous chapter, however, by doubling the number of

neurons. The remaining parameters, and training and test methodologies are as

described in the previous chapter.

4.2.3 Sliding Iterative Equalizer MIMO ISI Channels

We introduce the Sli-Iterative model for MIMO ISI channels as well. We examined

this model in detail in the previous chapter; here we only review the modifications

required for the case of MIMO ISI channels. For the MIMO ISI modification, the

y and s variables in (3.5) need to be replaced with the expressions in (4.7). In

addition, the matrix given in (4.8) should be used as the G matrix. The input

size for the MIMO ISI model, in the case of BPSK modulation, is 3Nt (where

Nt=nT (N+L)), since the real part of three input features, each with a dimension

Nt, G
∗y, G∗Gŝk, ŝk are concatenated. After the mentioned changes are made

for the input vector, it is fed to the network in Fig. 3.6.

4.3 Simulation Results

In this section, we evaluate the BER performance of the proposed DL-based

models for MIMO ISI channels. We model the multipath channels with expo-

nential–decay power–delay profiles as given in (4.4). The parameter γ in (4.5) is

taken as γ = 5 . The parameters used in the test part are shown in Table 4.1.

As the parameters L, nT , and nR increase, the proposed models become more

complex, hence their training becomes more difficult. For this reason, we limit

the number of antennas and delay taps in our simulations.

Fig. 4.3 and 4.4 illustrate the bit error rates of all three proposed models for

65

Table 4.1: The test set parameters for MIMO setup

Parameter Selected Value

K nT (200 + 2(L− 1))
γ 1/5
λ 0.4
N 10
test set size 5000
test SNR in dB {0,1,2,. . . ,20}

the cases with L = {2, 3} and nR = nT = 2. We observe that all proposed models

outperform the linear MMSE equalizer for the case with L = 2 and nR = nT = 2.

The Sli-Iterative and Sli-MLP models show similar results at low SNRs (0 − 6

dB). We also observe that the Sli-BiLSTM detector performs better than other

models. We produced results for different numbers of Bi-LSTM layers and the

number of states in these layers as well. However, we did not observe significantly

better results, hence they are not reported here.

One of the problems with the Sli-Iterative detector is that as the input size

increases, the model has difficulty in learning and cannot produce good results

for intermediate and high SNRs (between 10 − 20 dB). The Sli-Iterative model

performs worse than Sli-MLP for the 10 − 20 dB SNR range, even though its

structure is more complex. In cases where the number of channel taps is not

excessive, we obtain results close to the Viterbi algorithm based equalization. As

the number of channel taps increases, the BER results of the proposed models

move away from the Viterbi Algorithm based equalization.

66

0 2 4 6 8 10 12 14 16 18 20

SNR
dB

10
-4

10
-3

10
-2

10
-1

B
it
 E

rr
o

r
R

a
te

MMSE

Sli-BiLSTM

Sli-MLP

Sli-Iterative

Viterbi

Figure 4.3: BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative detectors

for MIMO ISI, varying channels, L = 2 and nR=nT=2.

0 2 4 6 8 10 12 14 16 18

SNR
dB

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

MMSE

Sli-BiLSTM

Sli-MLP

Sli-Iterative

Viterbi

Figure 4.4: BER results of the Sli-BiLSTM, Sli-MLP, and Sli-Iterative detectors

for MIMO ISI, varying channels, L = 3 and nR=nT=2.

In Fig. 4.5, we show the performance of all three proposed models for the

same MIMO ISI configuration with CSI error. We take λ = 0.4. The Sli-Iterative

67

0 2 4 6 8 10 12 14 16 18 20

SNR
dB

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

MMSE

Sli-BiLSTM

Sli-MLP

Sli-Iterative

Viterbi

Figure 4.5: BER results of the Sli-BiLSTM,Sli-MLP and Sli-Iterative detectors
for MIMO ISI, varying channels, L = 3, nR=nT=2 and λ = 0.4.

model shows close results with the Viterbi Algorithm based equalization and the

Sli-BiLSTM model in the 0 − 12 dB SNR range. Since the Sli-Iterative uses a

function of channel taps (G∗y and G∗Gŝk) instead of the direct channel taps, it

shows less performance degradation compared to the other models. In the 12−20

dB SNR range, the Sli-BiLSTM gives more successful bit error rates compared to

the other models. In the 12−20 dB SNR range, the Sli-BiLSTM model performs

better than the linear MMSE equalizer by more than 4 dB at a BER of 10−2.

