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ABSTRACT

THREE ESSAYS IN THE INTERFACE OF
OPTIMIZATION WITH MECHANISM DESIGN,

NONEXCLUSIVE COMPETITION, AND PROPHET
INEQUALITIES

Halil İbrahim Bayrak
Ph.D. in Industrial Engineering
Advisor: Mustafa Çelebi Pınar

Co-Advisor: Nuh Aygün Dalkıran
September 2022

Mechanism Design. We consider the mechanism design problem of a principal allocating
a single good to one of several agents without monetary transfers. Each agent desires the
good and uses it to create value for the principal. We designate this value as the agent’s pri-
vate type. Even though the principal does not know the agents’ types, she can verify them
at a cost. The allocation of the good thus depends on the agents’ self-declared types and
the results of any verification performed, and the principal’s payoff matches her allocation
value minus the verification costs. It is known that when the agents’ types are independent,
a favored-agent mechanism maximizes her expected payoff. However, this result relies on
the unrealistic assumptions that the agents’ types follow known independent probability
distributions. We assume that the agents’ types are governed by an ambiguous joint prob-
ability distribution belonging to a commonly known ambiguity set and that the principal
maximizes her worst-case expected payoff. We consider three types of ambiguity sets:
(i) support-only ambiguity sets, which contain all distributions supported on a rectangle,
(ii) Markov ambiguity sets, characterized through first-order moment bounds, and (iii)
Markov with independence ambiguity sets. For each of these ambiguity sets, we show that
a favored-agent mechanism, which we characterize implicitly, is optimal and also Pareto-
robustly optimal. The optimal choices of the favored agent and the threshold do not depend
on the verification costs in all three cases.
Nonexclusive Competition. A freelancer with a time constraint faces offers from multiple
identical parties. The quality of the service provided by the freelancer can be high or low
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and is only known by the freelancer. The freelancer’s time cost is strictly increasing and
convex. We show that a pure-strategy equilibrium exists if and only if the preferences of
the high-type freelancer satisfy one of the following two distinct conditions: (i) the high-
type freelancer does not prefer providing his services for a price equal to the expected
quality at the no-trade point; (ii) the high-type freelancer prefers providing his services
for a price equal to the expected quality at any feasible trade point. If (i) holds, then in
equilibrium, the high-type freelancer does not trade, whereas the low-type may not trade,
trade efficiently, or exhaust all of his capacity. Moreover, the buyers make zero profit from
each of their traded contracts. If (ii) holds, then both types of the freelancer trade at the
capacity in equilibrium. Furthermore, the buyers make zero expected profit with cross-
subsidization. In any equilibrium, the aggregate equilibrium trades are unique.
Prophet Inequalities. Prophet inequalities bound the expected reward obtained in a class of
stopping problems by the optimal reward of the corresponding offline problem. We show
how to obtain prophet inequalities for a large class of stopping problems associated with
selecting a point in a polyhedron. Our approach utilizes linear programming tools and is
based on a reduced form representation of the stopping problem. We illustrate the useful-
ness of our approach by re-establishing three different prophet inequality results from the
literature. (i) For polymatroids with nonnegative coefficients in their unique Minkowski
sum of simplices, we prove the 1

2
-prophet inequality. (ii) We prove the 1

n
-prophet inequal-

ity when there are n stages, the stages have dependently distributed rewards, and we are
restricted to choosing a strategy from an arbitrary polyhedron. (iii) When the feasible
set of strategies can be described via K different constraints, we obtain the 1

K+1
-prophet

inequality.

Keywords: Mechanism design, Costly verification, Distributionally robust optimization,
Ambiguity aversion & Adverse Selection, Competing Mechanisms, Nonexclusivity, Labor
Markets & Stopping Problems, Prophet Inequalities.



ÖZET

MEKANİZMA TASARIMI, MÜNHASIR OLMAYAN
REKABET VE KAHİN EŞİTSİZLİKLERİ İLE ENİYİLEME

ARAYÜZÜNDE ÜÇ DENEME

Halil İbrahim Bayrak
Endüstri Mühendisliği, Doktora

Tez Danışmanı: Mustafa Çelebi Pınar
İkinci Tez Danışmanı: Nuh Aygün Dalkıran

Eylül 2022

Mekanizma Tasarımı. Para alış verişi olmaksızın birkaç adaydan birine tek bir mal
tahsis etmek üzerine bir mekanizma tasarım problemini ele alıyoruz. Her aday mala
sahip olmak ister ve bunu mekanizma tasarımcısı için değer yaratmak için kullanır. Bu
değer, her adaya özel ve mahremdir. Mekanizma tasarımcısı bu değerleri bilmese de, bir
ücret karşılığında onları teftiş edebilir. Dolayısıyla, malın tahsisi, adayların kendi beyan
ettikleri değerlere ve gerçekleştirilen herhangi bir doğrulamanın sonuçlarına bağlıdır.
Mekanizma tasarımcısının kazancı, tahsis değerinden teftiş maliyetleri çıkarılınca bulu-
nan değere eşittir. Adayların değerleri bağımsız dağıtılan rasgele değişkenler olduğunda,
tercih edilen aday mekanizmasının beklenen getiriyi enbüyüklediği bilinmektedir. Ancak
bu sonuç, aday değerlerinin bilinen ve bağımsız olasılık dağılımlarına göre belirlendiğine
dair gerçekçi olmayan varsayımlara dayanmaktadır. Biz ise aday değerlerinin bağlı olduğu
olasılık dağılımının herkesçe bilinen bir belirsizlik kümesine ait olduğunu, ve mekanizma
tasarımcısının en kötü durumda gerçekleşen beklenen getirisini enbüyüklemek istediğini
varsayıyoruz. Üç tür belirsizlik kümesini ele alıyoruz: (i) bir dikdörtgen içindeki tüm
dağılımları içeren belirsizlik kümeleri, (ii) bir dikdörtgen içinde olan, adayların beklenen
değerlerini de sınırlayan belirsizlik kümeleri ve (iii) bir dikdörtgen içinde olan, adayların
beklenen değerlerinin sınırlandığı ve bağımsız olduğu belirsizlik kümeleri. Bu belirsizlik
kümelerinin her biri için, eniyi ve ayrıca Pareto-gürbüz eniyi olan bir tercih edilen aday
mekanizması olduğunu gösteriyoruz. Her üç durumda da, Pareto-gürbüz eniyi mekaniz-
mayı tanımlayan aday ve eşik değerleri teftiş maliyetlerinden bağımsız olarak seçilebilir.
Münhasır Olmayan Rekabet. Zaman kısıtlaması olan bir serbest çalışan, birden fazla
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potansiyel müşteriden gelen tekliflerle karşı karşıya kalır. Serbest çalışan tarafından
verilen hizmetin kalitesi yüksek veya düşük olabilir, ve bu bilgi sadece serbest çalışan
tarafından bilinir. Serbest çalışanın maliyeti dışbükeydir ve çalışma süresi arttıkça kesin-
likle artar. Bir saf strateji dengesinin ancak ve ancak yüksek tipte serbest çalışanın tercih-
leri aşağıdaki iki farklı koşuldan birini karşılıyorsa var olduğunu gösteriyoruz: (i) yüksek
tip serbest çalışan, ticaret yapılmayan noktada hizmetlerini beklenen kaliteye eşit bir fiy-
ata sunmayı tercih etmiyor; (ii) yüksek tip serbest çalışan, herhangi bir uygun ticaret nok-
tasında hizmetlerini beklenen kaliteye eşit bir fiyata sunmayı tercih ediyor. Eğer (i) tutarsa,
o zaman dengede, yüksek tip serbest çalışan ticaret yapmazken, düşük tip ticaret yapmaya-
bilir, verimli ticaret yapabilir veya tüm kapasitesini tüketebilir. Ayrıca, alıcılar işlem gören
sözleşmelerinin her birinden sıfır kar elde eder. Eğer (ii) tutarsa, o zaman dengede, her iki
serbest meslek türü de kapasitede ticaret yapar. Ayrıca, alıcılar yüksek tiple yapılan alış
verişten kar ederken, düşük tiple olan alışverişten zarar ederler. Her alıcının beklenen
kazancı ise sıfırdır. Herhangi bir dengede, toplam denge işlemlerinin alabileceği tek bir
değer vardır.
Kahin Eşitsizlikleri. Kahin eşitsizlikleri, durdurma problemlerinde elde edilen bekle-
nen ödülü, karşılık gelen çevrimdışı problemin eniyi ödülünü kullanarak sınırlar. Bir
çokyüzlüden strateji seçilmesi de dahil, geniş bir durdurma problemi sınıfı için kahin
eşitsizliklerinin nasıl elde edileceğini gösteriyoruz. Doğrusal programlama araçlarını kul-
lanan çözüm yöntemimiz, durdurma probleminin indirgenmiş temsiline dayanmaktadır.
Literatürden üç farklı kahin eşitsizliği sonucunu yeniden elde ederek yaklaşımımızın
yararlılığını gösteriyoruz. (i) Eşsiz Minkowski Simpleks toplamında eksi değerler ol-
mayan polymatroid’ler için 1

2
-kahin eşitsizliğini ispatlıyoruz. (ii) Evre sayısı n olduğunda,

evrelerdeki ödüller birbirlerine bağımlı dağıtıldığında ve herhangi bir çokyüzlüden strateji
seçme kısıtı olduğuda, 1

n
-kahin eşitsizliğini ispatlıyoruz. (iii) Seçilebilen strateji kümesi

K adet kısıtlama ile tanımlanabildiğinde, 1
K+1

-kahin eşitsizliğini elde ediyoruz.

Anahtar sözcükler: Mekanizma tasarımı, Masraflı Teftiş, Dağıtım Açısından Gürbüz Eniy-
ileme, Belirsizlikten Kaçınma & Ters Seçim, Rekabet Mekanizmaları, Münhasır Olmayan
Rekabet, İşgücü Piyasaları & Durdurma problemleri, Kahin eşitsizlikleri.
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Chapter 1

Introduction

This thesis consists of three chapters that share little to no common ground except for using

optimization and linear programming tools. Chapter 2 presents and solves a robust mech-

anism design problem. In general, a mechanism designer owns an item desired by several

agents who privately know their valuation for the item. The aim is to find an allocation

rule that elicits privately held information and performs well with respect to some chosen

objective. Robustness comes into play when there is ambiguity regarding the distribution

governing privately held information. Hence, it is also in the interest of the mechanism

designer to find an allocation rule that performs well even when the distribution is ad-

versely selected. We use mechanism design and robust optimization tools to deliver our

results for this part. Chapter 3 focuses on labor markets where several buyers compete

nonexclusively to acquire the services of a freelancer under adverse selection. Adverse

selection means that the freelancer privately knows his service quality, and a high-quality

service comes with a high price. On the other hand, nonexclusive competition means that

the buyers cannot force the freelancer to work exclusively for them. Hence, as long as his

capacity allows, the freelancer can contract with several buyers simultaneously. In this set-

ting, we characterize the aggregate equilibrium trades by studying certain deviations of the

1



buyers. In Chapter 4, we show that linear programming tools can be used to drive prophet

inequalities more straightforwardly. Prophet inequalities are approximation guarantees for

optimal stopping problems, which compare the performance of the optimal solution to that

of complete information.

1.1 The Contributions and the Structure of the Disserta-

tion

Here, we give a brief presentation of each chapter and their contributions. We will discuss

and contrast them with the existing literature in more detail in their respective chapters.

Chapter 2 is a result of collaborations with Dr. Çağıl Koçyiğit, Dr. Daniel Kuhn, and

my advisor Dr. Mustafa Çelebi Pınar. We consider a principal who wants to allocate a

good to one of several agents without using monetary transfers. Each agent derives strictly

positive utility from owning the good and privately knows the value he generates for the

principal if he is allocated with the good. The principal can verify any agent’s report

at a cost, which will perfectly reveal the agent’s type. The principal aims to design a

mechanism that maximizes her value from the allocation minus verification costs. When

the agents’ types are modeled as independent random variables governed by a commonly

known probability distribution, favored-agent mechanisms solve the principal’s problem.

We relax the common prior assumption and assume that the distribution of the agents’

types belongs to a commonly known ambiguity set. Assuming that the principal wants

to maximize her worst-case expected payoff, we characterize optimal and Pareto robustly

optimal mechanisms for three classes of ambiguity sets: (i) support-only ambiguity sets

containing all distributions supported on a rectangle, (ii) Markov ambiguity sets containing

all distributions supported on a rectangle whose mean values fall within another (smaller)

2



rectangle, and (iii) Markov ambiguity sets with independent types containing all distribu-

tions in Markov ambiguity sets under which agents’ types are independent. Our results

show that even in the presence of ambiguity, one can find a simple Pareto robustly optimal

favored-agent mechanism. As opposed to the results with common prior assumption, the

favored agent and the threshold of our Pareto robustly optimal mechanisms are indepen-

dent of the verification costs.

Chapter 3 is a result of collaboration with my co-advisor, Dr. Nuh Aygün Dalkıran.

We consider a freelancer who has limited working hours and can serve multiple parties

by allocating his time accordingly. He has convex cost so that working an extra minute

gets more costly as the allocated time for work gets high. On the other side of the mar-

ket, several buyers are interested in the freelancer’s services but have limited information

regarding the service quality. Furthermore, no buyer can limit the freelancer regarding

the contracts made with the other buyers. We characterize the equilibrium trades for this

problem by assuming that there are at least two buyers, and the freelancer has private infor-

mation regarding the quality of his service that can be either low or high. The buyers share

a common prior regarding the quality of the service provided by the freelancer. The buyers

have linear preferences for quality and compete through offering contracts that specify a

quantity and a transfer. The freelancer observes the offers and chooses the contracts that

maximize his payoff. The preferences of each type of the freelancer are quasilinear. In this

context, we provide two distinct sufficiency conditions for the existence of a pure-strategy

equilibrium. These conditions are also necessary for their respective equilibria. (i) At the

no-trade point, the high-type freelancer is not willing to trade any amount of his time in

exchange for a price equal to the average quality of the service. (ii) At any feasible trade

point, the high-type freelancer is willing to trade any amount of his time in exchange for a

price equal to the average quality of the service. If (i) holds, then the high-type freelancer

does not trade in equilibrium, while the aggregate trade of the low-type depends on his

preferences. In such equilibria, the buyers make zero profit from each traded contract. If

(ii) holds, both types trade at the capacity, and there is cross-subsidization in equilibrium.

In all of these equilibria, aggregate equilibrium trades are unique.
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Chapter 4 is a result of collaborations with Dr. Rakesh Vohra and my advisor Dr.

Mustafa Çelebi Pınar. We argue the usefulness of linear programming arguments in the

derivation of prophet inequalities. Consider a gambler who is sequentially presented with

the contents of many boxes, each containing a nonnegative reward. Each time a box is

opened, the gambler must either claim the last unboxed reward or discard it and move

on. The gambler wants to maximize his expected gains, whereas a prophet who can fore-

sight all reward realizations can choose the highest reward in any game instance, hence

gaining the expected value of the maximum reward. When the rewards are independently

distributed, the optimal strategy of the gambler yields at least half of the optimal strategy

of the prophet, which is called the prophet inequality. We contribute to the literature by re-

establishing three different prophet inequality results by finding a feasible strategy for the

gambler, which aligns with the prophet’s optimal strategy in expectation to some desired

level. (i) When the player is restricted to a polymatroid with nonnegative coefficients in

its unique Minkowski sum of simplices, we prove the 1
2
-prophet inequality. (ii) We show

the 1
n

-prophet inequality when there are n many boxes, the reward distributions can be de-

pendent, and the gambler is restricted to an arbitrary polyhedron. (iii) When the gambler

is subject to K many constraints, we obtain the 1
K+1

-prophet inequality.

1.1.1 Statement of Originality

I certify that this dissertation is the result of my own work, where some parts are the results

of collaborations with my advisor Dr. Mustafa Çelebi Pınar, my co-advisor Dr. Nuh Aygün

Dalkıran, and my co-authors Dr. Çağıl Koçyiğit, Dr. Daniel Kuhn and Dr. Rakesh Vohra.

No other person’s work has been used without due acknowledgement.
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Chapter 2

Distributionally Robust Optimal
Allocation with Costly Verification

2.1 Introduction

Consider a principal (‘she’) who allocates a good to one of several agents without using

monetary transfers. Each agent (‘he’) derives strictly positive utility from owning the good

and has a private type, which reflects the value he creates for the principal if receiving

the good. The principal is unaware of the agents’ types but can verify any of them at a

cost. Any verification will perfectly reveal the corresponding agent’s type to the principal.

The good is allocated based on the agents’ self-declared types as well as the results of

any verification performed. The principal aims to design an allocation mechanism that

maximizes her payoff, i.e., the value of allocation minus any costs of verification.

This generic mechanism design problem arises in many different contexts. For exam-

ple, the rector of a university may have funding for a new faculty position and needs to

5



allocate it to one of the school’s departments, the ministry of health may need to decide

in which town to open up a new hospital, a venture capitalist may need to select a start-up

business that should receive seed funding, the procurement manager of a manufacturing

company may need to choose one of several suppliers, or a consulting company may need

to identify a team that leads a new project. In all of these examples, the principal wishes

to put the good into use where it best contributes to her organization or the society as a

whole. Each agent desires the good and is likely to be well-informed about the value he

will generate for the principal if he receives the good. In addition, monetary transfers may

be inappropriate in all of the described situations, but the principal can collect information

through costly investigation or audit.

Mechanism design problems of the above type are usually referred to as ‘allocation with

costly verification.’ Ben-Porath et al. [3] describe the first formal model for their analysis

and introduce the class of favored-agent mechanisms, which are attractive because of their

simplicity and interpretability. As in most of the literature on mechanism design, [3]

model the agents’ types as independent random variables governed by a commonly known

probability distribution, which allows them to prove that any mechanism that maximizes

the principal’s expected payoff is a randomization over favored-agent mechanisms. Any

favored-agent mechanism is characterized by a favored agent and a threshold value, and

it assigns the good to the favored agent without verification whenever the reported types

of all other agents—adjusted for the costs of verification—fall below the given threshold.

Otherwise, it allocates the good to any agent for which the reported type minus the cost

of verification is maximal and verifies his reported type. The choice of the favored agent

is predicated on the principal’s prior beliefs about the agents’ types. The favored agent

receives the good without verification if no other agent claims to have a high enough type.

Otherwise, the principal verifies the highest reported (adjusted) type and allocates the good

to the respective agent. This mechanism is incentive compatible, that is, no agent has an

incentive to misreport his true type; see Section 2.2 for more details.

The vast majority of the literature on allocation with costly verification (see, e.g., [4, 5])

6



sustains the modeling assumptions of Ben-Porath et al. [3], thus assuming that the agents’

types are independent random variables and that their distribution is common knowledge.

In reality, however, it is often difficult to justify the precise knowledge of such a distribu-

tion. This prompts us to study allocation problems with costly verification under the more

realistic assumption that the principal has only partial information about the distribution

of the agents’ types. Specifically, we assume that the distribution of the agents’ types is

unknown but belongs to a commonly known ambiguity set (i.e., a family of multiple—

perhaps infinitely many—distributions). In addition, we assume that the principal is am-

biguity averse in the sense that she wishes to maximize her worst-case expected payoff

in view of all distributions in the ambiguity set. Under these assumptions, the mecha-

nism design problem at hand can be case as a zero-sum game between the principal, who

chooses a mechanism to allocate the good, and some fictitious adversary, who chooses the

distribution of the agents’ types from the ambiguity set in order to inflict maximum dam-

age to the principal. Using techniques from distributionally robust optimization (see, e.g.,

[6, 7]), we characterize optimal and Pareto robustly optimal mechanisms for three classes

of ambiguity sets: (i) support-only ambiguity sets containing all distributions supported on

a rectangle, (ii) Markov ambiguity sets containing all distributions supported on a rectan-

gle whose mean values fall within another (smaller) rectangle, and (iii) Markov ambiguity

sets with independent types containing all distributions in Markov ambiguity sets under

which agents’ types are independent. We emphasize that both support-only as well as

Markov ambiguity sets contain distributions under which the agents’ types are mutually

dependent. Pareto robust optimality is an important solution concept in robust optimiza-

tion (see [8]). In the distributionally robust context considered here, a mechanism is called

Pareto robustly optimal if there is no other mechanism that generates a non-inferior ex-

pected payoff under every distribution in the ambiguity set and a strictly higher expected

payoff under at least one distribution in the ambiguity set. Every Pareto robustly optimal

solution is also robustly optimal, but the converse is not true. Mechanisms that fail to be

Pareto robustly optimal would not be used by any rational agent.

For these three ambiguity sets, the contributions of this chapter can be summarized as
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follows.

(i) For support-only ambiguity sets, we first show that not every robustly optimal mech-

anism represents a randomization over favored-agent mechanisms. This result is

unexpected in view of the classical theory on stochastic mechanism design, as Ben-

Porath et al. [3] show that any optimal mechanism is a randomization over favored-

agent mechanisms when the distribution of the agents’ types is precisely known. We

then construct an explicit favored-agent mechanism that is not only robustly optimal

but also Pareto robustly optimal. This mechanism selects the favored agent from

among those whose types have the highest possible lower bound, and it sets the

threshold to this lower bound.