We observe that the results of the proposed models are closer to the Viterbi

Algorithm based equalization than those in Fig. 4.4, which are obtained with

perfect CSI.

In Fig. 4.6, we produce results for a fixed channel realization with channel tap

matrices

G0 =

(
−0.273 −0.496

−0.690 1.018

)
,G1 =

(
0.618 −0.291

−0.187 0.778

)
,G2 =

(
−0.558 0.604

−0.116 0.700

)
.

In this case, we use Bi-GRU or MLP instead of Bi-LSTM as the complexity of the

68

model is smaller, so it would be more accurate to call the models Sli-BiGRU and

Sli-MLP. These proposed models produce close results to the Viterbi Algorithm

based equalization. We produce results for longer ISI channels using the proposed

models in this case compared to examples given for time-varying ISI channels.

Since computational complexity of the Viterbi Algorithm grows exponentially

with L and nT , it is not preferable to use it for such cases. We note that in cases

where L and nT values are selected larger, Sli-BiGRU or Sli-MLP can be used

which outperform the linear MMSE equalizer by a large margin.

0 2 4 6 8 10 12 14 16

SNR(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

MMSE

Sli-BiGRU

Sli-MLP

Viterbi

Figure 4.6: BER results of the Sli-BiGRU and Sli-MLP detectors for a fixed

channel MIMO ISI channel, L = 3, and nR=nT=2.

4.4 Chapter Summary

In this chapter, we focus on transmission over a MIMO-ISI channel. We propose

three different DL-based channel equalization methods, namely Sli-BiLSTM, Sli-

MLP, and Sli-Iterative for the use of time-varying channels, obtained as extensions

of the solutions developed in the previous chapter. We perform simulations with

perfect and imperfect CSI, and compare results with those of the linear MMSE

69

equalizer and the Viterbi Algorithm based equalization. The results show that

the proposed models produce close results with the Viterbi Algorithm while they

have a superior performance compared to linear MMSE equalizers as long as the

ISI length and the number of transmitting antennas are not excessive. Some

modifications and new ideas are needed to get closer results with those of the

Viterbi Algorithm based equalization for larger numbers of antennas or longer

ISI lengths.

70

Chapter 5

Conclusions and Future Work

In this thesis, we propose DL-based equalization techniques for channels with

ISI. Three different DL-based methods, namely Sli-BiLSTM, Sli-MLP, and Sli-

Iterative are proposed for time-varying ISI channels, and it is demonstrated that

they are computationally efficient and capable of performing equalization under

a variety of channel conditions with the knowledge of the channel state informa-

tion. Based on the idea that each window used in a symbol’s estimation process

should have a different weight, we further introduce a single-layer NN-based win-

dow weight network to learn corresponding window weights. We make the final

estimation of a symbol with the weighted or direct average of these different pre-

dictions. Furthermore, we employ the Sli-GRU and Sli-MLP networks for fixed

ISI channels. Through numerical simulations with perfect and noisy CSI, we in-

vestigate the effects of the parameters (ISI length, processing window lenght, and

CSI error level) on BER and we observe that the proposed models produce very

close results with the Viterbi Algorithm based channel equalization with much

less computational complexity, while they offer superior results compared to the

linear MMSE equalizer.

We also extend our study to transmission over MIMO ISI channels by ex-

tending the proposed SISO equalizer networks. Numerical results demonstrate

that the proposed models produce close results with the Viterbi Algorithm based

71

equalization while they have a superior performance compared to linear MMSE

equalizers as long as the ISI length and the number of transmitting antennas are

not excessive.