(ii) For Markov ambiguity sets, we also construct an explicit favored-agent mechanism

that is both robustly optimal as well as Pareto robustly optimal. This mechanism

selects the favored agent from among those whose expected types have the highest

possible lower bound, and it sets the threshold to the highest possible actual (not

expected) type of the favored agent.

(iii) For Markov ambiguity sets with independent types, we first prove that the principal’s

worst-case payoff coincides with the one under Markov ambiguity sets. Thus, the

principal cannot increase her worst-case payoff with the additional knowledge of

independence. We again construct a favored-agent mechanism that is optimal and

Pareto robustly optimal. The favored agent of this mechanism chosen among those

whose expected types have the highest possible lower bound (as in (ii)), and it’s

threshold is set to this lower bound (unlike (ii)).

Our results show that favored-agent mechanisms continue to play an important role in

allocation with costly verification even if the unrealistic assumption of a commonly known

type distribution is abandoned. In addition, they suggest that robust optimality alone may

not be a sufficiently distinctive criterion to single out practically useful mechanisms under

distributional ambiguity. However, our results also show that among possibly infinitely
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many robustly optimal mechanisms one can always find a simple and interpretable Pareto

robustly optimal favored-agent mechanism. Unlike Ben-Porath et al. [3], the favored agent

as well as the threshold of our Pareto robustly optimal mechanisms are independent of the

verification costs.

Literature review. The first treatise of allocation with costly verification is due to

Townsend [9], who studies a principal-agent model with monetary transfers involving a

single agent. Ben-Porath et al. [3] extend this model to multiple agents but rule out the

possibility of monetary transfers. Their seminal work has inspired considerable follow-up

research in economics. For example, Mylovanov & Zapechelnyuk [5] study a variant of the

problem where verification is costless but the principal can impose only limited penalties

and only partially recover the good when agents misreport their types. Li [4] accounts both

for costly verification and for limited penalties, thereby unifying the models in [3] and [5].

Chua et al. [10] further extend the model in [3] to multiple homogeneous goods, assuming

that each agent can receive at most one good. Bayrak et al. [11] spearhead the study of

allocation with costly verification under distributional ambiguity. However, for reasons of

computational tractability, they focus on ambiguity sets that contain only two discrete dis-

tributions. In this chapter, we investigate ambiguity sets that contain infinitely many (not

necessarily discrete) type distributions characterized by support and moment constraints,

and we derive robustly as well as Pareto robustly optimal mechanisms in closed form.

This chapter also contributes to the growing literature on (distributionally) robust mech-

anism design. Note that any mechanism design problem is inherently affected by uncer-

tainty due to the private information held by different agents. The vast majority of the

extant mechanism design literature models uncertainty through random variables that are

governed by a commonly known probability distribution. The robust mechanism design

literature, on the other hand, explicitly accounts for (non-stochastic) distributional uncer-

tainty and seeks mechanisms that maximize the worst-case payoff, minimize the worst-

case regret or minimize the worst-case cost in view of all distributions consistent with the
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information available. Robust mechanism design problems have recently emerged in dif-

ferent contexts such as pricing (see, e.g., [12, 13, 14, 15, 16, 17]), auction design (see, e.g.,

[18, 19, 20, 21]) or contracting (see, e.g., [22]). The literature in this area is too vast to

discuss all contributions in detail. To our best knowledge, however, this chapter is the first

one that derives closed-form optimal mechanisms for the allocation problem with costly

verification under distributional ambiguity.

The remainder of this chapter is structured as follows. Section 2.2 introduces our model

and establishes several preliminary results. Sections 2.3, 2.4, and 2.5 solve the proposed

mechanism design problem for support-only, Markov and Markov with independence am-

biguity sets, respectively.

Notation. For any t ∈ RI , we denote by ti the ith component and by t−i the subvector

of t without ti. The indicator function of a logical expression E is defined as 1E = 1 if E

is true and as 1E = 0 otherwise. For any Borel sets S ⊆ Rn and D ⊆ Rm, we use P0(S)
and L(S,D) to denote the family of all probability distributions on S and the set of all

bounded Borel-measurable functions from S to D, respectively. Random variables are

designated by symbols with tildes (e.g., t̃), and their realizations are denoted by the same

symbols without tildes (e.g., t).

2.2 Problem Statement and Preliminaries

A principal wishes to allocate a single good to one of I ≥ 2 agents. Each agent i ∈ I =

{1, 2, . . . , I} derives a strictly positive deterministic benefit from receiving the good and

also uses it to generate a value ti ∈ Ti = [ti, ti] for the principal, where 0 ≤ ti < ti < ∞.

We henceforth refer to ti as agent i’s type, and we assume that ti is privately known to

agent i but unknown to the principal and the other agents. Thus, the principal perceives

the vector t̃ = (t̃1, t̃2 . . . , t̃I) of all agents’ types as a random vector governed by some
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probability distribution P0 on the type space T =
∏

i∈I Ti. However, the principal can

inspect agent i’s type at cost ci > 0, and the inspection perfectly reveals ti. In contrast

to much of the existing literature on mechanism design, we assume here that neither the

principal nor the agents know P0. Instead, they are only aware that P0 belongs to some

commonly known ambiguity set P ⊆ P0(T ). On this basis, the principal aims to design

a mechanism for allocating the good. A mechanism is an extensive-form game between

the principal and the agents, where the principal commits in advance to her strategy (for a

formal definition of extensive form games, see, e.g., [23]). Such a mechanism may contain

multiple stages of cheap talk statements by the agents, while the principal’s actions include

the decisions on whether to inspect certain agents and how to allocate the good. Monetary

transfers are not allowed, i.e., the agents and the principal cannot exchange money at any

time.

Given any mechanism represented as an extensive form game, we denote by Hi the

family of all information sets of agent i and by A(hi) the actions available to agent i at the

nodes in information set hi ∈ Hi. All agents select their actions strategically in view of

their individual preferences and the available information. In particular, agent i’s actions

depend on his type ti. Thus, we model any (mixed) strategy of agent i as a function si ∈
L(Ti,

∏
hi∈Hi

P0(A(hi))) that maps each of his possible types to a complete contingency

plan ai ∈
∏

hi∈Hi
P0(A(hi)), which represents a probability distribution over the actions

available to agent i for all information sets hi ∈ Hi. In the following we denote by

probi(ai; t,a−i) the probability that agent i ∈ I receives the good under the principal’s

mechanism if the agents have types t and play the contingency plans a = (a1, a2, . . . , aI).

We also restrict attention to mechanisms that admit an ex-post Nash equilibrium.

Definition 1 (Ex-Post Nash Equilibrium). An I-tuple s = (s1, s2, . . . , sI) of mixed strate-

gies si ∈ L(Ti,
∏

hi∈Hi
P0(A(hi))), i ∈ I, is called an ex-post Nash equilibrium if

probi(si(ti); t, s−i(t−i)) ≥ probi(ai; t, s−i(t−i))

∀i ∈ I, ∀t ∈ T , ∀ai ∈
∏

hi∈Hi
P0(A(hi)).
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Recall that all agents assign a strictly positive deterministic value to the good, and there-

fore the expected utility of agent i conditional on t̃ = t is proportional to probi(ai; t,a−i).

Under an ex-post Nash equilibrium, each agent i maximizes this probability simultane-

ously for all type scenarios t ∈ T . Hence, it is clear that insisting on the existence of

an ex-post Nash equilibrium restricts the family of mechanisms to be considered. Note

that Ben-Porath et al. [3] study the larger class of mechanisms that admit a Bayesian

Nash equilibrium. However, these mechanisms generically depend on the type distribu-

tion P0 and can therefore not be implemented by a principle who lacks knowledge of P0. It

is therefore natural to restrict attention to mechanisms that admit ex-post Nash equilibria,

which remain well-defined in the face of distributional ambiguity. We further assume from

now on that the principal is ambiguity averse in the sense that she wishes to maximize her

worst-case expected payoff in view of all distributions in the ambiguity set P .

The class of all mechanisms that admit an ex-post Nash equilibrium is vast. An impor-

tant subclass is the family of all truthful direct mechanisms. A direct mechanism (p, q)

consists of two I-tuples p = (p1, p2, . . . , pI) and q = (q1, q2, . . . , qI) of allocation func-

tions pi, qi ∈ L(T , [0, 1]), i ∈ I. Any direct mechanism (p, q) is implemented as follows.

First, the principal announces p and q, and then she collects a bid t′i ∈ Ti from each

agent i ∈ I. Next, the principal implements randomized allocation and inspection deci-

sions. Specifically, pi(t′) represents the total probability that agent i receives the good,

while qi(t
′) represents the probability that agent i receives the good and is inspected. If

the inspection reveals that agent i has misreported his type, the principal penalizes the

agent by repossessing the good. Any direct mechanism (p, q) must satisfy the feasibility

conditions
qi(t

′) ≤ pi(t
′) ∀i ∈ I and

∑
i∈I

pi(t
′) ≤ 1 ∀t′ ∈ T . (FC)

The first inequality in (FC) holds because only agents who receive the good may undergo

an inspection. The second inequality in (FC) ensures that the principal allocates the good

at most once.
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A direct mechanism (p, q) is called truthful if it is optimal for each agent i to report his

true type t′i = ti. Thus, (p, q) is truthful if and only if it satisfies the incentive compatibility

constraints

pi(t) ≥ pi(t
′
i, t−i)− qi(t

′
i, t−i) ∀i ∈ I, ∀t′i ∈ Ti, ∀t ∈ T , (IC)

which ensure that if all other agents report their true types t−i, then the probability pi(t) of

agent i receiving the good if he reports his true type ti exceeds the probability pi(t
′
i, t−i)−

qi(t
′
i, t−i) of agent i receiving the good if he misreports his type as t′i ̸= ti. By leveraging a

variant of the Revelation Principle detailed in Ben-Porath et al. [3], one can show that for

any mechanism that admits an ex-post Nash equilibrium there exists an equivalent truthful

direct mechanism that duplicates or improves the principal’s worst-case expected payoff;

see the online appendix of [3] for details. Without loss of generality, the principal may

thus focus on truthful direct mechanisms, which greatly simplifies the problem of finding

an optimal mechanism. Consequently, the principal’s mechanism design problem can be

formalized as the following distributionally robust optimization problem.

z⋆ = sup
p,q

inf
P∈P

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
s.t. pi, qi ∈ L(T , [0, 1]) ∀i ∈ I

(IC), (FC)

(MDP)

From now on, we will use the shorthand X to denote the set of all (p, q) feasible in (MDP).

Note that the feasible set X does not rely on the ambiguity set and remains the same for

all P ⊆ P0(T ).

In the remainder we will demonstrate that (MDP) often admits multiple optimal solu-

tions. While different optimal mechanisms generate the same expected profit in the worst

case, they may offer dramatically different expected profits under generic non-worst-case
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distributions. This observation prompts us to seek mechanisms that are not only worst-

case optimal but perform also well under all type distributions in the ambiguity set P .

More precisely, we hope to identify a worst-case optimal mechanism for which there ex-

ists no other feasible mechanism that generates at least the same expected payoff under

every distribution in P and a higher expected payoff under at least one distribution in P .

A mechanism with this property is called Pareto robustly optimal. This terminology is

borrowed from the theory of Pareto efficiency in classical robust optimization (see [8] for

details).

Definition 2 (Pareto Robust Optimality). We say that a mechanism (p′, q′) that is feasible

in (MDP) weakly Pareto robustly dominates another feasible mechanism (p, q) if

EP

[∑
i∈I

(p′i(t̃)t̃i − q′i(t̃)ci)

]
≥ EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
∀P ∈ P . (2.1)

If (2.1) holds and the inequality is strict for at least one P ∈ P , then we say that (p′, q′)

Pareto robustly dominates (p, q). A mechanism (p, q) that is optimal in (MDP) is called

Pareto robustly optimal if there exists no other feasible mechanism (p′, q′) that Pareto

robustly dominates (p, q).

Note that any mechanism that weakly Pareto robustly dominates an optimal mechanism

is also optimal in (MDP). Moreover, a Pareto robustly optimal mechanism always exists.

However, there may not exist any mechanism that Pareto robustly dominates all other

feasible mechanisms.

We now define the notion of a favored-agent mechanism, which was first introduced in

Ben-Porath et al. [3].

Definition 3 (Favored-Agent Mechanism). A mechanism (p, q) is a favored-agent mech-

anism if there exists a favored agent i⋆ ∈ I and a threshold value ν⋆ ∈ R such that the

following hold.
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(i) If maxi ̸=i⋆ ti − ci < ν⋆, then pi⋆(t) = 1, qi⋆(t) = 0 and pi(t) = qi(t) = 0 for all

i ̸= i⋆.

(ii) If maxi ̸=i⋆ ti − ci > ν⋆, then pi′(t) = qi′(t) = 1 for some i′ ∈ argmaxi∈I(ti − ci)

and pi(t) = qi(t) = 0 for all i ̸= i′.

If maxi ̸=i⋆ ti − ci = ν⋆, then we are free to define (p(t), q(t)) either as in (i) or as in (ii).

Intuitively, if ti is smaller than the adjusted cost of inspection ci + ν⋆ for every agent

i ̸= i⋆, then any favored-agent mechanism allocates the good to the favored agent i⋆

without inspection. If there exists an agent i ̸= i⋆ whose type ti exceeds the adjusted cost

of inspection ci + ν⋆, then the favored-agent mechanism allocates the good to an agent i′

with highest net payoff ti′ − ci′ , and this agent is inspected. Note that in case (ii) the good

can also be allocated to the favored agent.

A favored-agent mechanism is uniquely determined by a favored agent i⋆, a threshold

value ν⋆ and two tie-breaking rules. The first tie-breaking rule determines the winning

agent in case (ii) when argmaxi∈I(ti− ci) is not a singleton. From now on we will always

use the lexicographic tie-breaking rule in this case, which sets i′ = min argmaxi∈I(ti−ci).

The second tie-breaking rule determines whether (p(t), q(t)) should be constructed as in

case (i) or as in case (ii) when maxi ̸=i⋆ ti − ci = ν⋆. From now on we say that a favored-

agent mechanism is of type (i) if (p(t), q(t)) is always defined as in (i) and that it is

of type (ii) if (p(t), q(t)) is always defined as in (ii) in case of a tie. Note that both tie-

breaking rules are irrelevant in the Bayesian setting considered in Ben-Porath et al. [3], but

they are relevant for us because the ambiguity sets P to be studied below contain discrete

distributions, under which ties have a strictly positive probability.

All favored-agent mechanisms are feasible in (MDP), see Remark 1 in [3]. In particular,

they are incentive compatible, that is, the agents have no incentive to misreport their types.

To see this, recall that under a favored-agent mechanism the winning agent receives the

good with probability one, and the losing agents receive the good with probability zero.
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Thus, if an agent wins by truthful bidding, he cannot increase his chances of receiving the

good by lying about his type. If an agent loses by truthful bidding, on the other hand, he has

certainly no incentive to lower his bid ti because the chances of receiving the good are non-

decreasing in ti. Increasing his bid ti may earn him the good provided that ti − ci attains

the maximum of ti′ − ci′ over i′ ∈ I. However, in this case the agent’s type is inspected

with probability one. Hence, the lie will be detected and the good will be repossessed.

This shows that no agent benefits from lying under a favored-agent mechanism.

If P = {P0} is a singleton, the agents’ types are independent under P0, and P0 has

an everywhere positive density on T , then problem (MDP) is solved by a favored-agent

mechanism, see Ben-Porath et al. [3, Theorem 1]. The favored-agent mechanism with

favored agent i and threshold νi yields an expected payoff of

EP0

[
t̃i1ỹi≤νi +max

{
t̃i − ci, ỹi

}
1ỹi≥νi

]
=

∫ νi

−∞
EP0

[
t̃i
]
ρi(yi)dyi +

∫ ∞

νi

EP0

[
max

{
t̃i − ci, yi

}]
ρi(yi)dyi,

where ρi(yi) denotes the probability density function of the random variable ỹi =

maxj ̸=i t̃j − cj with respect to P0, which is independent of t̃i under P0. The threshold

value ν⋆
i that maximizes the above expression for a fixed favored agent i thus solves the

first-order optimality condition

EP0

[
t̃i
]
= EP0

[
max

{
t̃i − ci, νi

}]
. (2.2)

Note that ν⋆
i is unique because the right hand side of (2.2) strictly increases in νi on the

domain of interest, see [3, Theorem 2]. One can further prove that within the finite class

of favored-agent mechanisms with optimal thresholds, the ones with the highest threshold

are optimal. More specifically, any favored-agent mechanism with favored agent i⋆ ∈
argmaxi∈I ν

⋆
i and threshold ν⋆ = maxi∈I ν

⋆
i is optimal within the class of favored-agent

mechanisms, see [3, Theorem 3]. Hence, any such mechanism must be optimal in (MDP).

Finally, one can also show that for mutually distinct cost coefficients ci, i ∈ I, the optimal
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favored-agent mechanism is unique.

In the remainder of the chapter, we will address instances of the mechanism design

problem (MDP) where P is not a singleton, and we will prove that favored-agent mecha-

nisms remain optimal. Under distributional ambiguity, however, the construction of i⋆ and

ν⋆ described above is no longer well-defined because it depends on a particular choice of

the probability distribution of t̃. We will show that if P is not a singleton, then there may

be infinitely many optimal favored-agent mechanisms with different thresholds ν⋆. In this

situation, it is expedient to look for Pareto robustly optimal favored-agent mechanisms.

2.3 Support-Only Ambiguity Sets

We now investigate the mechanism design problem (MDP) under the assumption that

P = P0(T ) is the support-only ambiguity set that contains all distributions supported

on the type space T . As P contains all Dirac point distributions concentrating unit mass

at any t ∈ T , the worst-case expected payoff over all distributions P ∈ P simplifies

to the worst-case payoff over all type profiles t ∈ T , and thus it is easy to verify that

problem (MDP) simplifies to

z⋆ = sup
p,q

inf
t∈T

∑
i∈I

(pi(t)ti − qi(t)ci)

s.t. pi, qi ∈ L(T , [0, 1]) ∀i ∈ I

(IC), (FC).

(2.3)

Similarly, it is easy to verify that an optimal mechanism (p⋆, q⋆) for problem (2.3) is

Pareto robustly optimal if there exists no other feasible mechanism (p, q) with∑
i∈I

(pi(t)ti − qi(t)ci) ≥
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t ∈ T ,
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where the inequality is strict for at least one type profile t ∈ T . If the principal knew the

agents’ types ex ante, she could simply allocate the good to the agent with the highest type

and would not have to spend money on inspecting anyone. One can therefore show that the

optimal value z⋆ of problem (2.3) is upper bounded by inft∈T maxi∈I ti = maxi∈I ti. The

following proposition formally establishes this upper bound and shows that it is indeed

attained by an admissible mechanism.

Proposition 1. The optimal value of (2.3) is given by z⋆ = maxi∈I ti.

Proof. Relaxing the incentive compatibility constraints and the first inequality in (FC)

yields
z⋆ ≤ sup

p,q
inf
t∈T

∑
i∈I

(pi(t)ti − qi(t)ci)

s.t. pi, qi ∈ L(T , [0, 1]) ∀i ∈ I∑
i∈I

pi(t) ≤ 1 ∀t ∈ T

= sup
p

inf
t∈T

∑
i∈I

pi(t)ti

s.t. pi ∈ L(T , [0, 1]) ∀i ∈ I,
∑
i∈I

pi(t) ≤ 1 ∀t ∈ T ,

where the equality holds because in the relaxed problem it is optimal to set qi(t) = 0 for all

i ∈ I and t ∈ T . As the resulting maximization problem over p is separable with respect

to t ∈ T , it is optimal to allocate the good in each scenario t ∈ T —with probability one—

to an agent with maximal type. Therefore, z⋆ is bounded above by inft∈T maxi∈I ti =

maxi∈I ti. However, this bound is attained by a mechanism that allocates the good to an

agent i′ ∈ argmaxi∈I ti irrespective of t ∈ T and never inspects anyone’s type. Since this

mechanism is feasible, the claim follows.

The next theorem shows that there are infinitely many optimal favored-agent mecha-

nisms that attain the optimal value z⋆ = maxi∈I ti of problem (2.3).
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Theorem 1. Any favored-agent mechanism with favored agent i⋆ ∈ argmaxi∈Iti and

threshold value ν⋆ ≥ maxi∈I ti is optimal in problem (2.3).