One possible future research direction is to modify the networks and evaluate

the bit error rates by using different settings, e.g., different modulation techniques

(such as QAM and QPSK) instead of BPSK. For example, if the modulation

technique is changed to QAM, the imaginary part of the received signal can be

given as a second feature in the same time instance for the proposed Sli-BiLSTM

model but this is not the case for the Sli-MLP model. The reason is that time-

step and feature are two separate dimensions in the Bi-LSTM networks but not

in the MLP networks. In the Sli-MLP model, the imaginary part should be

concatenated with the real part as in the Sli-Iterative model.

Another possible future research direction is to evaluate the performance of the

newly proposed models under additional impairments. In this thesis, we produced

results for the noisy channel estimates as the only impairment other than ISI and

noise. In addition to this, the effects of impairments such as carrier frequency

offset, power amplifier distortion, and IQ imbalance on DL based equalization

can also be investigated.

Finally, as we mentioned before, the results for larger numbers of antennas

and longer ISI lengths are open for further research. Different neural network

architectures can be designed or the proposed models can be potentially modified

to obtain DL-based MIMO ISI detectors with better detection capabilities or

computational complexities for this purpose.

72

Bibliography

[1] A. Zappone, M. D. Renzo, and M. Debbah, “Wireless networks design in the

era of deep learning: Model-based, AI-based, or both?” IEEE Transactions

on Communications, vol. 67, pp. 7331–7376, June 2019.

[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Netw., vol. 2, no. 5, p. 359–366, July

1989.

[3] N. Farsad and A. Goldsmith, “Neural network detection of data sequences in

communication systems,” IEEE Transactions on Signal Processing, vol. 66,

no. 21, pp. 5663–5678, Aug. 2018.

[4] F.-L. Luo, Machine Learning for Future Wireless Communications. Wiley-

IEEE Press, 2020, p. 213–241.

[5] J. Proakis, “Adaptive equalization for TDMA digital mobile radio,” IEEE

Transactions on Vehicular Technology, vol. 40, no. 2, pp. 333–341, May 1991.

[6] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical

layer,” IEEE Transactions on Cognitive Communications and Networking,

July 2017.

[7] I. Ahmed, W. Xu, R. Annavajjala, and W.-S. Yoo, “Joint demodulation

and decoding with multi-label classification using deep neural networks,” in

2021 International Conference on Artificial Intelligence in Information and

Communication (ICAIIC), 2021, pp. 365–370.

73

[8] B. He, Z. Wu, and F. Wang, “Rethinking: Deep-learning-based demodula-

tion and decoding,” June 2022.

[9] T. Wu, “CNN and RNN-based deep learning methods for digital signal de-

modulation,” Feb. 2019, pp. 122–127.

[10] F. Lemic, V. Handziski, and J. Famaey, “Toward regression-based estimation

of localization errors in fingerprinting-based localization,” Feb. 2019.

[11] T. Omomule, O. D.O., C. Ugwu, and F. T.A., “QoS performance metrics for

analyzing wireless network usability,” Dec. 2019.

[12] F. Shaheen, B. Verma, and M. Asafuddoula, “Impact of automatic feature

extraction in deep learning architecture,” in 2016 International Conference

on Digital Image Computing: Techniques and Applications (DICTA), Dec.

2016, pp. 1–8.

[13] A. Ali and F. Yangyu, “Unsupervised feature learning and automatic mod-

ulation classification using deep learning model,” Physical Communication,

vol. 25, Sep. 2017.

[14] S. Ramjee, S. Ju, D. Yang, X. Liu, A. E. Gamal, and Y. C. Eldar,

“Fast deep learning for automatic modulation classification,” ArXiv, vol.

abs/1901.05850, Jan. 2019.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” Jan. 1986.

[16] S. Ravula and S. Jain, “Deep autoencoder-based massive MIMO CSI feed-

back with quantization and entropy coding,” in 2021 IEEE Global Commu-

nications Conference (GLOBECOM), Dec. 2021, pp. 1–6.

[17] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate: Chan-

nel auto-encoders, domain specific regularizers, and attention,” in 2016 IEEE

International Symposium on Signal Processing and Information Technology

(ISSPIT), Mar. 2016, pp. 223–228.