Proof. Select an arbitrary favored-agent mechanism with i⋆ ∈ argmaxi∈Iti and ν⋆ ≥
maxi∈I ti. Recall first that this mechanism is feasible in (2.3). Next, we will show that

this mechanism attains a worst-case payoff that is at least as large as maxi∈I ti, which

implies via Proposition 1 that it is in fact optimal in (2.3). To this end, fix an arbitrary

type profile t ∈ T . If maxi ̸=i⋆ ti − ci < ν⋆, then condition (i) in Definition 3 implies that

the principal’s payoff amounts to ti⋆ ≥ maxi∈I ti, where the inequality follows from the

selection of i⋆. If maxi ̸=i⋆ ti − ci > ν⋆, then condition (ii) in Definition 3 implies that

the principal’s payoff amounts to maxi∈I ti − ci > ν⋆ ≥ maxi∈I ti, where the second

inequality follows from the selection of ν⋆. If maxi ̸=i⋆ ti − ci = ν⋆, then the allocation

functions are defined either as in condition (i) or as in condition (ii) of Definition 3. Thus,

the principal’s payoff amounts either to ti⋆ or to maxi∈I ti − ci ≥ ν⋆, respectively, and is

therefore again non-inferior to maxi∈I ti. In summary, we have shown that the principal’s

payoff is non-inferior to z⋆ = maxi∈I ti in all three cases. As scenario t ∈ T was chosen

arbitrarily, this reasoning implies that the principal’s worst-case payoff is also non-inferior

to z⋆. The favored-agent mechanism at hand is therefore optimal in (2.3) by virtue of

Proposition 1.

As the mechanism design problem (2.3) constitutes a convex program, any convex com-

bination of optimal favored-agent mechanisms gives rise to yet another optimal mech-

anism. However, problem (2.3) also admits optimal mechanisms that can neither be

interpreted as favored-agent mechanisms nor as convex combinations of favored-agent

mechanisms. To see this, consider any favored-agent mechanism (p, q) with favored

agent i⋆ ∈ argmaxi∈Iti and threshold value ν⋆ ∈ R satisfying ν⋆ ≥ maxi∈I ti and

ν⋆ > maxi∈I ti − ci. By Theorem 1, this mechanism is optimal in problem (2.3). The sec-

ond condition on ν⋆ implies that this mechanism always allocates the good to the favored

agent without inspection for every t ∈ T (case (i) always prevails). Next, construct t̂ ∈ T
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through t̂i = ti for all i ̸= i⋆ and t̂i⋆ = ti⋆ , and note that t̂ ̸= t because ti⋆ < ti⋆ . Fi-

nally, introduce another mechanism (p, q′), where q′ is defined through q′i(t) = qi(t) for

all t ∈ T and i ̸= i⋆ and

q′i⋆(t) =

min{1, (ti⋆ − ti⋆)/ci⋆} if t = t̂,

qi⋆(t) if t ∈ T \ {t̂}.

One readily verifies that (p, q′) is feasible in (2.3). Indeed, as (p, q′) differs from (p, q)

only in scenario t̂ and as (p, q) is feasible, it suffices to check the feasibility of (p, q′)

in scenario t̂. For example, the modified allocation rule q′ is valued in [0, 1] and (p, q′)

satisfies (FC) because

0 ≤ q′i⋆(t̂) ≤ 1 = pi⋆(t̂),

where the equality holds because the favored-agent mechanism (p, q) allocates the good

with certainty to agent i⋆. Similarly, the modified mechanism (p, q′) satisfies (IC) because

pi⋆(ti⋆ , t̂−i⋆) = 1 ≥ pi⋆(t̂)− q′i⋆(t̂) ∀ti⋆ ∈ Ti⋆ .

In summary, we have thus shown that the mechanism (p, q′) is feasible in (2.3). To show

that it is also optimal, recall that (p, q) is optimal with worst-case payoff maxi∈I ti and

that (p, q′) differs from (p, q) only in scenario t̂. The principal’s payoff in scenario t̂

amounts to

pi⋆(t̂)t̂i⋆ − q′i⋆(t̂)ci⋆ = t̂i⋆ − q′i⋆(t̂)ci⋆ ≥ t̂i⋆ −
t̂i⋆ − ti⋆

ci⋆
ci⋆ = ti⋆ = max

i∈I
ti,

where the inequality follows from the definition of q′i⋆(t̂). Thus, the worst-case payoff

of (p, q′) amounts to maxi∈I ti, and (p, q′) is indeed optimal in (2.3). However, (p, q′) is

not a favored-agent mechanism for otherwise q′i⋆(t̂) would have to vanish; see Definition 3.

In addition, note that pi⋆(t̂) − q′i⋆(t̂) < 1 whereas pi⋆(ti⋆ , t̂−i⋆) − q′i⋆(ti⋆ , t̂−i⋆) = 1 for all

ti⋆ ̸= t̂i⋆ . This implies via Lemma 1 below that (p, q′) is also not a convex combination of

favored-agent mechanisms.
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Lemma 1. If a mechanism (p, q) is a convex combination of favored-agent mechanisms,

then the function pi(ti, t−i) − qi(ti, t−i) is constant in ti ∈ Ti for any fixed i ∈ I and

t−i ∈ T−i.

Proof. Assume first that (p, q) is a favored-agent mechanism with favored agent i⋆ ∈ I
and threshold value ν⋆ ∈ R. Next, fix any agent i ∈ I and any type profile t−i ∈ T−i. If

i ̸= i⋆, then we have either pi(ti, t−i) = qi(ti, t−i) = 1 or pi(ti, t−i) = qi(ti, t−i) = 0 for

all ti ∈ Ti. This implies that pi(ti, t−i) − qi(ti, t−i) = 0 is constant in ti ∈ Ti. If i = i⋆,

then the fixed type profile t−i⋆ uniquely determines whether the allocations are constructed

as in case (i) or as in case (ii) of Definition 3. In case (i) we have pi⋆(ti⋆ , t−i⋆) = 1 and

qi⋆(ti⋆ , t−i⋆) = 0 for all ti⋆ ∈ Ti⋆ , and thus pi⋆(ti⋆ , t−i⋆) − qi⋆(ti⋆ , t−i⋆) = 1 is con-

stant in ti⋆ ∈ Ti⋆ . In case (ii) we have either pi⋆(ti⋆ , t−i⋆) = 1 and qi⋆(ti⋆ , t−i⋆) = 1 or

pi⋆(ti⋆ , t−i⋆) = 0 and qi⋆(ti⋆ , t−i⋆) = 0, and thus pi⋆(ti⋆ , t−i⋆)− qi⋆(ti⋆ , t−i⋆) = 0 is again

constant in ti⋆ ∈ Ti⋆ . This establishes the claim for any favored-agent mechanism (p, q).

Assume now that (p, q) =
∑

k∈K πk(p
k, qk) is a convex combination of favored-agent

mechanisms (pk, qk), k ∈ K = {1, . . . , K}. Next, fix any i ∈ I and t−i ∈ T−i. From

the first part of the proof we know that pki (ti, t−i) − qki (ti, t−i) is constant in ti ∈ Ti for

each k ∈ K, and therefore pi(ti, t−i)− qi(ti, t−i) is also constant in ti ∈ Ti. Similar argu-

ments apply when (p, q) represents a convex combination of infinitely many favored-agent

mechanisms.

The above reasoning implies that the robust mechanism design problem (2.3) admits

infinitely many optimal solutions. Some of these solutions represent favored-agent mech-

anisms while some represent convex combinations of favored-agent mechanisms, and yet

some others are different types of mechanisms. Moreover, note that the optimal mecha-

nism characterized above by altering the inspection probabilities of an optimal favored-

agent mechanism is Pareto robustly dominated by the same optimal favored-agent mecha-

nism. Thus, robust optimality alone is not a sufficient differentiator to distinguish between

desirable and undesirable mechanisms. This insight prompts us to seek Pareto robustly
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optimal mechanisms for problem (2.3). Next theorem shows that a favored-agent mecha-

nism, proven to be optimal in Theorem 1, is also Pareto robustly optimal.

Theorem 2. Any favored-agent mechanism of type (i) with favored agent i⋆ ∈
argmaxi∈Iti and threshold value ν⋆ = maxi∈I ti is Pareto robustly optimal in prob-

lem (2.3).

We sketch the proof idea in the special case when there are only two agents. To

convey the key ideas without tedious case distinctions, we assume that t1 > t2 so that

argmaxi∈Iti = {1} is a singleton, and we assume that t2 > c2 + t1 and t1 > c2 + t1. We

will use the following partition of the type space T .

TI = {t ∈ T | t2 − c2 ≤ t1 and t2 < t1}

TII = {t ∈ T | t2 − c2 ≤ t1 and t2 ≥ t1}

TIII = {t ∈ T | t2 − c2 > t1 and t2 − c2 > t1}

TIV = {t ∈ T | t2 − c2 > t1 and t2 − c2 ≤ t1}

The sets TI , TII , TIII and TIV are visualized in Figure 2.1. Note that all of them are

nonempty thanks to our standing assumptions about t1, t2 and c2. We emphasize, however,

that all simplifying assumptions as well as the restriction to two agents are relaxed in the

formal proof of Theorem 2.

In the following we denote by (p⋆, q⋆) the favored-agent mechanism of type (i) with

favored agent 1 and threshold value ν⋆ = t1, and we will prove that this mechanism is

Pareto robustly optimal in problem (2.3). To this end, assume for the sake of contradiction

that there exists another mechanism (p, q) feasible in (2.3) that Pareto robustly dominates

(p⋆, q⋆). Thus, we have

∑
i∈I

(pi(t)ti − qi(t)ci) ≥
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t ∈ T , (2.4)

where the inequality is strict for at least one t ∈ T . The right hand side of (2.4) represents
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the principal’s payoff in scenario t under (p⋆, q⋆). By the definition of a type (i) favored-

agent mechanism, this payoff amounts to t1 when t2 − c2 ≤ t1 (i.e., when t ∈ TI ∪ TII)

and to maxi∈I ti − ci when t2 − c2 > t1 (i.e., when t ∈ TIII ∪ TIV ). We will show

that if (2.4) holds, then (p, q) must generate the same payoff as (p⋆, q⋆) under every type

profile t ∈ T . In other words, (p, q) cannot generate a strictly higher payoff than (p⋆, q⋆)

under any type profile, which contradicts our assumption that (p, q) Pareto robustly dom-

inates (p⋆, q⋆).

Figure 2.1: Partition of the type space T ,

(Support-Only).

We now investigate the subsets TI , TII , TIII

and TIV of the type space one by one. Consider

first a type profile t ∈ TI . For inequality (2.4) to

hold in this scenario, the principal must earn at

least t1 under the mechanism (p, q). As t2 < t1,

ci > 0 and (p, q) satisfies the (FC) constraints∑
i∈I pi(t) ≤ 1 and qi(t) ≥ 0, this is only pos-

sible if p1(t) = 1 and q1(t) = 0. Thus, the al-

location probabilities of the mechanisms (p, q)

and (p⋆, q⋆) coincide on TI .

Consider now any t ∈ TII . For inequal-

ity (2.4) to hold in scenario t, the principal must

earn at least t1 under the mechanism (p, q).

Incentive compatibility ensures that p1(t) ≥
p1(t1, t2) − q1(t1, t2) = 1, where the equality holds because (t1, t2) ∈ TI thanks to the

assumption t1 > c2 + t1 and because we know from before that (p, q) allocates the good

to agent 1 without inspection in TI . Thus, the mechanism (p, q) can only earn t1 in sce-

nario t if p1(t) = 1 and q1(t) = 0. In summary, the allocation probabilities of (p, q)

and (p⋆, q⋆) must again coincide on TII .

Next, consider any t ∈ TIII . Incentive compatibility ensures that p2(t) − q2(t) ≤
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p2(t1, t2) = 0, where the equality holds because (t1, t2) ∈ TI ∪ TII and because we know

from before that (p, q) allocates the good to agent 1 without inspection throughout TI∪TII .

As the allocation probabilities are non-negative and satisfy the (FC) condition p2(t) ≥
q2(t), we may conclude that p2(t) = q2(t). Thus, the type of agent 2 is inspected if he

wins the good in scenario t. As t2 − c2 > t1 > t1 − c1 for all t ∈ TIII , the inequality

(2.4) implies that the principal must earn at least t2 − c2 under the mechanism (p, q)

in scenario t. This is only possible if p2(t) = q2(t) = 1. In summary, the allocation

probabilities of (p, q) and (p⋆, q⋆) must therefore also coincide in TIII .

Finally, consider any t ∈ TIV . Incentive compatibility ensures that 0 = p1(t1, t2) ≥
p1(t)− q1(t), where the equality holds because (t1, t2) ∈ TIII and because we know from

before that (p, q) allocates the good to agent 2 in TIII . Incentive compatibility also ensures

that 0 = p2(t1, t2) ≥ p2(t)−q2(t), where the equality holds because (t1, t2) ∈ TI∪TII and

because we know from before that (p, q) allocates the good to agent 1 in TI∪TII . We may

thus conclude that pi(t) = qi(t) for all i ∈ I = {1, 2}. For the inequality (2.4) to hold

in scenario t, the principal must earn at least maxi∈I ti − ci under the mechanism (p, q).

As pi(t) = qi(t) for all i ∈ I, this is only possible if (p, q) allocates the good to an agent

i′ ∈ argmaxi∈I ti − ci and inspects this agent. Thus, the principal’s payoff under (p, q)

matches her payoff under (p⋆, q⋆) in region TIV .

The above reasoning shows that the principal’s earnings coincide under (p, q)

and (p⋆, q⋆) throughout the entire type space T . Therefore, (p, q) cannot Pareto robustly

dominate (p⋆, q⋆), which in turn proves that (p⋆, q⋆) is Pareto robustly optimal in prob-

lem (2.3).

Proof of Theorem 2. Throughout the proof we use the following partition of the type
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space T .

TI = {t ∈ T | max
i ̸=i⋆

ti − ci ≤ ti⋆ and max
i ̸=i⋆

ti < ti⋆}

TII = {t ∈ T | max
i ̸=i⋆

ti − ci ≤ ti⋆ and max
i ̸=i⋆

ti ≥ ti⋆}

TIII = {t ∈ T | max
i ̸=i⋆

ti − ci > ti⋆ and ti − ci /∈ (ti⋆ , ti⋆ ] ∀i ̸= i⋆}

TIV = {t ∈ T | max
i ̸=i⋆

ti − ci > ti⋆ and ∃i ̸= i⋆ such that ti − ci ∈ (ti⋆ , ti⋆ ]}

Note that the set TI is nonempty and contains at least (ti⋆ , t−i⋆) since maxi∈Iti = ti⋆ < ti⋆ .

However, the sets TII , TIII and TIV can be empty if ti⋆ or ci, i ̸= i⋆, are sufficiently large.

In the following, we denote by (p⋆, q⋆) the favored-agent mechanism of type (i) with

favored agent i⋆ ∈ argmaxi∈Iti and threshold value ν⋆ = maxi∈I ti. By construction,

we thus have ν⋆ = ti⋆ . Assume now for the sake of contradiction that there exists another

mechanism (p, q) ∈ X that Pareto robustly dominates (p⋆, q⋆). Thus, the inequality (2.4)

holds for all t ∈ T and is strict for at least one t ∈ T . Note that the right-hand side of (2.4)

represents the principal’s payoff in scenario t under (p⋆, q⋆). By the definition of a type (i)

favored-agent mechanism, this payoff amounts to ti⋆ when maxi ̸=i⋆ ti−ci ≤ ti⋆ (i.e., when

t ∈ TI ∪TII) and to maxi∈I ti − ci when maxi ̸=i⋆ ti − ci > ti⋆ (i.e., when t ∈ TIII ∪TIV ).

We will show that if (2.4) holds, then (p, q) must generate the same payoff as (p⋆, q⋆)

under every type profile t ∈ T . In other words, (p, q) cannot generate a strictly higher

payoff than (p⋆, q⋆) under any type profile, which contradicts our assumption that (p, q)

Pareto robustly dominates (p⋆, q⋆). The remainder of the proof is divided into four steps,

each of which investigates one of the subsets TI , TII , TIII and TIV .

Step 1 (TI). Consider any type profile t ∈ TI . For inequality (2.4) to hold in this

scenario, the principal must earn at least ti⋆ under mechanism (p, q). We next show that

this is only possible if pi⋆(t) = 1 and qi⋆(t) = 0. To this end, assume for the sake of

contradiction that either pi⋆(t) < 1 or pi⋆(t) = 1 and qi⋆(t) > 0. If pi⋆(t) < 1, then the
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principal’s payoff under (p, q) satisfies∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i∈I

pi(t)ti < ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the strict inequality holds because t ∈ TI , which implies that ti < ti⋆ for all i ̸= i⋆.

Thus, inequality (2.4) is violated in scenario t. If pi⋆(t) = 1 and qi⋆(t) > 0, on the other

hand, we have∑
i∈I

(pi(t)ti − qi(t)ci) = pi⋆(t)ti⋆ − qi⋆(t)ci⋆ < ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the strict inequality holds because qi⋆(t) and ci⋆ are positive. Thus, inequality (2.4)

is again violated in scenario t. For inequality (2.4) to hold, we must therefore have pi⋆(t) =

1 and qi⋆(t) = 0. Thus, the allocation probabilities of the mechanisms (p, q) and (p⋆, q⋆)

coincide on TI .

Step 2 (TII). For inequality (2.4) to hold in any scenario t ∈ TII , the principal must

earn at least ti⋆ under mechanism (p, q). As in Step 1, we can show that this is only

possible if pi⋆(t) = 1 and qi⋆(t) = 0. To this end, we partition TII into the following

subsets.
TII1 = {t ∈ TII | max

i ̸=i⋆
ti < ti⋆}

TII2 = {t ∈ TII | max
i ̸=i⋆

ti ≥ ti⋆ and ti⋆ = ti⋆}

TII3 = {t ∈ TII | max
i ̸=i⋆

ti ≥ ti⋆ and ti⋆ < ti⋆}

Note that if maxi ̸=i⋆ ti < ti⋆ , then TII as well as its subsets TII1 , TII2 and TII3 are all

empty. If maxi ̸=i⋆ ti ≥ ti⋆ , on the other hand, then TII and its subset TII1 are nonempty.

Indeed, TII1 contains the type profile t defined through ti = min{ti⋆ , ti} for all i ∈ I. To

see this, note that t ∈ T by the construction of i⋆. In addition, we have t ∈ TII1 thanks to

the assumption maxi ̸=i⋆ ti ≥ ti⋆ , which implies that maxi ̸=i⋆ ti = ti⋆ . We now investigate

the sets TII1 , TII2 and TII3 one by one.
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Fix first any type profile t ∈ TII1 . Incentive compatibility ensures that pi⋆(t) ≥
pi⋆(ti⋆ , t−i⋆) − qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because (ti⋆ , t−i⋆) ∈ TI and

because we know from Step 1 that (p, q) allocates the good to agent i⋆ without inspection

in TI . Consequently, the mechanism (p, q) can only earn ti⋆ in scenario t if qi⋆(t) = 0.

As t ∈ TII1 was chosen arbitrarily, the allocation probabilities (p, q) and (p⋆, q⋆) must

therefore coincide throughout TII1 .

Next, we study the subset TII2 . To this end, define the set-valued function I(t) =

{i ∈ I | ti ≥ ti⋆} for t ∈ TII2 . Note that |I(t)| ≥ 2 for all t ∈ TII2 thanks to the

definition of TII2 , which implies that i⋆ ∈ I(t) and argmaxi ̸=i⋆ ti ⊆ I(t). We now prove

by induction that the allocation probabilities (p, q) and (p⋆, q⋆) must coincide on T n
II2

=

{t ∈ TII2 | |I(t)| = n} for all n ≥ 2.

As for the base step, set n = 2 and fix any type profile t ∈ T 2
II2

. Thus, there exists

exactly one agent i◦ ̸= i⋆ with type ti◦ ≥ ti⋆ . Incentive compatibility dictates that pi◦(t)−
qi◦(t) ≤ pi◦(ti◦ , t−i◦) = 0, where the equality holds because (ti◦ , t−i◦) ∈ TI and because

we know from Step 1 that (p, q) allocates the good to agent i⋆ without inspection in TI .

We thus have pi◦(t) = qi◦(t). Inequality (2.4) further requires the mechanism (p, q) to

earn at least ti⋆ in scenario t ∈ T 2
II2

. All of this is only possible if pi⋆(t) = 1 and qi⋆(t) = 0

because ti◦ − ci◦ ≤ ti⋆ < ti⋆ and ti < ti⋆ for all i ∈ I \ {i◦, i⋆}.

As for the induction step, assume that pi⋆(t) = 1 and qi⋆(t) = 0 for all t ∈ T n
II2

and

for some n ≥ 2, and fix an arbitrary type profile t ∈ T n+1
II2

. Thus, there exist exactly n

agents i ̸= i⋆ with types ti ≥ ti⋆ . For any such agent i, incentive compatibility dictates that

pi(t) − qi(t) ≤ pi(ti, t−i) = 0, where the equality follows from the induction hypothesis

and the observation that (ti, t−i) ∈ T n
II2

. We thus have pi(t) = qi(t) for all i ∈ I(t)\{i⋆}.

Inequality (2.4) further requires the mechanism (p, q) to earn at least ti⋆ in scenario t ∈
T n+1
II2

. In analogy to the base step, all of this is only possible if pi⋆(t) = 1 and qi⋆(t) = 0

because ti − ci ≤ ti⋆ < ti⋆ for all i ∈ I(t) \ {i⋆} and ti < ti⋆ for all i ∈ I \ I(t). This

observation completes the induction step. In summary, the allocation probabilities (p, q)
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and (p⋆, q⋆) must therefore coincide throughout ∪n≥2T n
II2

= TII2 .

Finally, fix any type profile t ∈ TII3 . Incentive compatibility ensures that pi⋆(t) ≥
pi⋆(ti⋆ , t−i⋆) − qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because (ti⋆ , t−i⋆) ∈ TII2 and

because we know from the above induction argument that (p, q) allocates the good to agent

i⋆ without inspection in TII2 . Hence, the mechanism (p, q) can only earn ti⋆ in scenario t

if qi⋆(t) = 0. As t ∈ TII3 was chosen arbitrarily, the allocation probabilities (p, q)

and (p⋆, q⋆) must therefore coincide throughout TII3 .

Step 3 (TIII). In this part of the proof we will demonstrate that

∑
i∈argmaxi′∈Iti′−ci′

pi(t) = 1 and pi(t) = qi(t) ∀i ∈ argmaxi′∈Iti′ − ci′ , (2.5)

for every fixed t ∈ TIII . To prove (2.5), define the set-valued function I(t) = {i ∈ I | ti >
ti⋆} for t ∈ TIII . Note that |I(t)| ≥ 1 for all t ∈ TIII thanks to the definition of TIII ,

which ensures that there exists at least one agent i ∈ I with ti − ci > ti⋆ . We will now use

induction to prove that (2.5) holds for all type profiles in T n
III = {t ∈ TIII | |I(t)| = n}

for all n ≥ 1.

As for the base step, set n = 1 and fix any type profile t ∈ T 1
III . Thus, there exists

exactly one agent i◦ ̸= i⋆ with ti◦ > ti⋆ . Incentive compatibility ensures that pi◦(t) −
qi◦(t) ≤ pi◦(ti◦ , t−i◦) = 0, where the equality holds because (ti◦ , t−i◦) ∈ TI ∪ TII . We

thus have pi◦(t) = qi◦(t). If pi◦(t) < 1, then

∑
i∈I

(pi(t)ti − qi(t)ci) ≤ pi◦(t)(ti◦ − ci◦) +
∑
i ̸=i◦

pi(t)ti < max
i∈I

ti − ci,

where the first inequality holds because pi◦(t) = qi◦(t) and ci > 0 for all i ̸= i◦. The

second inequality follows from the assumption that pi◦(t) < 1 as well as the definition

of TIII and the construction of i◦, which imply that ti◦ − ci◦ = maxi∈I ti − ci > ti⋆ and

ti⋆ ≥ ti for all i ̸= i◦. This shows that (p, q) earns strictly less than (p⋆, q⋆) in scenario t,
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which contradicts inequality (2.4). Hence, our assumption must have been wrong, and

pi◦(t) must equal 1. We have thus established (2.5) in scenario t.

As for the induction step, assume that (2.5) holds throughout T n
III for some n ≥ 1,

and fix any type profile t ∈ T n+1
III . Thus, there exist exactly n + 1 agents i ̸= i⋆ with

types ti > ti⋆ . For any agent i ∈ I(t) incentive compatibility dictates that pi(t)− qi(t) ≤
pi(ti, t−i) = 0, where the equality holds because (ti, t−i) ∈ TI ∪ TII ∪ T n

III . Indeed, if

(ti, t−i) ∈ TI ∪ TII , then the equality follows from the results of Steps 1 and 2, and if

(ti, t−i) ∈ T n
III , then the equality follows from the induction hypothesis. We thus have

pi(t) = qi(t) for all i ∈ I(t) and, by the definition of TIII , in particular for all i ∈
argmaxj∈I tj − cj . In addition, if the summation of pi(t) over all i ∈ argmaxi′∈Iti′ − ci′

is strictly smaller than 1, then

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i∈I(t)

pi(t)(ti − ci) +
∑
i/∈I(t)

pi(t)ti < max
i∈I

ti − ci

where the first inequality holds because pi(t) = qi(t) for all i ∈ I(t) and ci > 0 for all i /∈
I(t). The strict inequality holds because

∑
i∈I pi(t) ≤ 1 and maxj∈I tj−cj > ti⋆ ≥ ti for

all i /∈ I(t) by the definition of TIII and because we assumed that the summation of pi(t)

over i ∈ argmaxi′∈Iti′ − ci′ is strictly smaller than 1. This reasoning shows that (p, q)

earns strictly less than (p⋆, q⋆) in scenario t, which contradicts inequality (2.4). Hence, our

assumption must be false and the summation of pi(t) over i ∈ argmaxi′∈Iti′ − ci′ equals

1. We have thus established (2.5) in scenario t. As t ∈ T n+1
III was chosen arbitrarily, we

may conclude that (2.5) holds throughout T n+1
III . This observation completes the induction

step. In summary, the revenues generated by the mechanisms (p, q) and (p⋆, q⋆) must

therefore coincide throughout ∪n≥1T n
III = TIII .

Step 4 (TIV ). In analogy to Step 3, we will show that (2.5) holds for every fixed t ∈ TIV .

This immediately implies that (p, q) generates the same payoff as (p⋆, q⋆) throughout TIV .

To prove (2.5), define the set-valued function I(t) = {i ∈ I | ti > ti⋆} for t ∈ TIV .

Note that |I(t)| ≥ 2 for all t ∈ TIV thanks to the definition of TIV , which implies that

29



i⋆ ∈ I(t) and argmaxi ̸=i⋆ ti − ci ⊆ I(t). To see that i⋆ ∈ I(t), note that if i⋆ ̸∈ I(t) for

some t ∈ TIV , then ti⋆ = ti⋆ , and there can be no i ̸= i⋆ with ti − ci ∈ (ti⋆ , ti⋆ ] = ∅, which

contradicts the assumption that t ∈ TIV . We will now use induction to prove that (2.5)

holds for all type profiles in T n
IV = {t ∈ TIV | |I(t)| = n} for all n ≥ 2.

As for the base step, set n = 2 and fix an arbitrary type profile t ∈ T 2
IV . Thus, there

exists exactly one agent i◦ ̸= i⋆ with ti◦ > ti⋆ . Incentive compatibility for agent i⋆ ensures

that pi⋆(t) − qi⋆(t) ≤ pi⋆(ti⋆ , t−i⋆) = 0, where the equality follows from (2.5) and the

observation that (ti⋆ , t−i⋆) ∈ TIII . Thus, we have pi⋆(t) = qi⋆(t). Incentive compatibility

for agent i◦ further dictates that pi◦(t) − qi◦(t) ≤ pi◦(ti◦ , t−i◦) = 0, where the equality

holds because (ti◦ , t−i◦) ∈ TI∪TII . Indeed, recall that the allocation probabilities of (p, q)

and (p⋆, q⋆) match and that the good is allocated to agent i⋆ on TI ∪ TII . Thus, we have

pi◦(t) = qi◦(t). This reasoning shows that pi(t) = qi(t) for all i ∈ I(t). Assume now that

the summation of pi(t) over all i ∈ argmaxi′∈Iti′ − ci′ is strictly smaller than 1. Then, we

have

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i∈I(t)

pi(t)(ti − ci) +
∑
i/∈I(t)

pi(t)ti < max
i∈I

ti − ci,

where the first inequality holds because pi(t) = qi(t) for all i ∈ I(t) and ci > 0 for all

i /∈ I(t). The strict inequality holds because
∑

i∈I pi(t) ≤ 1, maxj∈I tj − cj > ti⋆ ≥ ti

for all i ̸∈ I(t) by the definition of TIV and because we assumed that the summation of

pi(t) over i ∈ argmaxi′∈Iti′ − ci′ is strictly smaller than 1. Hence, (p, q) earns strictly

less than (p⋆, q⋆) in scenario t, which contradicts inequality (2.4). This implies that our

assumption was false and that the summation of pi(t) over all i ∈ argmaxi′∈Iti′ − ci′

must be equal to 1. We have thus established (2.5) in scenario t. As t ∈ T 2
IV was chosen

arbitrarily, (2.5) holds throughout T 2
IV .

As for the induction step, assume that (2.5) holds throughout T n
IV for some n ≥ 2,

and fix an arbitrary type profile t ∈ T n+1
IV . Thus, there exist exactly n agents i ̸= i⋆

with types ti > ti⋆ . Using the exact same reasoning as in the base step, we can prove
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that pi⋆(t) = qi⋆(t). In addition, for any agent i ∈ I(t) \ {i⋆} incentive compat-

ibility dictates that pi(t) − qi(t) ≤ pi(ti, t−i) = 0, where the equality holds because

(ti, t−i) ∈ TI ∪ TII ∪ TIII ∪ T n
IV . Indeed, if (ti, t−i) ∈ TI ∪ TII ∪ TIII , then the equality

follows from the results of Steps 1, 2 and 3, and if (ti, t−i) ∈ T n
IV , then the equality fol-

lows from the induction hypothesis. In summary, we have thus shown that pi(t) = qi(t)

for all i ∈ I(t). The first statement in (2.5) can be proved by repeating the correspond-

ing arguments from the base step almost verbatim. Details are omitted for brevity. We

have thus established (2.5) in an arbitrary scenario t ∈ T n+1
IV . By induction, the rev-

enues generated by the mechanisms (p, q) and (p⋆, q⋆) must therefore coincide through-

out ∪n≥2T n
IV = TIV . This observation completes the proof.

2.4 Markov Ambiguity Sets

Although simple and adequate for situations where there is no distributional information,

support-only ambiguity sets may be perceived conservative in practice. Motivated by this

fact, we next investigate the mechanism design problem (MDP) under the assumption that

the ambiguity set is a Markov ambiguity set of the form

P = {P ∈ P0(T ) |EP[t̃i] ∈ [µ
i
, µi] ∀i ∈ I}, (2.6)

where µ
i
and µi denote lower and upper bounds on the expected type EP[t̃i] of agent i ∈ I,

respectively. We assume without much loss of generality that ti < µ
i
< µi < ti for all

i ∈ I. Under Markov ambiguity sets, the principal has information about the agent’s mean

types in addition to the support information.

Recall that if the principal knew the agents’ types ex ante, she could simply allocate

the good to the agent with the highest type without inspection. Therefore, the optimal

value z⋆ of problem (MDP) is upper bounded by the value infP∈P EP[maxi∈I t̃i]. In the
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next proposition, we formally establish this upper bound and show that if P is a Markov

ambiguity set of the form (2.6), this upper bound amounts to maxi∈I µi
and is moreover

attained by an admissible mechanism. Thus, this upper bound coincides with z⋆.

Proposition 2. If P is a Markov ambiguity set of the form (2.6), then z⋆ = maxi∈I µi
.

Proof. Relaxing the incentive compatibility constraints and the first inequality in (FC)

yields

z⋆ ≤ sup
p,q

inf
P∈P

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
s.t. pi : T → [0, 1] and qi : T → [0, 1] ∀i ∈ I,∑

i∈I

pi(t) ≤ 1 ∀t ∈ T ,

= sup
p

inf
P∈P

EP

[∑
i∈I

pi(t̃)t̃i

]
s.t. pi : T → [0, 1] ∀i ∈ I,

∑
i∈I

pi(t) ≤ 1 ∀t ∈ T ,

where the equality holds because it is optimal to set qi(t) = 0 for all i ∈ I and t ∈ T in

the relaxed problem. As pi ≥ 0 and
∑

i∈I pi(t) ≤ 1 for all t ∈ T , we moreover have

∑
i∈I

pi(t)ti ≤ max
i∈I

ti ∀t ∈ T ,

which imply that z⋆ is bounded above by infP∈P EP
[
maxi∈I t̃i

]
. Now, select an arbitrary

i⋆ ∈ argmaxi∈I µi
and denote by δµ the Dirac point mass at µ. We have

Eδµ

[
max
i∈I

t̃i

]
≥ inf

P∈P
EP

[
max
i∈I

t̃i

]
≥ inf

P∈P
EP

[
t̃i⋆
]
= max

i∈I
µ
i
,

where the first inequality holds because δµ ∈ P , the second inequality holds because

maxi∈I ti ≥ ti⋆ for any t ∈ T , and the equality follows from the selection of i⋆ and the

definition of the Markov ambiguity set P . As δµ is the Dirac point mass at µ, we also have

Eδµ

[
maxi∈I t̃i

]
= maxi∈I µi

that implies infP∈P EP
[
maxi∈I t̃i

]
= maxi∈I µi

. Therefore,
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the optimal value z⋆ is bounded above by maxi∈I µi
. However, this bound is attained by

a mechanism that allocates the good to an agent i⋆ ∈ argmaxi∈I µi
irrespective of t ∈ T

and never inspects anyone’s type. Since this mechanism is feasible, the claim follows.

Proposition 2 shows that the principal can secure a worst-case expected payoff of

maxi∈Iµi
under Markov ambiguity sets. Hence, in comparison to support-only infor-

mation, the additional information about the mean types of the agents increases the prin-

cipal’s optimal worst-case expected payoff from maxi∈Iti to maxi∈Iµi
. In the next the-

orem, we characterize a class of favored-agent mechanisms that attain the optimal value

z⋆ = maxi∈I µi
of problem (MDP) under Markov ambiguity sets.

Theorem 3. If P is a Markov ambiguity set of the form (2.6), then any favored-agent

mechanism with favored agent i⋆ ∈ argmaxi∈Iµi
and threshold value ν⋆ ≥ ti⋆ is optimal

in (MDP).

Proof. Select an arbitrary favored-agent mechanism with i⋆ ∈ argmaxi∈Iµi
and ν⋆ ≥

ti⋆ . Recall first that this mechanism is feasible in (MDP). Next, we will show that this

mechanism attains a worst-case payoff that is at least as large as maxi∈I µi
, which implies

via Proposition 2 that this mechanism is optimal in (MDP). To this end, fix an arbitrary

type profile t ∈ T . If maxi∈I ti−ci < ν⋆, then condition (i) in Definition 3 implies that the

principal’s payoff amounts to ti⋆ . If maxi∈I ti− ci > ν⋆, then condition (ii) in Definition 3

implies that the principal’s payoff amounts to maxi∈I ti− ci > ν⋆ ≥ ti⋆ , where the second

inequality follows from the selection of ν⋆. If maxi ̸=i⋆ ti − ci = ν⋆, then the allocation

functions are defined either as in condition (i) or as in condition (ii) of Definition 3. Thus,

the principal’s payoff amounts either to ti⋆ or to maxi∈I ti−ci ≥ ν⋆ ≥ ti⋆ , respectively. In

summary, we have shown that the principal’s payoff is bigger than or equal to ti⋆ in all three

cases. As the type profile t was chosen arbitrarily, this implies that the principal’s expected

payoff under any distribution P ∈ P is bounded below by EP
[
t̃i⋆
]
. By the definition of the

Markov ambiguity set P , the expectation EP
[
t̃i⋆
]

cannot be lower than z⋆ = maxi∈I µi
for

any P ∈ P . Therefore, the principal’s worst-case expected payoff under the favored-agent
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mechanism is bounded below by z⋆. The favored-agent mechanism at hand is therefore

optimal in (2.3) by virtue of Proposition 2.

In the remainder of this section, we seek Pareto robustly optimal mechanisms for prob-

lem (MDP) under Markov ambiguity sets. To this end, we first present a set of preliminary

results. Even though some of the following results rely on the assumption that the set

argmaxi∈I µi
is a singleton, i.e., there is a single candidate for the optimal favored agent,

the Pareto robust optimality result of this section will not depend on this assumption.

Lemma 2. If P is a Markov ambiguity set of the form (2.6) and argmaxi∈I µi
= {i⋆}

is a singleton, then, for any type profile t ∈ T , there exist a scenario t̂ ∈ T , where

maxi ̸=i⋆ t̂i < t̂i⋆ , and a discrete distribution P ∈ P that satisfy the following properties:

(i) EP[t̃i] = µ
i
∀i ∈ I, (ii) P(t̃ ∈ {t, t̂}) = 1, (iii) P(t̃ = t) > 0.

Proof. For any t ∈ T , we will show that there exists a scenario t̂ ∈ T that satisfies

maxi ̸=i⋆ t̂i < t̂i⋆ and αt+(1−α)t̂ = µ for some α ∈ (0, 1]. This implies that the discrete

distribution P = αδt + (1 − α)δt̂ belongs to the Markov ambiguity set P and moreover

satisfies the properties (i)–(iii).

To this end, consider any t ∈ T . If t = µ, set t̂ = t = µ. As argmaxi∈I µi
= {i⋆} is

a singleton, scenario t̂ satisfies maxi ̸=i⋆ t̂i < t̂i⋆ . Moreover, note that αt + (1 − α)t̂ = µ

for any α ∈ (0, 1]. Similarly, for any α ∈ (0, 1], P = αδt + (1 − α)δt̂ = δµ is the Dirac

point mass at µ and trivially satisfies the desired properties (i)–(iii).

If t ̸= µ, define function t̂(α) through

t̂(α) =
1

1− α
(µ− t) + t.

Note that, for any α ∈ [0, 1), t̂(α) satisfies

αt+ (1− α)t̂(α) = αt+ (1− α)

(
1

1− α
(µ− t) + t

)
= µ.
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Thus, for any α ∈ [0, 1), t̂ = t̂(α) satisfies αt + (1 − α)t̂ = µ. We will next show that

there exists an α ∈ (0, 1) for which t̂ = t̂(α) also satisfies maxi ̸=i⋆ t̂i < t̂i⋆ . To this end,

first note that t̂(α) is a continuous function of α ∈ [0, 1) and t̂(0) = µ. Thus, for any

ε > 0, there exists α ∈ (0, 1) such that t̂(α) ∈
∏

i∈I [µi
− ε, µ

i
+ ε]. We next show that

any ε > 0 that belongs to the set

L = (0,min
i∈I

µ
i
− ti) ∩ (0,min

i∈I
ti − µ

i
) ∩

(
0, (µ

i⋆
−max

i ̸=i⋆
µ
i
)/2

)
ensures that

∏
i∈I [µi

− ε, µ
i
+ ε] ⊆ {t ∈ T | maxi ̸=i⋆ ti < ti⋆}. Note that set L is non-

empty because ti < µ
i
< µi < ti for all i ∈ I and argmaxi∈I µi

= {i⋆} is a singleton.

Consider any ε ∈ L. As ε < mini∈I µi
− ti, any t ∈

∏
i∈I [µi

− ε, µ
i
+ ε] satisfies

ti ≥ µ
i
− ε > µ

i
− (min

j∈I
µ
j
− tj) ≥ µ

i
− (µ

i
− ti) = ti ∀i ∈ I.

Similarly, as ε < mini∈I ti − µ
i
, any t ∈

∏
i∈I [µi

− ε, µ
i
+ ε] satisfies

ti ≤ µ
i
+ ε < µ

i
+ (min

j∈I
tj − µ

j
) ≤ µ

i
+ ti − µ

i
= ti ∀i ∈ I.

Therefore, we have shown that
∏

i∈I [µi
− ε, µ

i
+ ε] ⊆ T . Finally, any t ∈

∏
i∈I [µi

−
ε, µ

i
+ ε] satisfies

ti⋆ ≥ µ
i⋆
− ε > µ

i⋆
− (µ

i⋆
−max

j ̸=i⋆
µ
j
)/2 = (µ

i⋆
+max

j ̸=i⋆
µ
j
)/2

= max
j ̸=i⋆

µ
j
+ (µ

i⋆
−max

j ̸=i⋆
µ
j
)/2 > max

j ̸=i⋆
µ
j
+ ε ≥ µ

i
+ ε ≥ ti ∀i ̸= i⋆,

where the second and third inequalities follow from ε < (µ
i⋆
−maxi ̸=i⋆ µi

)/2. Thus, we

have shown that
∏

i∈I [µi
− ε, µ

i
+ ε] ⊆ {t ∈ T | maxi ̸=i⋆ ti < ti⋆} for any ε ∈ L. As

for any ε ∈ L there exists α ∈ (0, 1) such that t̂(α) ∈
∏

i∈I [µi
− ε, µ

i
+ ε], the claim

follows.

The next proposition formalizes a necessary and sufficient optimality condition using
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Lemma 2.

Proposition 3. If P is a Markov ambiguity set of the form (2.6) and the set

argmaxi∈I µi
= {i⋆} is a singleton, then a mechanism (p, q) ∈ X is optimal in (MDP) if

and only if

∑
i∈I

(pi(t)ti − qi(t)ci) ≥ ti⋆ ∀t ∈ T . (2.7)

Proof. Consider an arbitrary mechanism (p, q) ∈ X . If (p, q) satisfies (2.7), then the

principal’s expected payoff EP
[∑

i∈I(pi(t̃)t̃i − qi(t̃)ci)
]

under any distribution P ∈ P
is at least EP

[
t̃i⋆
]
≥ maxi∈I µi

, where the inequality follows from the definition of the

Markov ambiguity set P . By virtue of Proposition 2, this mechanism is therefore optimal

(MDP). We thus have shown that if (p, q) satisfies (2.7), then it is optimal in (MDP).