74

[18] S. Cammerer, F. A. Aoudia, S. Dörner, M. Stark, J. Hoydis, and S. ten

Brink, “Trainable communication systems: Concepts and prototype,” IEEE

Transactions on Communications, vol. 68, no. 9, pp. 5489–5503, Sep. 2020.

[19] F. A. Aoudia and J. Hoydis, “End-to-end learning of communications sys-

tems without a channel model,” in 2018 52nd Asilomar Conference on Sig-

nals, Systems, and Computers, Dec. 2018, pp. 298–303.

[20] F. Alberge, “Deep learning constellation design for the AWGN channel

with additive radar interference,” IEEE Transactions on Communications,

vol. 67, no. 2, pp. 1413–1423, Feb. 2019.

[21] W. Qiang and Z. Zhongli, “Reinforcement learning model, algorithms and

its application,” in 2011 International Conference on Mechatronic Science,

Electric Engineering and Computer (MEC), Feb. 2011, pp. 1143–1146.

[22] A. Kwasinski, W. Wang, and F. Shah-Mohammadi, Reinforcement Learning

for Resource Allocation in Cognitive Radio Networks, Dec. 2019, pp. 27–44.

[23] J. Li, R. Zhao, H. Hu, and Y. Gong, “Improving RNN transducer mod-

eling for end-to-end speech recognition,” in 2019 IEEE Automatic Speech

Recognition and Understanding Workshop (ASRU), Sep. 2019, pp. 114–121.

[24] A. F. Ganai and F. Khursheed, “Predicting next word using RNN and LSTM

cells: Stastical language modeling,” in 2019 Fifth International Conference

on Image Information Processing (ICIIP), Nov. 2019, pp. 469–474.

[25] M. Wang, L. Song, X. Yang, and C. Luo, “A parallel-fusion RNN-LSTM ar-

chitecture for image caption generation,” in 2016 IEEE International Con-

ference on Image Processing (ICIP), Sep. 2016, pp. 4448–4452.

[26] C. Su, H. Huang, S. Shi, P. Jian, and X. Shi, “Neural machine translation

with gumbel tree-LSTM based encoder,” J. Vis. Commun. Image Represent.,

vol. 71, p. 102811, Aug. 2020.

75

[27] Y. Chen and K. Wang, “Prediction of satellite time series data based on long

short term memory-autoregressive integrated moving average model (LSTM-

ARIMA),” in 2019 IEEE 4th International Conference on Signal and Image

Processing (ICSIP), July 2019, pp. 308–312.

[28] S. Zheng, Y. Liu, and P. H. Siegel, “PR-NN: RNN-based detection for coded

partial-response channels,” IEEE Journal on Selected Areas in Communica-

tions, vol. 39, no. 7, pp. 1967–1982, July 2021.

[29] H.-M. Ou, C.-F. Teng, W.-C. Tsai, and A.-Y. A. Wu, “A neural network-

aided viterbi receiver for joint equalization and decoding,” in 2020 IEEE 30th

International Workshop on Machine Learning for Signal Processing (MLSP),

Sep. 2020, pp. 1–6.

[30] S. Deligiannidis, C. Mesaritakis, and A. Bogris, “Performance and complex-

ity analysis of bi-directional recurrent neural network models versus volterra

nonlinear equalizers in digital coherent systems,” Journal of Lightwave Tech-

nology, vol. 39, no. 18, pp. 5791–5798, June 2021.

[31] S. Deligiannidis, A. Bogris, C. Mesaritakis, and Y. Kopsinis, “Compensation

of fiber nonlinearities in digital coherent systems leveraging long short-term

memory neural networks,” Journal of Lightwave Technology, vol. 38, no. 21,

pp. 5991–5999, Sep. 2020.

[32] S. Lai and M. Li, “Recurrent neural network assisted equalization for FTN

signaling,” in ICC 2020 - 2020 IEEE International Conference on Commu-

nications (ICC), June 2020, pp. 1–6.

[33] W. Xu, Z. Zhong, Y. Be’ery, X. You, and C. Zhang, “Joint neural network

equalizer and decoder,” in 2018 15th International Symposium on Wireless

Communication Systems (ISWCS), Aug. 2018, pp. 1–5.