We next show that if (p, q) is optimal in (MDP), then it must satisfy (2.7). To this end,

assume for the sake of contradiction that (p, q) is optimal and
∑

i∈I(pi(t)ti − qi(t)ci) <

ti⋆ for some t ∈ T . Consider an arbitrary t ∈ T for which inequality (2.7) fails. By

Lemma 2, we know that there exist a scenario t̂ ∈ T , where maxi ̸=i⋆ t̂i < t̂i⋆ , and a

discrete distribution P ∈ P that satisfy the following properties: (i) EP[t̃i] = µ
i
∀i ∈ I,

(ii) P(t̃ ∈ {t, t̂}) = 1, (iii) P(t̃ = t) > 0. The principal’s payoff
∑

i∈I(pi(t̂)t̂i − qi(t̂)ci)

in scenario t̂ is bounded above by
∑

i∈I pi(t̂)t̂i ≤ t̂i⋆ , where the inequality holds because∑
i∈I pi(t̂) ≤ 1 and t̂i ≤ t̂i⋆ for all i ∈ I. The principal’s expected payoff under P

therefore satisfies

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
= P(t̃ = t)

∑
i∈I

(pi(t)ti − qi(t)ci) + P(t̃ = t̂)
∑
i∈I

(pi(t̂)t̂i − qi(t̂)ci)

< P(t̃ = t)ti⋆ + P(t̃ = t̂)t̂i⋆ = µ
i⋆
,

where the first equality follows from property (ii), the inequality holds because of property
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(iii) and because we have assumed that
∑

i∈I(pi(t)ti − qi(t)ci) < ti⋆ and we have shown

that
∑

i∈I(pi(t̂)t̂i−qi(t̂)ci) ≤ t̂i⋆ , and the last equality follows from properties (i) and (ii).

As the principal’s expected payoff under P is strictly smaller than z⋆ = µ
i⋆

, mechanism

(p, q) cannot be optimal. The claim thus follows.

Proposition 3 reveals that the type ti⋆ of agent i⋆ is an important reference point for

optimality if argmaxi∈I µi
= {i⋆} is a singleton. A mechanism is optimal in (MDP) if

and only if it earns a payoff of at least ti⋆ under any type profile t. Our next result shows

that this optimality condition and incentive compatibility constraints uniquely determine

the allocation probabilities of any optimal mechanism throughout a subset of all scenarios.

In particular, an optimal mechanism in (MDP) should allocate the good to agent i⋆ without

inspection if no other agent reports a value ti − ci that exceeds the highest possible type

ti⋆ of agent i⋆.

Proposition 4. If P is a Markov ambiguity set of the form (2.6) and the set

argmaxi∈I µi
= {i⋆} is a singleton, then any optimal mechanism (p, q) in (MDP) sat-

isfies the following property. For any type profile t ∈ T such that maxi ̸=i⋆ ti − ci < ti⋆ ,

pi⋆(t) = 1 and qi⋆(t) = 0.

We outline the proof idea in the special case when there are only two agents and when

µ
2
< µ

1
so that argmaxi∈Iµi

= {1} is a singleton. We also assume that t2 > c2 + t1 to

prevent tedious case distinctions. Our arguments make use of the following partition of

the type space T .

TI = {t ∈ T | t2 < t1}

TII = {t ∈ T | t2 ≥ t1 and t2 < t1}

TIII = {t ∈ T | t2 ≥ t1, t2 ≥ t1 and t2 − c2 < t1}

TIV = {t ∈ T | t2 ≥ t1, t2 ≥ t1, t2 − c2 ≥ t1 and t2 − c2 < t1}

TV = {t ∈ T | t2 ≥ t1, t2 ≥ t1, t2 − c2 ≥ t1 and t2 − c2 ≥ t1}

(2.8)
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Note that some of the conditions in set definitions above are redundant and given for ease

of readability. Sets TI − TV are illustrated in Figure 2.2. One can show that all of these

sets are nonempty thanks to our standing assumptions about µ
1
, µ

2
, t1, t2 and c2. We

emphasize, however, that all simplifying assumptions as well as the restriction to two

agents are relaxed in the formal proof of Proposition 4.

In the following we use the optimality condition (2.7) that is given in Proposition 3, that

is, any optimal mechanism must earn at least t1 in any scenario t ∈ T . We will prove that,

when agent 2 fails to report a type t2 that is at least c2+ t1, inequality (2.7) can be satisfied

only if the good is allocated to agent 1 without inspection. Note that we have t2 < c2 + t1

under any scenario t ∈ T \ TV .

Figure 2.2: Partition of the type space T ,

(Markov).

We now assume that a mechanism (p, q) is

optimal and investigate the subsets TI , TII , TIII

and TIV of the type space one by one. Con-

sider first a type profile t ∈ TI . As t2 < t1,

c1 > 0 and (p, q) satisfies the (FC) constraints∑
i∈I pi(t) ≤ 1 and q1(t) ≥ 0, the mecha-

nism (p, q) can earn a payoff that is at least t1
only if p1(t) = 1 and q1(t) = 0.

Consider now any t ∈ TII . Incentive com-

patibility ensures that p1(t) ≥ p1(t1, t2) −
q1(t1, t2) = 1, where the equality holds be-

cause (t1, t2) ∈ TI and because we know from

before that (p, q) allocates the good to agent 1

without inspection in TI . Thus, the mecha-

nism (p, q) can earn a payoff that is at least t1 in scenario t only if q1(t) = 0. In summary,

we must again have p1(t) = 1 and q1(t) = 0 so that (p, q) can satisfy (2.7).
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Next, consider any scenario t ∈ TIII . Incentive compatibility ensures that p2(t) −
q2(t) ≤ p2(t1, t2) = 0, where the equality holds because (t1, t2) ∈ TI ∪ TII and because

we know from before that (p, q) allocates the good to agent 1 without inspection through-

out TI∪TII . As the allocation probabilities are non-negative and satisfy the (FC) condition

p2(t) ≥ q2(t), we may conclude that p2(t) = q2(t). Thus, the report of agent 2 is inspected

if he wins the good in scenario t. As t2 − c2 < t1 for all t ∈ TIII , the mechanism (p, q)

can earn a payoff that is at least t1 only if p1(t) = 1 and q1(t) = 0.

Finally, consider any t ∈ TIV . Incentive compatibility ensures that p1(t) ≥ p1(t1, t2)−
q1(t1, t2) = 1, where the equality holds because (t1, t2) ∈ TIII and because we know

from before that (p, q) allocates the good to agent 1 without inspection in TIII . Thus,

the mechanism (p, q) can earn a payoff that is at least t1 in scenario t only if q1(t) = 0.

Hence, we must again have p1(t) = 1 and q1(t) = 0 so that (p, q) can satisfy (2.7).

The reasoning above shows that, under the assumption argmaxi∈I µi
= {1}, any opti-

mal mechanism (p, q) should give the good to agent 1 without inspection in any scenario

t ∈ T that satisfies t2 − c2 < t1.

Proof of Proposition 4. Throughout the proof we use the following partition of the type

space T .

TI = {t ∈ T | max
i ̸=i⋆

ti < ti⋆}

TII = {t ∈ T | max
i ̸=i⋆

ti ≥ ti⋆ and max
i ̸=i⋆

ti < ti⋆}

TIII = {t ∈ T | max
i ̸=i⋆

ti ≥ ti⋆ , max
i ̸=i⋆

ti ≥ ti⋆ and max
i ̸=i⋆

ti − ci < ti⋆}

TIV = {t ∈ T | max
i ̸=i⋆

ti ≥ ti⋆ , max
i ̸=i⋆

ti ≥ ti⋆ , max
i ̸=i⋆

ti − ci ≥ ti⋆ and max
i ̸=i⋆

ti − ci < ti⋆}

TV = {t ∈ T | max
i ̸=i⋆

ti ≥ ti⋆ , max
i ̸=i⋆

ti ≥ ti⋆ , max
i ̸=i⋆

ti − ci ≥ ti⋆ and max
i ̸=i⋆

ti − ci ≥ ti⋆}
(2.9)

Note again that some of the conditions in the definitions above are redundant and in-

troduced for ease of readability. Note also that the set TI is nonempty and contains at

39



least µ = (µ1, . . . , µI) because argmaxi∈Iµi
= {i⋆} is a singleton. However, the sets

TII , TIII , TIV and TV can be empty if ti⋆ or ci, i ̸= i⋆, are sufficiently large.

In the following, we will use Proposition 3 that shows that any optimal mechanism

should satisfy (2.7). In other words, any optimal mechanism should earn a payoff that

is at least ti⋆ in any scenario t ∈ T . To prove the claim, we will show that if a feasible

mechanism (p, q) violates pi⋆(t) = 1 and qi⋆(t) = 0 for some t ∈ T such that maxi ̸=i⋆ ti−
ci < ti⋆ , then it cannot satisfy (2.7). Consequently, mechanism (p, q) cannot be optimal.

The remainder of the proof is divided into four steps, each of which investigates one of the

subsets TI , TII , TIII and TIV . We have maxi ̸=i⋆ ti − ci ≥ ti⋆ for any t ∈ TV , and for this

reason we do not need to investigate this set.

Step 1 (TI). Assume for the sake of contradiction that a mechanism (p, q) is optimal

in (MDP) and satisfy pi⋆(t) < 1 or pi⋆(t) = 1 and qi⋆(t) > 0 in some scenario t ∈ TI . If

pi⋆(t) < 1, then the principal’s payoff can be written as∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i∈I

pi(t)ti < ti⋆ ,

where the strict inequality holds because
∑

i∈I pi(t) ≤ 1 and t ∈ TI , which implies that

ti < ti⋆ for all i ̸= i⋆. Thus, inequality (2.7) is violated in scenario t. If pi⋆(t) = 1 and

qi⋆(t) > 0, on the other hand, we have∑
i∈I

(pi(t)ti − qi(t)ci) = pi⋆(t)ti⋆ − qi⋆(t)ci⋆ < ti⋆ ,

where the strict inequality holds because qi⋆(t) and ci⋆ are positive. Thus, inequality (2.7)

is again violated in scenario t. For inequality (2.7) to hold, we must therefore have pi⋆(t) =

1 and qi⋆(t) = 0 for any t ∈ TI .

Step 2 (TII). Consider any type profile t ∈ TII . Incentive compatibility ensures that

pi⋆(t) ≥ pi⋆(ti⋆ , t−i⋆)−qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because (ti⋆ , t−i⋆) ∈ TI
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and because we know from Step 1 that (p, q) allocates the good to agent i⋆ without inspec-

tion in TI . Consequently, a feasible mechanism (p, q) can earn at least ti⋆ in scenario t

only if qi⋆(t) = 0. As t ∈ TII was chosen arbitrarily, any optimal mechanism (p, q)

should satisfy pi⋆(t) = 1 and qi⋆(t) = 0 throughout TII .

Step 3 (TIII). Define the set-valued function I(t) = {i ∈ I | ti ≥ ti⋆} for t ∈ TIII .

Note that |I(t)| ≥ 2 for all t ∈ TIII because i⋆ ∈ I(t) and because the definition of TIII

ensures that maxi ̸=i⋆ ti ≥ ti⋆ . We now prove by induction that pi⋆(t) = 1 and qi⋆(t) = 0

for all type profiles in T n
III = {t ∈ TIII | |I(t)| = n} for all n ≥ 2.

As for the base step, set n = 2 and fix any t ∈ T 2
III . Thus, there exists exactly

one agent i◦ ̸= i⋆ with ti◦ ≥ ti⋆ . Incentive compatibility ensures that pi◦(t) − qi◦(t) ≤
pi◦(ti◦ , t−i◦) = 0, where the equality holds because (ti◦ , t−i◦) ∈ TI ∪ TII and because we

know from Step 1 and 2 that (p, q) allocates the good to agent i⋆ without inspection in

TI ∪ TII . We thus have pi◦(t) = qi◦(t). As ti◦ − ci◦ < ti⋆ and tj < ti⋆ for all j ∈ I \ I(t),
the mechanism (p, q) can satisfy the inequality (2.7) for t ∈ T 2

III only if pi⋆(t) = 1 and

qi⋆(t) = 0.

As for the induction step, assume that pi⋆(t) = 1 and qi⋆(t) = 0 for all t ∈ T n
III and

for some n ≥ 2, and fix an arbitrary type profile t ∈ T n+1
III . Thus, there exist exactly n

agents i ̸= i⋆ with types ti ≥ ti⋆ . For any such agent i, incentive compatibility dictates

that pi(t) − qi(t) ≤ pi(ti, t−i) = 0, where the equality holds because (ti, t−i) ∈ TI ∪
TII ∪ T n

III . Indeed, if (ti, t−i) ∈ TI ∪ TII , then the equality follows from the results

of Steps 1 and 2, and if (ti, t−i) ∈ T n
III , then the equality follows from the induction

hypothesis. We thus have pi(t) = qi(t) for all i ∈ I(t) \ {i⋆}. In analogy to the base

step, a feasible mechanism (p, q) can satisfy the inequality (2.7) for t ∈ T n+1
III only if

pi⋆(t) = 1 and qi⋆(t) = 0 because ti − ci < ti⋆ for all i ∈ I(t) \ {i⋆}, and tj < ti⋆ for

j ∈ I \ I(t). This observation completes the induction step. In summary, the allocation

probabilities of any optimal mechanism (p, q) should satisfy pi⋆(t) = 1 and qi⋆(t) = 0

throughout ∪n≥2T n
III = TIII .
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Step 4 (TIV ). Fix now any arbitrary type profile t ∈ TIV . Incentive compatibility en-

sures that pi⋆(t) ≥ pi⋆(ti⋆ , t−i⋆) − qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because

(ti⋆ , t−i⋆) ∈ TIII and because we know from Step 3 that any optimal mechanism (p, q)

allocates the good to agent i⋆ without inspection in TIII . Consequently, a feasible mech-

anism (p, q) can earn at least ti⋆ in scenario t only if qi⋆(t) = 0. As t ∈ TIV was

chosen arbitrarily, any optimal mechanism (p, q) should satisfy pi⋆(t) = 1 and qi⋆(t) = 0

throughout TIV . This observation completes the proof.

The allocation probabilities given in Proposition 4 are satisfied by the favored-agent

mechanism that assigns i⋆ as the favored agent and ti⋆ as the threshold. Furthermore,

both type (i) and type (ii) version of this favored-agent mechanism satisfy the optimality

condition in Proposition 3 so that they are both optimal when argmaxi∈I µi
= {i⋆}. In our

next result, we show that any other mechanism can only weakly Pareto robustly dominate

the type (ii) variant of this favored-agent mechanism when argmaxi∈I µi
= {i⋆} is a

singleton.

Proposition 5. Assume that P is a Markov ambiguity set of the form (2.6) and

argmaxi∈I µi
= {i⋆} is a singleton. Denote by (p⋆, q⋆) the allocation probabilities of

the type (ii) favored-agent mechanism with the favored agent i⋆ and threshold ν⋆ = ti⋆ . If

a mechanism (p, q) ∈ X weakly Pareto robustly dominates (p⋆, q⋆), then it satisfies∑
i∈I

(pi(t)ti − qi(t)ci) =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t ∈ T .

Proposition 5 states that if a mechanism (p, q) weakly Pareto robustly dominates

(p⋆, q⋆), then mechanisms (p, q) and (p⋆, q⋆) earn the same payoff in all scenarios t ∈ T .

This implies that no other mechanism can (strongly) Pareto robustly dominate (p⋆, q⋆).

We sketch the proof idea for the two agents case detailed before. Recall that for this

special case, we assume that µ
2
< µ

1
so that argmaxi∈Iµi

= {1} is a singleton and that

t2 > c2+ t1. We will again use the partition TI −TV given in (2.8) and illustrated in Figure
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2.2. In the following we first show that any mechanism (p, q) that weakly Pareto robustly

dominates (p⋆, q⋆) should be optimal. Hence, by Proposition 4, mechanisms (p, q) and

(p⋆, q⋆) generate the same payoff throughout T \ TV . Then, we will prove that the two

mechanisms earn the same payoff also in TV .

To this end, fix a mechanism (p, q) ∈ X and assume that mechanism (p, q) weakly

Pareto robustly dominates (p⋆, q⋆), i.e.,

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
≥ EP

[∑
i∈I

(p⋆i (t̃)t̃i − q⋆i (t̃)ci)

]
∀P ∈ P .

By Theorem 3, (p⋆, q⋆) is optimal in (MDP). As the expected payoff of mechanism

(p, q) is at least as high as that of mechanism (p⋆, q⋆) for any P ∈ P , mechanism (p, q) is

also optimal. As argmaxi∈I µi
= {1} is a singleton and as (p, q) is optimal, we know by

Proposition 4 that (p, q) allocates the good to agent 1 without inspection if t2 − c2 < t1,

i.e., if t ∈ T \TV . Thus, the allocation probabilities of the mechanisms (p, q) and (p⋆, q⋆)

coincide on T \ TV .

Next, consider any t ∈ TV . Incentive compatibility ensures that 0 = p2(t1, t2) ≥
p2(t) − q2(t), where the equality holds because (t1, t2) ∈ T \ TV and because we know

that (p, q) allocates the good to agent 1 without inspection in T \ TV . We may thus

conclude that p2(t) = q2(t). Then, in scenario t, the principal’s payoff under (p, q)

satisfies ∑
i∈I

(pi(t)ti − qi(t)ci) ≤ p2(t)(t2 − c2) + p1(t)t1

≤ t2 − c2 =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),
(2.10)

where the second inequality follows from the definition of TV that implies that t2−c2 ≥ t1.

The payoff of mechanism (p, q) therefore cannot exceed the one of (p⋆, q⋆) throughout

TV .
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We will finally show that mechanisms (p, q) and (p⋆, q⋆) earn the same payoff on TV ,

i.e., inequalities (2.10) hold as equalities. To this end, assume for the sake of contradiction

that (p, q) earns a strictly lower payoff in scenario t ∈ TV , i.e.,

∑
i∈I

(pi(t)ti − qi(t)ci) < t2 − c2 =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci).

By Lemma 2, there exists t̂ ∈ T , where maxi ̸=i⋆ t̂i < t̂i⋆ , and P ∈ P that satisfy: (i)

EP[t̃i] = µ
i
∀i ∈ I, (ii) P(t̃ ∈ {t, t̂}) = 1, (iii) P(t̃ = t) > 0. We already know

from previous arguments that the payoff of mechanism (p, q) is lower than or equal to the

payoff of (p⋆, q⋆) in scenario t̂. In view of (ii) and (iii), the expected payoff earned by

(p, q) is thus strictly lower than the one of (p⋆, q⋆) under P. As P ∈ P , this results in

a contradiction with our initial assumption that (p, q) weakly Pareto robustly dominates

(p⋆, q⋆). Thus, mechanisms (p, q) and (p⋆, q⋆) earn the same payoff also on TV .

Proof of Proposition 5. We will again use the partition TI − TV given in (2.9). Similarly

to the sketch of the proof idea, we first show that (p, q) and (p⋆, q⋆) generate the same

payoff throughout T \TV . Then, we will prove that the two mechanisms generate the same

payoff also in TV .

To this end, fix a mechanism (p, q) ∈ X and assume that (p, q) weakly Pareto ro-

bustly dominates (p⋆, q⋆). Mechanism (p, q) thus earns at least as high expected payoff

as (p⋆, q⋆) under every P ∈ P , i.e., condition (2.1) holds. As (p⋆, q⋆) is optimal by The-

orem 3, this implies that (p, q) is also optimal in (MDP). As argmaxi∈I µi
= {i⋆} is a

singleton, we thus know from Proposition 4 that (p, q) allocates the good to the favored

agent i⋆ without inspection if maxi ̸=i⋆ ti− ci < ti⋆ , i.e., if t ∈ T \TV . Thus, the allocation

probabilities of the mechanisms (p, q) and (p⋆, q⋆) coincide on T \ TV , and they earn the

same payoff throughout T \ TV .

In the following we show that (p, q) can weakly Pareto robustly dominate (p⋆, q⋆) only
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if ∑
i∈argmaxi′∈I ti′−ci′

pi(t) = 1 and pi(t) = qi(t) ∀i ∈ argmaxi′∈Iti′ − ci′ (2.11)

for all t ∈ TV . Note that (2.11) immediately implies that (p, q) and (p⋆, q⋆) generate the

same payoff maxi∈I ti − ci throughout TV .

Define now the set-valued function I(t) = {i ∈ I | ti ≥ ti⋆} for t ∈ TV . Note that

|I(t)| ≥ 1 for all t ∈ TV thanks to the definition of TV , which ensures that there exists at

least one agent i ̸= i⋆ with ti − ci ≥ ti⋆ and argmaxi ̸=i⋆ ti − ci ⊆ I(t). We now prove

by induction that (2.11) holds for all type profiles in T n
V = {t ∈ TV | |I(t)| = n} for

all n ≥ 1.

As for the base step, set n = 1 and fix any t ∈ T 1
V . Thus, there exists exactly one

agent i◦ ̸= i⋆ such that ti◦ ≥ ti⋆ . Incentive compatibility ensures that pi◦(t) − qi◦(t) ≤
pi◦(ti◦ , t−i◦) = 0, where the equality holds because (ti◦ , t−i◦) ∈ T \TV and because (p, q)

allocates the good to agent i⋆ without inspection on T \ TV . We thus have pi◦(t) = qi◦(t).

If pi◦(t) < 1, then

∑
i∈I

(pi(t)ti − qi(t)ci) ≤ pi◦(t)(ti◦ − ci◦) +
∑
i ̸=i◦

pi(t)ti < max
i∈I

ti − ci, (2.12)

where the first inequality holds because pi◦(t) = qi◦(t) and ci > 0 for all i ̸= i◦. The

second inequality follows from the assumption that pi◦(t) < 1 as well as the definition of

T 1
V and the construction of i◦, which imply that ti◦−ci◦ = maxi∈I ti−ci ≥ ti⋆ and ti⋆ > ti

for all i ̸= i◦. This shows that (p, q) earns strictly less than (p⋆, q⋆) in scenario t. We next

show that this fact contradicts inequality (2.1). Due to Lemma 2, there exists t̂ ∈ T , where

maxi ̸=i⋆ t̂i < t̂i⋆ , and P ∈ P that satisfy: (i) EP[t̃i] = µ
i
∀i ∈ I, (ii) P(t̃ ∈ {t, t̂}) = 1,

45



(iii) P(t̃ = t) > 0. As t̂ ∈ T \ TV by definition, we have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
= α

∑
i∈I

(pi(t)ti − qi(t)ci) + (1− α)
∑
i∈I

(pi(t̂)t̂i − qi(t̂)ci)

< α(ti◦ − ci◦) + (1− α)t̂i⋆ = EP

[∑
i∈I

(p⋆i (t̃)t̃i − q⋆i (t̃)ci)

]
,

where α ∈ (0, 1] indicates the probability of t̃ = t, and the inequality follows from (2.12)

and the fact that the payoff at scenario t̂ is smaller than t̂i⋆ because maxi ̸=i⋆ t̂i < t̂i⋆

and because (p, q) satisfies (FC) and ci > 0 for all i ∈ I. The strict inequality above

implies that (p⋆, q⋆) earns a strictly higher expected payoff than (p, q) under P ∈ P . It

thus contradicts inequality (2.1) and our assumption that (p, q) weakly Pareto robustly

dominates (p⋆, q⋆). Hence, we have established (2.11) in scenario t.

As for the induction step, assume that (2.11) holds throughout T n
V for some n ≥ 1,

and fix an arbitrary type profile t ∈ T n+1
V . Thus, there exist exactly n + 1 agents i

with types ti ≥ ti⋆ . For any agent i ∈ I(t) \ {i⋆} incentive compatibility dictates

that pi(t) − qi(t) ≤ pi(ti, t−i) = 0, where the equality follows from Proposition 4

and the induction hypothesis because (ti, t−i) ∈ T n
V ∪ (T \ TV ). If i⋆ ∈ I(t), then

we can make a similar argument for i⋆. In fact, incentive compatibility dictates that

pi⋆(t) − qi⋆(t) ≤ pi⋆(ti⋆ , t−i⋆) = 0, where the equality follows from the induction hy-

pothesis because (ti⋆ , t−i⋆) ∈ T n
V . In summary, we have thus shown that pi(t) = qi(t) for

all i ∈ I(t). The first condition in (2.11) can be proved by repeating the corresponding ar-

guments from the base step almost verbatim. Details are omitted for brevity. We have thus

established (2.11) in an arbitrary scenario t ∈ T n+1
V . By induction, the revenues generated

by the mechanisms (p, q) and (p⋆, q⋆) must therefore coincide throughout ∪n≥1T n
V = TV .

This observation completes the proof.

Proposition 5 shows that no other mechanism can Pareto robustly dominate the type (ii)
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favored-agent mechanism with the favored agent i⋆ and threshold ν⋆ = ti⋆ and this mech-

anism is thus Pareto robustly optimal given that argmaxi∈Iµi
= {i⋆} is a singleton.

Next theorem proves that this Pareto robust optimality result continues to hold even when

argmaxi∈Iµi
is not a singleton.

Theorem 4. If P is equal to a Markov ambiguity set of the form (2.6), then any favored-

agent mechanism of type (ii) with favored agent i⋆ ∈ argmaxi∈Iµi
and threshold value

ν⋆ = ti⋆ is Pareto robustly optimal in (MDP).

Proof. Let (p⋆, q⋆) denote the allocation probabilities of the favored-agent mechanism

described in Theorem 4. We know that (p⋆, q⋆) is optimal from Theorem 3. To show that

it is also Pareto robustly optimal, fix a mechanism (p, q) ∈ X and suppose that (p, q)

weakly Pareto robustly dominates (p⋆, q⋆), i.e., condition (2.1) holds. We will show that

(p, q) cannot (strictly) Pareto robustly dominate (p⋆, q⋆).

If argmaxi∈Iµi
= {i⋆} is a singleton, we know from Proposition 5 that (p, q) cannot

generate strictly higher expected payoff under any P ∈ P , and (p⋆, q⋆) is thus Pareto

robustly optimal. Suppose now that argmaxi∈Iµi
is not a singleton. Select any ε ∈

(0, µi⋆ − µ
i⋆
) that exists because µ

i⋆
< µi⋆ , and define

Pε = {P ∈ P : EP[t̃i⋆ ] ∈ [µ
i⋆
+ ε, µi⋆ ]}.

Set Pε represents another Markov ambiguity set where the lowest mean value µ
i⋆

of bidder

i⋆ is shifted to µ
i⋆
+ ε. Note that agent i⋆ becomes the unique agent with the maximum

lowest mean value under Pε. As Pε ⊂ P by construction, we have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
≥ EP

[∑
i∈I

(p⋆i (t̃)t̃i − q⋆i (t̃)ci)

]
∀P ∈ Pε.

Thus, (p, q) also weakly Pareto robustly dominates (p⋆, q⋆) under the Markov ambiguity

set Pε. By Proposition 5, we can now conclude that (p, q) and (p⋆, q⋆) generate the same

payoff for the principal in any scenario t ∈ T . This implies that the expected payoff of
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(p, q) cannot exceed the one of (p⋆, q⋆) under any distribution P supported on T . Thus,

none of the inequalities in (2.1) can be strict, and (p, q) cannot Pareto robustly dominate

(p⋆, q⋆). The claim thus follows.

In the proof of Theorem 4, given a favored-agent mechanism (p⋆, q⋆) of type (ii) with

favored agent i⋆ ∈ argmaxi∈Iµi
and threshold value ν⋆ = ti⋆ , we construct an auxiliary

ambiguity set Pε ⊆ P by increasing µ
i⋆

to µ
i⋆
+ ϵ, where ϵ > 0 is sufficiently small. By

construction, agent i⋆ is the unique agent with the highest lower bound on the expected

type under Pε. As Pε ⊆ P , any mechanism (p, q) that weakly Pareto robustly dominates

(p⋆, q⋆) under P should also weakly Pareto robustly dominate (p⋆, q⋆) under Pε. We then

invoke Proposition 5 for Pε to conclude that (p, q) and (p⋆, q⋆) generate the same payoff

in every scenario t ∈ T .

2.5 Markov Ambiguity Sets with Independent Types

Markov ambiguity sets studied in Section 2.4 contain distributions under which the agents’

types are dependent. Throughout this section, we focus on a subset of the Markov ambigu-

ity sets studied in Section 2.4 and assume that the agents’ types are known to be mutually

independent. In particular, we consider the Markov ambiguity set with independent types

defined as

P = {P ∈ P0(T )|EP[t̃i] ∈ [µ
i
, µi] ∀i ∈ I, t̃1, . . . , t̃I are mutually independent under P}.

(2.13)

As the Markov ambiguity set with independent types in (2.13) is a subset of the Markov

ambiguity set in (2.6), the principal’s optimal worst-case expected payoff cannot be lower

than maxi∈I µi
in view of Proposition 2. The next proposition shows that the principal

cannot improve her optimal worst-case expected payoff using the additional information

of independence.
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Proposition 6. If P is equal to a Markov ambiguity set of the form (2.13), then z⋆ =

maxi∈I µi
.

The proof of Proposition 6 is identical to that of Proposition 2 as the agents’ types are

independent under the Dirac point mass at µ, which facilitates the proof.

Next theorem shows that there are again infinitely many optimal favored-agent mecha-

nisms. The set of optimal favored-agent mechanisms characterized in Theorem 5 resem-

bles to the one characterized in Theorem 3. Particularly, the selection criteria of a favored

agent remains the same whereas the principal can select a lower threshold with the addi-

tional information of independence.

Theorem 5. If P is a Markov ambiguity set of the form (2.13), then any favored-agent

mechanism with favored agent i⋆ ∈ argmaxi∈Iµi
and threshold value ν⋆ ≥ maxi∈Iµi

is

optimal in (MDP).

Proof. Select any favored-agent mechanism with i⋆ ∈ argmaxi∈Iµi
and ν⋆ ≥ maxi∈Iµi

,

denote by (p, q) its allocation probabilities. Recall first that this mechanism is feasible in

(MDP). We will prove that (p, q) attains a worst-case expected payoff that is at least as

large as maxi∈I µi
, which implies via Proposition 6 that it is optimal in (MDP).

To this end, fix an arbitrary distribution P ∈ P and suppose for ease of exposition

that P
(
maxi ̸=i⋆ t̃i − ci < ν⋆

)
, P

(
maxi ̸=i⋆ t̃i − ci = ν⋆

)
and P

(
maxi ̸=i⋆ t̃i − ci > ν⋆

)
are

all strictly positive. We can write the principal’s expected payoff from (p, q) under P as

P
(
max
i ̸=i⋆

t̃i − ci < ν⋆

)
EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci < ν⋆

]

+ P
(
max
i ̸=i⋆

t̃i − ci = ν⋆

)
EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]

+ P
(
max
i ̸=i⋆

t̃i − ci > ν⋆

)
EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci > ν⋆

]
. (2.14)
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If one or more of the terms P
(
maxi ̸=i⋆ t̃i − ci < ν⋆

)
, P

(
maxi ̸=i⋆ t̃i − ci = ν⋆

)
and

P
(
maxi ̸=i⋆ t̃i − ci > ν⋆

)
are zero, the equation (2.14) can be adjusted by removing the

respective terms, and the proof proceeds similarly.

In the following we will show that all of the conditional expectations above and, there-

fore, the principal’s expected payoff under P are greater than or equal to z⋆ = maxi∈I µi
.

If maxi ̸=i⋆ ti − ci < ν⋆, condition (i) in Definition 3 implies that the principal’s payoff

amounts to ti⋆ . This implies that

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci < ν⋆

]
= EP

[
t̃i⋆

∣∣∣∣ max
i ̸=i⋆

t̃i − ci < ν⋆

]
= EP

[
t̃i⋆
]
= µi⋆ ≥ max

i∈I
µ
i
,

where the second equality holds because the agents’ types are independent. If maxi ̸=i⋆ ti−
ci > ν⋆, then condition (ii) in Definition 3 implies that the principal’s payoff amounts to

maxi∈I ti − ci. We thus have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci > ν⋆

]
= EP

[
max
i∈I

t̃i − ci

∣∣∣∣ max
i ̸=i⋆

t̃i − ci > ν⋆

]
> ν⋆ ≥ max

i∈I
µ
i
.

If maxi ̸=i⋆ ti − ci = ν⋆, then the allocation functions are defined either as in condition (i)

or as in condition (ii) of Definition 3. If the allocation functions are defined as in condition

(i), we have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]
= EP

[
t̃i⋆

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]
= EP

[
t̃i⋆
]
= µi⋆ ≥ max

i∈I
µ
i
,

where the second equality again holds because the agents’ types are independent. If the
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allocation functions are defined as in condition (ii), on the other hand, then

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]
= EP

[
max
i∈I

t̃i − ci

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]
≥ ν⋆ ≥ max

i∈I
µ
i
.

In summary, we have shown that all of the conditional expectations in (2.14) have lower

bound maxi∈I µi
and, therefore, the principal’s expected payoff under P is non-inferior to

z⋆ = maxi∈I µi
. As P ∈ P was chosen arbitrarily, the principal’s worst-case expected

payoff is also non-inferior to z⋆ under the chosen favored-agent mechanism. Hence, by

virtue of Proposition 6, any favored-agent mechanism with i⋆ ∈ argmaxi∈Iµi
and ν⋆ ≥

maxi∈Iµi
is optimal in (MDP).

Similarly to previous sections, we next seek Pareto robustly optimal mechanisms for

problem (MDP) under Markov ambiguity sets with independent types. To this end, we

first present a few preliminary results some of which require the assumption that the set

argmaxi∈I µi
is a singleton, i.e., there is a single candidate for the favored agent. How-

ever, the Pareto robust optimality result of this section will not depend on this assumption.

Lemma 3. If P is a Markov ambiguity set of the form (2.13) and argmaxi∈I µi
= {i⋆} is

a singleton, then, for any type profile t ∈ T and any µi⋆ ∈ [µ
i⋆
, µi⋆ ], there exist a scenario

t̂ ∈ T , where maxi ̸=i⋆ t̂i < µ
i⋆

, and a discrete distribution P ∈ P that satisfy the following

properties: (i) EP[t̃i⋆ ] = µi⋆ , (ii) P(t̃i ∈ {ti, t̂i}) = 1 for all i ∈ I, (iii) P(t̃ = t) > 0.

Proof. Consider arbitrary t ∈ T and µi⋆ ∈ [µ
i⋆
, µi⋆ ]. We will construct a scenario t̂ ∈ T ,

where maxi ̸=i⋆ t̂i < µ
i⋆

, and a discrete distribution P ∈ P that satisfies (i)–(iii). To this
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end, we define t̂i through

t̂i =


ti if ti = µ

i
,

ti if ti > µ
i
,

µ
i
+ ε if ti < µ

i
,

∀i ∈ I \ {i⋆} and t̂i⋆ =


ti⋆ if ti⋆ = µi⋆ ,

ti⋆ if ti⋆ > µi⋆ ,

µi⋆ + ε if ti⋆ < µi⋆ ,

where ε ∈ (0,mini∈I ti −µi)∩
(
0, (µ

i⋆
−maxi ̸=i⋆ µi

)/2
)

is a fixed positive number. Note

that there exists such ε > 0 because µ
i
< µi < ti for all i ∈ I and argmaxi∈I µi

= {i⋆}
is a singleton. We next show that t̂i ∈ Ti for all i ∈ I (i.e., t̂ ∈ T ) and maxi ̸=i⋆ t̂i < µ

i⋆
.

For any i ∈ I, we have

t̂i ≤ µi + ε ≤ µi +min
j∈I

(tj − µj) ≤ µi + ti − µi = ti,

where the first inequality follows from the definition of t̂i, and the second inequality holds

because ε < minj∈I tj −µj . The definition of t̂i implies that we also have t̂i ≥ ti. We thus

showed that t̂ ∈ T .

For all i ̸= i⋆, we moreover have

t̂i ≤ µ
i
+ ε ≤ µ

i
+ (µ

i⋆
−max

j ̸=i⋆
µ
j
)/2 ≤ µ

i
+ (µ

i⋆
− µ

i
)/2 < µ

i⋆
,

where the first inequality again follows from the definition of t̂i, the second inequal-

ity holds because ε < (µ
i⋆
− maxi ̸=i⋆ µi

)/2, and the fourth inequality holds because

argmaxi∈I µi
= {i⋆} is a singleton. We thus showed that maxi ̸=i⋆ t̂i < µ

i⋆
.

Next, we will construct a discrete distribution P through the marginal distributions Pi =

αiδti +(1−αi)δt̂i of t̃i’s, where αi ∈ (0, 1] for all i ∈ I. We will then show that P belongs

to the Markov ambiguity set P and moreover satisfies the properties (i)–(iii). To this end,
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we define αi through

αi =

1 if ti = t̂i,

(µ
i
− t̂i)/(ti − t̂i) if ti ̸= t̂i,

∀i ∈ I \ {i⋆},

and

αi⋆ =

1 if ti⋆ = t̂i⋆ ,

(µi⋆ − t̂i⋆)/(ti⋆ − t̂i⋆) if ti⋆ ̸= t̂i⋆ .

We first show that αi ∈ (0, 1] for all i ∈ I. For any i ∈ I, it is sufficient to show that the

claim holds if ti ̸= t̂i. For any i ̸= i⋆, if ti ̸= t̂i and ti > µ
i
, we have

αi = (µ
i
− t̂i)/(ti − t̂i) = (µ

i
− ti)/(ti − ti) ∈ (0, 1),

where the second equality follows from the definition of t̂i, and the inclusion holds because

ti > µ
i
> ti. If ti ̸= t̂i and ti < µ

i
, on the other hand, we have αi = −ε/(ti − µ

i
− ε) ∈

(0, 1), where the equality again follows from the definition of t̂i, and the inclusion holds

because ti < µ
i
< µ

i
+ ε. Note that if ti = µ

i
, then t̂i = ti by definition, and αi = 1.

One can similarly show that αi⋆ ∈ (0, 1] by replacing µ
i⋆

with µi⋆ in the above arguments.

Thus, αi ∈ (0, 1] for all i ∈ I. We now define P through the marginal distributions

Pi = αiδti + (1− αi)δt̂i , i ∈ I, as follows.

P(t̃ = t) =
∏
i∈I

Pi(t̃i = ti) ∀t ∈ T .

By construction, t̃i’s are mutually independent under P. Hence, the expected type of each

i ∈ I amounts to EP[t̃i] = αiti + (1− αi)t̂i.

We next show that EP[t̃i] ∈ [µ
i
, µi] for all i ∈ I, which implies that P ∈ P . For any

i ̸= i⋆, if ti = t̂i, then we have ti = t̂i = µ
i

by definition of t̂i. The expected type therefore
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amounts to µ
i
. If ti ̸= t̂i, on the other hand, we have

EP[t̃i] = αiti + (1− αi)t̂i = αi(ti − t̂i) + t̂i =
µ
i
− t̂i

ti − t̂i
(ti − t̂i) + t̂i = µ

i
,

where the third equality follows from the definition of αi. One can verify that EP[t̃i⋆ ] = µi⋆

using similar arguments. We thus showed that EP[t̃i] ∈ [µ
i
, µi] for all i ∈ I and, therefore,

P ∈ P .

It remains to show that P satisfies (i)–(iii). As we have EP[t̃i⋆ ] = µi⋆ , property (i) holds.

The definition of P implies that (ii) and (iii) also hold.

The next technical lemma establishes a payoff equivalence result and will be used in

the proof of the main Pareto robust optimality result of this section.

Lemma 4. Assume that P is equal to a Markov ambiguity set of the form (2.13), and

argmaxi∈I µi
= {i⋆} is a singleton. Consider any subset T ′ =

∏
i∈I T ′

i of T such that (i)

T ′
i ⊇ {ti ∈ Ti | ti < µ

i⋆
} for all i ∈ I \ {i⋆} and (ii) either T ′

i⋆ ⊆ [µ
i⋆
, µi⋆ ] or T ′

i⋆ = Ti⋆ .

For any (p, q), (p′, q′) ∈ X , if (p, q) weakly Pareto robustly dominates (p′, q′) and∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i∈I

(p′i(t)ti − q′i(t)ci) ∀t ∈ T ′, (2.15)

then (2.15) holds with equality.

Proof. Consider any subset T ′ =
∏

i∈I T ′
i of T such that (i) and (ii) holds. Also, consider

any (p, q), (p′, q′) ∈ X such that (p, q) weakly Pareto robustly dominates (p′, q′) and

(2.15) holds. Suppose for the sake of contradiction that (2.15) is strict for some t ∈ T ′.

We will characterize a discrete distribution P ∈ P under which the expected payoff

of mechanism (p, q) is strictly lower than that of (p′, q′), which contradicts that (p, q)

weakly Pareto robustly dominates (p′, q′). By Lemma 3, for scenario t and for any µi⋆ ∈
[µ

i⋆
, µi⋆ ], there exist a scenario t̂ ∈ T , where maxi ̸=i⋆ t̂i < µ

i⋆
, and a discrete distribution
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P ∈ P that satisfy the following properties: (i) EP[t̃i⋆ ] = µi⋆ , (ii) P(t̃i ∈ {ti, t̂i}) = 1 for

all i ∈ I, (iii) P(t̃ = t) > 0. We next show that there is always a µi⋆ ∈ [µ
i⋆
, µi⋆ ] such

that distribution P also satisfies P(t̃ ∈ T ′) = 1. Note that if P satisfies P(t̃i ∈ T ′
i ) = 1

for all i ∈ I, then it also satisfies P(t̃ ∈ T ′) = 1 as T ′ =
∏

i∈I T ′
i . First, suppose that

T ′
i⋆ ⊆ [µ

i⋆
, µi⋆ ]. For µi⋆ = ti⋆ ∈ [µ

i⋆
, µi⋆ ], properties (i)–(iii) on P imply that if t̂i⋆ ̸= ti⋆ ,

then P(t̃i⋆ = t̂i⋆) = 0. We thus have P(t̃i⋆ = ti⋆) = 1, which implies that P(t̃i⋆ ∈ T ′
i⋆) = 1

as ti⋆ ∈ T ′
i⋆ . For any i ∈ I \ {i⋆}, as t̂i < µ

i⋆
, we have t̂i ∈ T ′

i ⊇ {ti ∈ Ti | ti < µ
i⋆
}

irrespective of the value of µi⋆ . Condition (ii) on P thus implies that P(t̃i ∈ T ′
i ) = 1.