[34] H. Wu, Y. Zhang, X. Zhao, N. Zhu, and M. Coates, “End-to-end physical

layer communication using bi-directional GRUs for ISI channels,” in 2020

IEEE Globecom Workshops (GC Wkshps), Dec. 2020, pp. 1–6.

[35] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

76

[36] N. Samuel, T. Diskin, and A. Wiesel, “Deep MIMO detection,” in 2017

IEEE 18th International Workshop on Signal Processing Advances in Wire-

less Communications (SPAWC), June 2017, pp. 1–5.

[37] ——, “Learning to detect,” IEEE Transactions on Signal Processing, vol. 67,

no. 10, pp. 2554–2564, Feb. 2019.

[38] O. Sholev, H. H. Permuter, E. Ben-Dror, and W. Liang, “Neural network

MIMO detection for coded wireless communication with impairments,” in

2020 IEEE Wireless Communications and Networking Conference (WCNC),

June 2020, pp. 1–8.

[39] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for

MIMO detection,” IEEE Transactions on Signal Processing, vol. 68, pp.

1702–1715, Feb. 2020.

[40] X. Yan, F. Long, J. Wang, N. Fu, W. Ou, and B. Liu, “Signal detec-

tion of MIMO-OFDM system based on auto encoder and extreme learn-

ing machine,” in 2017 International Joint Conference on Neural Networks

(IJCNN), May 2017, pp. 1602–1606.

[41] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based

MIMO communications,” CoRR, vol. abs/1707.07980, July 2017. [Online].

Available: http://arxiv.org/abs/1707.07980

[42] T. Erpek, T. J. O’Shea, and T. C. Clancy, “Learning a physical layer scheme

for the MIMO interference channel,” in 2018 IEEE International Conference

on Communications (ICC), May 2018, pp. 1–5.

[43] M. A. Wijaya, K. Fukawa, and H. Suzuki, “Intercell-interference cancella-

tion and neural network transmit power optimization for MIMO channels,”

in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Jan.

2015, pp. 1–5.

[44] T. J. O’Shea, T. Roy, and N. West, “Approximating the void: Learning

stochastic channel models from observation with variational generative ad-

versarial networks,” in 2019 International Conference on Computing, Net-

working and Communications (ICNC), Aug. 2019, pp. 681–686.

77

[45] T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning-

based channel decoding,” in 2017 51st Annual Conference on Information

Sciences and Systems (CISS), Jan. 2017, pp. 1–6.

[46] V. Ninkovic, D. Vukobratovic, C. Häger, H. Wymeersch, and A. Graell i

Amat, “Autoencoder-based unequal error protection codes,” IEEE Commu-

nications Letters, vol. 25, no. 11, pp. 3575–3579, Aug. 2021.

[47] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance evaluation

of channel decoding with deep neural networks,” in 2018 IEEE International

Conference on Communications (ICC), Jan. 2018, pp. 1–6.

[48] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and

Y. Be’ery, “Deep learning methods for improved decoding of linear codes,”

IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp.

119–131, Jan. 2018.

[49] T. J. O’Shea, L. Pemula, D. Batra, and T. C. Clancy, “Radio transformer

networks: Attention models for learning to synchronize in wireless systems,”

in 2016 50th Asilomar Conference on Signals, Systems and Computers, May

2016, pp. 662–666.

[50] M. J. Park, J. Ok, Y.-S. Jeon, and D. Kim, “MetaSSD: Meta-learned self-

supervised detection,” in 2022 IEEE International Symposium on Informa-

tion Theory (ISIT), May 2022, pp. 480–485.

[51] N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Data-driven

factor graphs for deep symbol detection,” in 2020 IEEE International Sym-

posium on Information Theory (ISIT), Jan. 2020, pp. 2682–2687.

[52] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-

tion,” J. Mach. Learn. Res., vol. 13, no. null, p. 281–305, Feb. 2012.

[53] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway net-

works,” CoRR, vol. abs/1505.00387, Nov. 2015. [Online]. Available:

http://arxiv.org/abs/1505.00387

78