Suppose now that T ′
i⋆ = Ti⋆ . Condition (ii) on P implies that P(t̃i⋆ ∈ T ′

i⋆) = 1 as ti⋆ , t̂i⋆ ∈
Ti⋆ = T ′

i⋆ . We already showed that P(t̃i ∈ T ′
i ) = 1 for every other i ∈ I \{i⋆} irrespective

of the value of µi⋆ . We can thus conclude that there always exists a µi⋆ ∈ [µ
i⋆
, µi⋆ ] such

that distribution P from Lemma 3 also satisfies P(t̃ ∈ T ′) = 1.

Now, keeping in mind that P is a discrete distribution with properties P(t̃ ∈ T ′) = 1

and P(t̃ = t) > 0, we can bound the principal’s expected payoff from (p, q) under P as

follows:

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
< EP

[∑
i∈I

(p′i(t̃)t̃i − q′i(t̃)ci)

]
,

where the strict inequality follows from (2.15) and the assumption that (2.15) is strict

for t ∈ T ′. Therefore, we conclude that (p, q) cannot weakly Pareto robustly dominate

(p′, q′) unless the inequalities in (2.15) hold with equality.

Next proposition shows that the payoff equivalence result of Lemma 4 can be extended

to the entire set T of type profiles for a specific favored-agent mechanism.

Proposition 7. Assume that P is equal to a Markov ambiguity set of the form (2.13), and

argmaxi∈I µi
= {i⋆} is a singleton. Denote by (p⋆, q⋆) the allocation probabilities of the

type (i) favored-agent mechanism with the favored agent i⋆ and threshold ν⋆ = µ
i⋆

. If a
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mechanism (p, q) ∈ X weakly Pareto robustly dominates (p⋆, q⋆), then it satisfies∑
i∈I

(pi(t)ti − qi(t)ci) =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t ∈ T .

We first sketch the proof idea focusing on a special case with two agents, where we

assume that µ
2
< µ

1
, i.e., argmaxi∈I µi

= {1}, and that t2 > c2 + µ
1
. To this end,

consider the following partition of the type space T .

TI = {t ∈ T | t1 ∈ (µ
1
, µ1] and t2 ≤ µ

1
}

TII = {t ∈ T | t1 ∈ (µ
1
, µ1], t2 > µ

1
and t2 − c2 ≤ µ

1
}

TII′ = {t ∈ T | t1 ∈ (µ
1
, µ1], t2 > µ

1
and t2 − c2 > µ

1
}

TIII = {t ∈ T | t1 /∈ (µ
1
, µ1] and t2 − c2 ≤ µ

1
}

TIII′ = {t ∈ T | t1 /∈ (µ
1
, µ1] and t2 − c2 > µ

1
}

Note that the condition t2 > µ
1

in TII′ is redundant and given for ease of readability. We

next show that we can replace the sets TII′ and TIII′ with

TIV = {t ∈ T | t1 = µ
1

and t2 − c2 > µ
1
}

TV = {t ∈ T | t1 ̸= µ
1

and t2 − c2 > µ
1
}

and obtain a different partition of T . To this end, first note that the intersection of TIV and

TV is empty. Moreover, their union is given by {t ∈ T | t2 − c2 > µ
1
} that is the same as

the union of TII′ and TIII′ . Thus, TI , TII , TIII , TIV , TV is a partition of the type space T .

We focus on this partition to simplify the arguments below. Sets TI , TII , TIII , TIV and TV

are illustrated in Figure 2.3. Thanks to our standing assumptions, one can verify that all of

these sets are nonempty. We emphasize that all simplifying assumptions will be relaxed in

the formal proof of Proposition 7.

In the following, we show that any mechanism (p, q) that weakly Pareto robustly dom-

inates (p⋆, q⋆) generates the same payoff as (p⋆, q⋆) in all scenarios t ∈ T . We will
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prove this claim separately for each partition set and make use of Lemma 4. To this end,

fix a mechanism (p, q) ∈ X and assume that mechanism (p, q) weakly Pareto robustly

dominates (p⋆, q⋆).

Figure 2.3: Partition of the type space T ,

(Markov with Independence).

We first consider TI and note that it can

be written as TI = TI1 × TI2 = (µ
1
, µ1] ×

[t2, µ1
]. The principal’s payoff under (p, q) in

any t ∈ TI is given by
∑

i∈I(pi(t)ti−qi(t)ci) ≤∑
i∈I pi(t)ti ≤ t1, where the first inequality

holds because qi(t) and ci are non-negative, and

the second inequality follows from (FC) and

that t1 > t2 by definition of TI . As (p⋆, q⋆) gen-

erates a payoff of t1 in any t ∈ TI by definition,

the payoff of (p⋆, q⋆) is larger than or equal to

the payoff of (p, q) in every t ∈ TI . We as-

sumed that (p, q) weakly Pareto robustly dom-

inates (p⋆, q⋆), and we showed that the payoff

of (p⋆, q⋆) cannot be lower than that of (p, q)

in every t ∈ TI . As TI = TI1 × TI2 = (µ
1
, µ1] × [t2, µ1

] satisfies the assumptions (i)

and (ii) in Lemma 4, we can thus conclude that the payoffs of (p, q) and (p⋆, q⋆) coin-

cide throughout TI by Lemma 4. Moreover, note that, for any t ∈ TI , we have t2 < t1,

qi(t) ≥ 0, ci > 0 and
∑

i∈I pi(t) ≤ 1. This implies that the payoff
∑

i∈I(pi(t)ti− qi(t)ci)

of (p, q) can be t1 only if p1(t) = 1 and q1(t) = 0.

Consider now any t ∈ TII . Incentive compatibility ensures that p2(t) − q2(t) ≤
p2(t1, t2) = 0, where the equality holds because (t1, t2) ∈ TI and because we know from

before that (p, q) allocates the good to agent 1 without inspection throughout TI . As the

allocation probabilities are non-negative and satisfy the (FC) condition p2(t) ≥ q2(t),

we thus have p2(t) = q2(t). This implies that the principal’s payoff in t satisfies∑
i∈I(pi(t)ti − qi(t)ci) ≤ p1(t)t1 + p2(t)(t2 − c2) ≤ t1, where the first inequality holds
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because q1(t) and c1 are non-negative and p2(t) = q2(t), and the second inequality fol-

lows from (FC) and t2 − c2 ≤ µ
1
< t1. As (p⋆, q⋆) generates a payoff of t1 in any

t ∈ TII by definition, the payoff of (p⋆, q⋆) cannot be lower than that of (p, q) throughout

TII . We next show that we can use Lemma 4 to conclude that the payoffs of two mecha-

nisms should coincide throughout TII under our initial assumption, that is, (p, q) weakly

Pareto robustly dominates (p⋆, q⋆). To this end, note that T ′ = TI ∪ TII can be written as

T ′ = T ′
1 × T ′

2 = (µ
1
, µ1] × [t2, c2 + µ

1
], and T ′ satisfies the assumptions (i) and (ii) in

Lemma 4. We showed that the payoff of (p⋆, q⋆) is at least as high as the payoff of (p, q)

in T ′ = TI ∪ TII . Thus, by Lemma 4, the payoff generated by (p, q) and (p⋆, q⋆) must

coincide throughout t ∈ T ′ = TI ∪ TII . Moreover, note that, for any t ∈ TII , we have

t2 − c2 ≤ µ
1
< t1, qi(t) ≥ 0, ci > 0 and

∑
i∈I pi(t) ≤ 1. This implies that the payoff∑

i∈I(pi(t)ti − qi(t)ci) of (p, q) can be t1 only if p1(t) = 1 and q1(t) = 0.

Next, consider any t ∈ TIII . Incentive compatibility ensures that p1(t) ≥ p1(µ1, t2) −
q1(µ1, t2) = 1, where the equality holds because (µ1, t2) ∈ TI ∪TII and because we know

from before that (p, q) allocates the good to agent 1 without inspection throughout TI∪TII .

Thus, the principal’s payoff satisfies
∑

i∈I(pi(t)ti − qi(t)ci) ≤ p1(t)t1 − q1(t)c1 ≤ t1,

where the first inequality follows from p1(t) = 1, (FC) and non-negativity of q, and the

second inequality holds because q1(t) and c1 are non-negative. As (p⋆, q⋆) earns a payoff

of t1 in any t ∈ TIII by definition, the payoff of (p⋆, q⋆) thus cannot be lower than that

of (p, q) throughout TIII . Similarly to before, we next use Lemma 4 to show that the

payoffs of the two mechanism should coincide throughout TIII . To this end, note that

T ′′ = TI ∪ TII ∪ TIII can be written as T ′′ = T ′′
1 × T ′′

2 = T1 × [t2, c2 + µ
1
], and T ′′

satisfies the assumptions (i) and (ii) in Lemma 4. We showed that the payoff of (p⋆, q⋆) is

at least as high as the payoff of (p, q) in T ′′ = TI∪TII∪TIII . By Lemma 4, the payoffs of

the two mechanisms must therefore coincide throughout T ′′ = TI ∪TII ∪TIII . Moreover,

for any t ∈ TIII , as p1(t) = 1 by incentive compatibility, p1(t) ≥ q1(t) ≥ 0, c1 > 0

and
∑

i∈I pi(t) ≤ 1, mechanism (p, q) can generate a payoff of t1 only if p1(t) = 1 and

q1(t) = 0.
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It remains to show that (p⋆, q⋆) and (p, q) generate the same payoff in TIV and TV .

To this end, we first show that agent 2, if allocated the good, should be inspected in any

t ∈ TIV ∪ TV . For any such t, the incentive compatibility ensures that p2(t) − q2(t) ≤
p2(t1, t2) = 0, where the equality holds because (t1, t2) ∈ TI ∪ TII ∪ TIII and because

(p, q) allocates the good to agent 1 without inspection throughout TI ∪ TII ∪ TIII . As the

allocation probabilities are non-negative and satisfy the (FC) condition p2(t) ≥ q2(t), we

have p2(t) = q2(t).

Consider now any t ∈ TIV . As p2(t) = q2(t), we have
∑

i∈I(pi(t)ti − qi(t)ci) ≤
p1(t)t1 + p2(t)(t2 − c2) ≤ t2 − c2, where the first inequality holds because q1(t) and

c1 are non-negative and p2(t) = q2(t), and the second inequality follows from (FC) and

t1 = µ
1
< t2 − c2. As the payoff of (p⋆, q⋆) is given by t2 − c2 in any t ∈ TIV by

definition, the payoff of (p, q) cannot exceed that of (p⋆, q⋆) throughout TIV . Consider

the set T ′′′ = {t ∈ TIII | t1 = µ
1
} ∪ TIV , which can be expressed as T ′′′ = {µ

1
} × T2,

and note that T ′′′ ⊆ TIII ∪ TIV . Set T ′′′ satisfies the assumptions (i) and (ii) in Lemma 4,

and the payoff of (p⋆, q⋆) is at least as high as the one of (p, q) in T ′′′. This implies, by

Lemma 4, that the payoffs of the two mechanisms coincide throughout T ′′′ and therefore

TIV . For any t ∈ TIV , as t1 = µ
1
< t2− c2 and p2(t) = q2(t), (p, q) can generate a payoff

of t2 − c2 only if p2(t) = q2(t) = 1.

Finally, consider any scenario t ∈ TV . Incentive compatibility ensures that p1(t) −
q1(t) ≤ p1(µ1

, t2) = 0, where the equality holds because (µ
1
, t2) ∈ TIV and because (p, q)

allocates the good to agent 2 and inspects his report in TIV . As the allocation probabilities

are non-negative and satisfy the (FC) condition p1(t) ≥ q1(t), we may conclude that

p1(t) = q1(t). Since we also have p2(t) = q2(t), we obtain
∑

i∈I(pi(t)ti − qi(t)ci) ≤∑
i∈I pi(t)(ti − ci) ≤ maxi∈I ti − ci, where the last inequality follows from the (FC)

constraint
∑

i∈I pi(t) ≤ 1. As (p⋆, q⋆) generates a payoff of maxi∈I ti − ci in any t ∈ TV

by definition, the payoff of (p, q) cannot exceed the payoff of (p⋆, q⋆) throughout TV .

Thus, (p, q) cannot generate a higher payoff than that of (p⋆, q⋆) in T =
∏

i∈I Ti, which

trivially satisfies the assumptions (i) and (ii) in Lemma 4. This implies, by Lemma 4, that
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the payoffs of the two mechanism must coincide throughout T .

Proof of Proof of Proposition 7. Consider the following partition of the set T .

TI = {t ∈ T | ti⋆ ∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti ≤ µ

i⋆
}

TII = {t ∈ T | ti⋆ ∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti > µ

i⋆
and max

i ̸=i⋆
ti − ci ≤ µ

i⋆
}

TII′ = {t ∈ T | ti⋆ ∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti > µ

i⋆
and max

i ̸=i⋆
ti − ci > µ

i⋆
}

TIII = {t ∈ T | ti⋆ /∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti − ci ≤ µ

i⋆
}

TIII′ = {t ∈ T | ti⋆ /∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti − ci > µ

i⋆
}

We can replace TII′ and TIII′ with the following two sets to obtain a different partition of

T .
TIV = {t ∈ T | ti⋆ = µ

i⋆
and max

i ̸=i⋆
ti − ci > µ

i⋆
}

TV = {t ∈ T | ti⋆ ̸= µ
i⋆

and max
i ̸=i⋆

ti − ci > µ
i⋆
}

This is because TIV and TV are disjoint sets that have the same union as the union of TII′

and TIII′ . Throughout the proof we consider the partition TI , TII , TIII , TIV , TV . Note that

TI and TIII are nonempty as argmaxi∈Iµi
= {i⋆} and [µ

i
, µi] ∈ (ti, ti) for all i ∈ I, but

sets TII , TIV and TV can be empty if µ
i⋆

or ci for all i ̸= i⋆ are sufficiently large.

In the following, we inductively construct certain subsets of T using the above partition.

These subsets will have two important characteristics. First, they will be in the form of

T ′ =
∏

i∈I T ′
i and satisfy the assumptions (i) and (ii) in Lemma 4, i.e., {ti ∈ Ti | ti <

µ
i⋆
} ⊆ T ′

i for all i ̸= i⋆ and T ′
i⋆ ⊆ [µ

i⋆
, µi⋆ ] or T ′

i⋆ = Ti⋆ . Second, for any mechanism

(p, q) ∈ X that weakly Pareto robustly dominates (p⋆, q⋆), we will inductively show that

(p, q) generates a payoff lower than (p⋆, q⋆) for all scenarios in the constructed subsets

T ′. Thereafter, using Lemma 4, we will conclude that (p, q) and (p⋆, q⋆) generate the

same payoff throughout T ′. The remainder of the proof is divided into five steps where

the last step considers the set of all type profiles T itself.
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Step 1 (TI). For any t ∈ TI , the principal’s payoff under (p, q) satisfies

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i∈I

pi(t)ti ≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because qi(t) and ci are non-negative, the second inequality

follows from (FC) and that maxi ̸=i⋆ ti ≤ µ
i⋆

< ti⋆ , and the equality follows from the

definition of (p⋆, q⋆). The payoff of (p⋆, q⋆) is thus larger than or equal to the payoff of

(p, q) in every t ∈ TI . Moreover, note that TI can be written as
∏

i∈I TI i where TI i⋆ =

(µ
i⋆
, µi⋆ ] and TI i = [ti, µi⋆

] ∩ Ti for all i ̸= i⋆. The set TI thus satisfies the assumptions

(i) and (ii) in Lemma 4. By Lemma 4, we can thus conclude that the payoffs of (p, q) and

(p⋆, q⋆) coincide in TI . In addition, note that, for any t ∈ TI , we have maxi ̸=i⋆ ti < ti⋆ ,

qi(t) ≥ 0, ci > 0 and
∑

i∈I pi(t) ≤ 1. This implies that the payoff of (p, q) can match the

payoff ti⋆ of (p⋆, q⋆) only if pi⋆(t) = 1 and qi⋆(t) = 0.

Step 2 (TII). We will prove that if mechanism (p, q) weakly Pareto robustly dominates

(p⋆, q⋆) then it must satisfy pi⋆(t) = 1 and qi⋆(t) = 0 for any t ∈ TII , which implies

that the payoff of (p, q) matches that of (p⋆, q⋆) throughout TII . To this end, define the

set-valued function I(t) = {i ∈ I | ti > µ
i⋆
} for t ∈ TII . Note that |I(t)| ≥ 2 for all

t ∈ TII by the definition of TII , which ensures that maxi ̸=i⋆ ti > µ
i⋆

and ti⋆ ∈ (µ
i⋆
, µi⋆ ].

We now prove by induction that the claim holds in T n
II = {t ∈ TII | |I(t)| = n} for all

n ≥ 2.

As for the base step, set n = 2 and fix any t ∈ T 2
II . Thus, there exists exactly one

agent i◦ ̸= i⋆ that satisfies ti◦ > µ
i⋆

. Incentive compatibility ensures that pi◦(t)− qi◦(t) ≤
pi◦(ti◦ , t−i◦) = 0, where the equality holds because (ti◦ , t−i◦) ∈ TI and because we know

from Step 1 that (p, q) allocates the good to agent i⋆ without inspection in TI . We thus

have pi◦(t) = qi◦(t). Then, we have

∑
j∈I

(pj(t)tj − qj(t)cj) ≤
∑
j ̸=i◦

pj(t)tj + pi◦(t)(ti◦ − ci◦) ≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

61



where the first inequality holds because qj(t) and cj are non-negative and pi◦(t) = qi◦(t),

the second inequality from (FC) and that ti◦ − ci◦ ≤ µ
i⋆

< ti⋆ and tj ≤ µ
i⋆

for all

j ∈ I \ {i◦, i⋆}, and the equality follows from the definition of (p⋆, q⋆). As scenario t is

chosen arbitrarily, the payoff of (p, q) thus cannot exceed that of (p⋆, q⋆) throughout T 2
II .

Recalling the conclusion from Step 1, we now know that this relation between the payoffs

is true for the set TI ∪ T 2
II .

For any i◦ ∈ I \ {i⋆}, define T 2
II(i

◦) as the subset of T 2
II where i◦ is the only agent with

type ti◦ > µ
i⋆

and note that T 2
II = ∪i◦∈I\{i⋆}T 2

II(i
◦). Consider an arbitrary i◦ ∈ I \ {i⋆}

and the set TI ∪T 2
II(i

◦), which can be written as TI ∪T 2
II(i

◦) =
∏

i∈I(TI ∪T 2
II(i

◦))i, where

(TI ∪ T 2
II(i

◦))i⋆ = (µ
i⋆
, µi⋆ ], (TI ∪ T 2

II(i
◦))i◦ = [ti◦ , ci◦ + µ

i⋆
] ∩ Ti◦ and (TI ∪ T 2

II(i
◦))i =

[ti, µi⋆
] ∩ Ti for all i /∈ {i⋆, i◦}. The set TI ∪ T 2

II(i
◦) satisfies the assumptions (i) and (ii)

in Lemma 4. Mechanisms (p, q) and (p⋆, q⋆) thus generate the same payoff throughout

TI∪T 2
II(i

◦) by Lemma 4. By definition, the payoff of (p⋆, q⋆) amounts to ti⋆ in TI∪T 2
II(i

◦).

For any t ∈ T 2
II(i

◦), as ti◦−ci◦ < ti⋆ , ti < ti⋆ for all i /∈ {i⋆, i◦} and pi◦(t) = qi◦(t), (p, q)

can generate a payoff of ti⋆ only if pi⋆(t) = 1 and qi⋆(t) = 0. As i◦ is chosen arbitrarily,

we have pi⋆(t) = 1 and qi⋆(t) = 0 throughout T 2
II .

As for the induction step, assume that pi⋆(t) = 1 and qi⋆(t) = 0 for all t ∈ T n
II and

for some n ≥ 2, and fix a scenario t ∈ T n+1
II . Thus, there exists exactly n + 1 agents i

that satisfy ti > µ
i⋆

. For any agent i ∈ I(t) \ {i⋆}, incentive compatibility dictates that

pi(t) − qi(t) ≤ pi(ti, t−i) = 0, where the equality follows from (ti, t−i) ∈ T n
II and the

induction hypothesis. We thus have pi(t) = qi(t) for all i ∈ I(t) \ {i⋆}. Then,

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑

i/∈I(t)\{i⋆}

pi(t)ti +
∑

i∈I(t)\{i⋆}

pi(t)(ti − ci)

≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because qi(t) and ci are non-negative and pi(t) = qi(t) for

all i ∈ I(t) \ {i⋆}, the second inequality follows from (FC) and that ti − ci ≤ µ
i⋆

for all
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i ∈ I(t) \ {i⋆} and ti ≤ µ
i⋆

< ti⋆ for i ∈ I \ I(t), and the equality follows from the

definition of (p⋆, q⋆). As scenario t is chosen arbitrarily, the payoff from (p, q) is thus less

than or equal to that of (p⋆, q⋆) throughout T n+1
II . By Step 1, this relationship between the

payoffs holds true for the set TI ∪ T n+1
II .

For any subset I ′ ∋ i⋆ of agents with |I ′| = n+1, define T n+1
II (I ′) as the subset of T n+1

II

where ti > µ
i⋆

for all i ∈ I ′. Note that the union of T n+1
II (I ′) over all I ′ ⊆ I with |I ′| =

n+1 and i⋆ ∈ I ′ gives us the set T n+1
II . Consider now an arbitrary I ′ ∋ i⋆ with |I ′| = n+1

and the set TI∪T n+1
II (I ′), which can be written as TI∪T n+1

II (I ′) =
∏

i∈I(TI∪T n+1
II (I ′))i,

where (TI ∪T n+1
II (I ′))i⋆ = (µ

i⋆
, µi⋆ ], (TI ∪T n+1

II (I ′))i = [ti, ci+µ
i⋆
]∩Ti for i ∈ I ′ \{i⋆}

and (TI ∪ T n+1
II (I ′))i = [ti, µi⋆

] ∩ Ti for all i ∈ I \ I ′. The set TI ∪ T n+1
II (I ′) satisfies the

assumptions (i) and (ii) in Lemma 4. The payoffs of (p, q) and (p⋆, q⋆) thus coincide in

TI∪T n+1
II (I ′) by Lemma 4. By definition, the payoff of (p⋆, q⋆) amounts to ti⋆ throughout

TI ∪T n+1
II (I ′). For any t ∈ T n+1

II (I ′), as ti−ci < ti⋆ and pi(t) = qi(t) for all i ∈ I ′ \{i⋆}
and ti < ti⋆ for all i ∈ I \ I ′, mechanism (p, q) can generate a payoff of ti⋆ only if

pi⋆(t) = 1 and qi⋆(t) = 0. As I ′ is chosen arbitrarily, we have pi⋆(t) = 1 and qi⋆(t) = 0

throughout T n+1
II . This thus completes the induction step.

In summary, the allocation probabilities of any mechanism (p, q) that weakly Pareto ro-

bustly dominates (p⋆, q⋆) should satisfy pi⋆(t) = 1 and qi⋆(t) = 0 throughout ∪n≥2T n
II =

TII .

Step 3 (TIII). Next, fix any type profile t ∈ TIII . Incentive compatibility ensures that

pi⋆(t) ≥ pi⋆(µi⋆ , t−i⋆)− qi⋆(µi⋆ , t−i⋆) = 1, where the equality holds because (µi⋆ , t−i⋆) ∈
TI ∪ TII and because we know from Step 1 and 2 that (p, q) allocates the good to agent i⋆

without inspection in TI ∪ TII . We thus have pi⋆(t) = 1 and

∑
i∈I

(pi(t)ti − qi(t)ci) ≤ pi⋆(t)ti⋆ + qi⋆(t)ci⋆ ≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),
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where the first inequality follows from (FC) and non-negativity of qi(t), the second in-

equality holds because qi⋆(t) ≥ 0 and ci⋆ > 0, and the equality follows from the def-

inition of (p⋆, q⋆). As scenario t is chosen arbitrarily, (p, q) cannot generate a payoff

higher than (p⋆, q⋆) throughout TIII . By Steps 1 and 2, this relation between the pay-

offs holds for the set TI ∪ TII ∪ TIII . Note that the set TI ∪ TII ∪ TIII can be written

as TI ∪ TII ∪ TIII =
∏

i∈I(TI ∪ TII ∪ TIII)i, where (TI ∪ TII ∪ TIII)i⋆ = Ti⋆ and

(TI ∪ TII ∪ TIII)i = [ti, ci + µ
i⋆
] ∩ Ti for all i ∈ I \ {i⋆}. The set TI ∪ TII ∪ TIII thus

satisfies the assumptions (i) and (ii) in Lemma 4. The payoffs of (p, q) and (p⋆, q⋆) thus

coincide throughout TI ∪ TII ∪ TIII by Lemma 4. As qi⋆(t) ≥ 0, ci⋆ > 0 and (p, q)

satisfies the (FC), mechanism (p, q) can generate a payoff of ti⋆ in a scenario t ∈ TIII

only if pi⋆(t) = 1 and qi⋆(t) = 0.

Step 4 (TIV ). In this step, we will show that any mechanism (p, q) that weakly Pareto

robustly dominates (p⋆, q⋆) must satisfy

∑
i∈argmaxi′∈I ti′−ci′

pi(t) = 1 and pi(t) = qi(t) ∀i ∈ argmaxi′∈Iti′ − ci′ (2.16)

for all t ∈ TIV . This immediately implies that (p, q) generates the same payoff as (p⋆, q⋆)

throughout TIV . To this end, define the set-valued function I(t) = {i ∈ I | ti > µ
i⋆
} for

t ∈ TIV . Note that |I(t)| ≥ 1 and i⋆ /∈ I(t) for all t ∈ TIV thanks to the definition of TIV ,

which ensures that maxi ̸=i⋆ ti − ci > µ
i⋆

and ti⋆ = µ
i⋆

. We will prove by induction that

(2.16) holds in T n
IV = {t ∈ TIV | |I(t)| = n} for all I − 1 ≥ n ≥ 1.

As for the base step, set n = 1 and fix a scenario t ∈ T 1
IV . Thus, exactly one agent i◦

satisfies ti◦ > µ
i⋆

. Incentive compatibility ensures that pi◦(t)−qi◦(t) ≤ pi◦(ti◦ , t−i◦) = 0,

where the equality follows from that (ti◦ , t−i◦) ∈ TIII and Step 3. We thus have pi◦(t) =
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qi◦(t). Then,

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i ̸=i◦

pi(t)ti + pi◦(t)(ti◦ − ci◦)

≤ ti◦ − ci◦ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because qi(t) and ci are non-negative and pi◦(t) = qi◦(t),

the second inequality follows from (FC) and that ti◦ − ci◦ > µ
i⋆

and ti ≤ µ
i⋆

for all

i ∈ I \ {i◦}, and the equality follows from the definition of (p⋆, q⋆). As scenario t is

chosen arbitrarily, (p, q) generates a payoff less than or equal to that of from (p⋆, q⋆)

throughout T 1
IV .

We now define the set T ′
III = {t ∈ TIII | ti⋆ = µ

i⋆
} that is a subset of TIII . Recalling

the findings in Step 3, the payoff of (p, q) cannot be higher than that of (p⋆, q⋆) throughout

T ′
III ∪ T 1

IV . For any i◦ ∈ I \ {i⋆}, denote by T 1
IV (i

◦) the subset of T 1
IV where i◦ is the

only agent whose type ti◦ > µ
i⋆

and note that ∪i◦∈I\{i⋆}T 1
IV (i

◦) = T 1
IV . We have T ′

III ∪
T 1
IV (i

◦) =
∏

i∈I(T ′
III ∪ T 1

IV (i
◦))i, where (T ′

III ∪ T 1
IV (i

◦))i⋆ = {µ
i⋆
}, (T ′

III ∪ T 1
IV (i

◦))i◦ =

Ti◦ and (T ′
III ∪ T 1

IV (i
◦))i = [ti, µi⋆

] ∩ Ti for all i ∈ I \ {i⋆, i◦}. The set T ′
III ∪ T 1

IV (i
◦)

satisfies the assumptions (i) and (ii) in Lemma 4, and the payoffs of (p, q) and (p⋆, q⋆)

thus coincide throughout T ′
III ∪ T 1

IV (i
◦) by Lemma 4. As ti◦ − ci◦ > ti⋆ = µ

i⋆
≥ ti

for all i ∈ I \ {i◦, i⋆} and pi◦(t) = qi◦(t), the payoff of (p, q) can match the payoff

maxi∈I ti − ci = ti◦ − ci◦ of (p⋆, q⋆) only if pi◦(t) = qi◦(t) = 1. We thus established

(2.16) in T 1
IV (i

◦). As agent i◦ is chosen arbitrarily, the claim holds in T 1
IV .

As for the induction step, assume that (2.16) holds throughout T n
IV for some n ≥ 1, and

fix a scenario t ∈ T n+1
IV . Thus, there exists exactly n+1 agents i ̸= i⋆ that satisfy ti > µ

i⋆
.

For any agent i ∈ I(t), incentive compatibility dictates that pi(t)−qi(t) ≤ pi(ti, t−i) = 0,

where the equality follows from (ti, t−i) ∈ TIII ∪ T n
IV . Indeed, if (ti, t−i) ∈ TIII , then

agent i⋆ /∈ I(t) receives the good so that and pi(ti, t−i) = 0, and if (ti, t−i) ∈ T n
IV , the

equality follows from the induction hypothesis. We thus have pi(t) = qi(t) for all i ∈ I(t)
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and, by the definition of TIV , in particular for all i ∈ argmaxj∈I tj − cj . Then,

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i/∈I(t)

pi(t)ti +
∑
i∈I(t)

pi(t)(ti − ci)

≤ max
i∈I

ti − ci =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because pi(t) = qi(t) for all i ∈ I(t) and qi(t) and ci are

non-negative, the second inequality follows from (FC) and that maxj∈I tj − cj > µ
i⋆

=

ti⋆ ≥ ti for all i /∈ I(t), and the equality follows from the definition of (p⋆, q⋆). Thus, the

payoff of (p, q) is less than or equal to the payoff of (p⋆, q⋆) in T n+1
IV .

For any subset I ′ ̸∋ i⋆ of agents with |I ′| = n + 1, denote by T n+1
IV (I ′) the subset of

T n+1
IV where ti > µ

i⋆
for all i ∈ I ′. Note that the union of T n+1

IV (I ′) over all I ′ ⊂ I with

|I ′| = n + 1 and i⋆ /∈ I ′ gives us the set TIV . Consider an arbitrary such I ′ and the set

T ′
III ∪ T n+1

IV (I ′), which can be written as T ′
III ∪ T n+1

IV (I ′) =
∏

i∈I(T ′
III ∪ T n+1

IV (I ′))i,

where (T ′
III ∪ T n+1

IV (I ′))i⋆ = {µ
i⋆
}, (T ′

III ∪ T n+1
IV (I ′))i = Ti for all i ∈ I ′ and (T ′

III ∪
T n+1
IV (I ′))i = [ti, µi⋆

] ∩ Ti for all i ∈ I \ I ′ ∪ {i⋆}. The set T ′
III ∪ T n+1

IV (I ′) satisfies the

assumptions (i) and (ii) in Lemma 4. By this lemma, (p, q) and (p⋆, q⋆) thus generate the

same payoff throughout T ′
III ∪ T n+1

IV (I ′). As maxj∈I tj − cj > µ
i⋆

≥ ti for all i /∈ I ′

and pi(t) = qi(t) for all i ∈ I ′, mechanism (p, q) can match the payoff maxi∈I ti − ci of

(p⋆, q⋆) in T n+1
IV (I ′) only if (2.16) holds in T n+1

IV (I ′). As I ′ is chosen arbitrarily, (2.16)

holds throughout T n+1
IV . This observation completes the induction step.

Step 5 (TV ). In analogy to Step 4, we will show that (2.16) holds for every t ∈ TV .

This immediately implies that (p, q) generates the same payoff as (p⋆, q⋆) in TV and,

consequently, throughout T . To this end, define the set-valued function I(t) = {i ∈
I | ti > µ

i⋆
} for t ∈ TV . Note that |I(t)| ≥ 1 for any t ∈ TV thanks to the definition

of TV , which implies that maxi ̸=i⋆ ti − ci > µ
i⋆

. We will prove by induction that (2.16)

holds for all type profiles in T n
V = {t ∈ TV | |I(t) \ {i⋆}| = n} for all n ≥ 1. Note that in

any t ∈ T n
V there are n agents, each of which is different from i⋆, whose types exceed µ

i⋆
.
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Agent i⋆’s type may or may not take a value above µ
i⋆

.

As for the base step, set n = 1 and fix any scenario t ∈ T 1
V . Thus, there is exactly one

agent i◦ ̸= i⋆ that satisfy ti◦ > µ
i⋆

. Incentive compatibility ensures that pi◦(t)− qi◦(t) ≤
pi◦(ti◦ , t−i◦) = 0, where the equality follows from that (ti◦ , t−i◦) ∈ TI∪TII∪TIII and from

Steps 1, 2 and 3. Similarly for agent i⋆, we have pi⋆(t)−qi⋆(t) ≤ pi⋆(µi⋆
, t−i⋆) = 0, where

the equality follows from that (µ
i⋆
, t−i⋆) ∈ TIV and Step 4. We thus have pi(t) = qi(t) for

all i ∈ I(t) and i⋆, which may or may not be an element of I(t). Then, we have

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑

i∈I\I(t)∪{i⋆}

pi(t)ti +
∑

i∈I(t)\{i⋆}

pi(t)(ti − ci) + pi⋆(t)(ti⋆ − ci⋆)

≤ max
i∈I

ti − ci =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first equality holds because pi(t) = qi(t) for all i ∈ I(t) ∪ {i⋆} and qi(t)

and ci are non-negative, the second inequality from (FC) and that maxj∈I tj − cj =

maxj∈I(t)∪{i⋆} tj − cj > µ
i⋆

≥ ti for all i ∈ I \ I(t) ∪ {i⋆}, and the equality follows

from the definition of (p⋆, q⋆). Thus, (p, q) cannot generate a payoff higher than that

of (p⋆, q⋆) throughout T 1
V . Recalling the findings in Steps 1–4, this relation between the

payoffs holds true for TI ∪ TII ∪ TIII ∪ TIV ∪ T 1
V .

For any i◦ ∈ I \ {i⋆}, denote by T 1
V (i

◦) the subset of T 1
V where i◦ is the only agent

among I \ {i⋆} with type ti◦ > ci◦ + µ
i⋆

. Note that ∪i◦∈I\{i⋆}TV (i
◦) = T 1

V . Now for

an arbitrary i◦ ∈ I \ {i⋆}, recall the set T 1
IV (i

◦) from Step 4 and consider the set T ′ =

TI ∪ TII ∪ TIII ∪ T 1
IV (i

◦) ∪ T 1
V (i

◦), which can be written as T ′ =
∏

i∈I(T ′)i, where

(T ′)i⋆ = Ti⋆ , (T ′)i◦ = Ti◦ and (T ′)i = [ti, µi⋆
]∩Ti for all i ∈ I \ I ′ ∪{i⋆}. As the payoff

of (p, q) cannot be higher than that of (p⋆, q⋆) throughout T ′ and the set T ′ satisfies the

assumptions (i) and (ii) from Lemma 4, the payoffs from (p, q) and (p⋆, q⋆) must coincide

throughout T ′. As maxi∈{i◦,i⋆} ti − ci > µ
i⋆
≥ tj for all j /∈ {i◦, i⋆} and pi(t) = qi(t) for

all i ∈ {i◦, i⋆}, mechanism (p, q) can match the payoff maxi∈{i◦,i⋆} ti − ci from (p⋆, q⋆)

only if it satisfies the conditions in (2.16). As agent i◦ was chosen arbitrarily, we must
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have revenue equivalence for T 1
V .

As for the induction step, assume that (2.16) holds throughout T n
V for some n ≥ 1 and

fix any scenario t ∈ T n+1
V . For any agent i ∈ I(t), incentive compatibility implies that

pi(t)−qi(t) ≤ pi(ti, t−i) = 0, where the equality holds due to (ti, t−i) ∈ TI ∪TII ∪TIII ∪
T n
V . Indeed, if (ti, t−i) ∈ TI ∪ TII ∪ TIII , then we must have i ̸= i⋆ and pi(ti, t−i) = 0

from Steps 1, 2 and 3, and if (ti, t−i) ∈ TI ∪ TII ∪ TIII ∪ T n
V , then the equality follows

from the induction hypothesis. We thus have pi(t) = qi(t) for all i ∈ I(t), and by the

definition of TV , in particular for all i ∈ argmaxj∈I tj − cj . Then, the principal’s payoff

in t can be written as:

∑
i∈I

(pi(t)ti − qi(t)ci) ≤
∑
i/∈I(t)

pi(t)ti +
∑
i∈I(t)

pi(t)(ti − ci)

≤ max
i∈I

ti − ci =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality follows because pi(t) = qi(t) for all i ∈ I(t) and ci > 0 for

all i /∈ I(t). The second inequality holds because the two sums represent a weighted

average of ti − ci for i ∈ I(t) and ti for i /∈ I(t). All this terms are smaller or equal to

maxi∈I ti − ci. In particular, the definition of TV ensures that maxj∈I tj − cj > µ
i⋆
≥ ti

for all i /∈ I(t). This reasoning shows that the payoff from (p, q) cannot be higher than

(p⋆, q⋆) in T n+1
V .

For any subset I ′ ∋ i⋆ of agents with |I ′ \{i⋆}| = n+1, denote by T n+1
V (I ′) the subset

of T n+1
V where ti > µ

i⋆
for all i ∈ I ′. Note that the union of T n+1

V (I ′) over all I ′ ⊂ I
with |I ′| = n + 1 and i⋆ ∈ I ′ gives us the set TV . For an arbitrary such I ′, recall the set

T n+1
IV (I ′ \{i⋆}) from Step 4 and consider the set T ′ = TI ∪TII ∪TIII ∪T n+1

IV (I ′ \{i⋆})∪
T n+1
V (I ′), which can be written as T ′ =

∏
i∈I(T ′)i, where (T ′)i = Ti for all i ∈ I ′ and

(T ′)i = [ti, µi⋆
] ∩ Ti for all i ∈ I \ I ′. The set T ′ satisfies the assumptions (i) and (ii) in

Lemma 4 so that the payoffs from (p, q) and (p⋆, q⋆) must coincide under the subset of

scenarios T ′. As maxi∈I ti − ci > µ
i⋆
≥ tj for all j /∈ I ′ and pi(t) = qi(t) for all i ∈ I ′,
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mechanism (p, q) can match the payoff maxi∈I ti − ci only if (2.16) holds in T n+1
V (I ′).

As I ′ was chosen arbitrarily, (2.16) holds throughout T n+1
V . This observation completes

the induction step.

The above reasoning show that the principal’s payoff under (p, q) and (p⋆, q⋆) coincide

in fact throughout the entire type space T . Therefore, the proof is complete.

When argmaxi∈Iµi
= {i⋆}, Pareto robust optimality of the type (i) favored-agent

mechanism (p⋆, q⋆) with the favored agent i⋆ and threshold ν⋆ = µ
i⋆

follows from Propo-

sition 7. That is, any mechanism (p, q) that weakly Pareto robustly dominates (p⋆, q⋆)

generates the same expected payoff for the principal under every distribution P ∈ P .

Hence, (p⋆, q⋆) cannot be Pareto robustly dominated when argmaxi∈Iµi
= {i⋆}. More-

over, as for the general Markov ambiguity sets, we can show that (p⋆, q⋆) remains to be

Pareto robust optimal even if argmaxi∈Iµi
is not a singleton. We can do this by revising

the proof of Theorem 4 in a way that only employs the distributions P under which the

agents’ types are independent.

Theorem 6. Assume that P is equal to a Markov ambiguity set of the form (2.6) and the

agents’ types are independent. Then, the favored-agent mechanism of type (i) with favored

agent i⋆ ∈ argmaxi∈Iµi
and threshold value ν⋆ = maxi∈I µi

is Pareto robustly optimal

in (MDP).

Finally, let us consider Markov ambiguity sets in general and contrast the results of

dependent and independent types settings. Given a favored agent i⋆ ∈ argmaxi∈I µi
, the

principal should pick a threshold no less than ti⋆ to achieve optimality when the agents’

types can be dependent. On the other hand, when the agents’ types are independent,

optimality can be achieved by setting the threshold to ν⋆ = maxi∈I µi
. Hence, using the

independent types information, the principal can decrease the threshold from ti⋆ to µ
i⋆

while retaining a worst-case expected payoff of maxi∈I µi
. That is, the principal no longer

needs to choose a threshold that is dependent on the choice of favored agent.
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Chapter 3

Nonexclusive Competition for a
Freelancer under Adverse Selection

3.1 Introduction

Consider a freelancer who has limited working hours either due to legal obligations (e.g.,

48 hrs/week) or natural constraints (e.g., 24 hrs/day) and can serve multiple parties by

allocating his time accordingly.1 Suppose the freelancer values the leisure time that he can

spare from his working hours. Hence, working an extra minute gets more costly as the

allocated time for work gets higher (convex cost). On the other side of the market, mul-

tiple parties can benefit from the services of the freelancer but have limited information

regarding the quality of the service (adverse selection). Furthermore, no buyer can pose

limits on the freelancer regarding the contract deals made with the other buyers (nonex-

clusivity). In modern labor markets, nonexclusivity becomes more and more the rule. A

1The EU’s Working Time Directive (2003/88/EC) requires EU Member States to enforce a limit to
weekly working hours: the average working time for each seven day period must not exceed 48 hours.
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real-life example is a consultant who faces multiple firms seeking his expertise. What kind

of trades shall we expect to arise in such a setup? 2

In this chapter, we characterize the equilibrium trades for this problem under the fol-

lowing setting: There are at least two buyers interested in the services of the freelancer.

The freelancer has private information regarding the quality of his service that can be ei-

ther low or high. The buyers share a common prior regarding the quality of the service

provided by the freelancer. The buyers have linear preferences for quality and compete

through offering contracts that specify a quantity (number of working hours) and a transfer

(payment to the freelancer).3 The freelancer observes the offers and chooses the contracts

that maximize his payoff. The preferences of (each type of) the freelancer are quasilinear:

They are linear in the aggregate payment and display strictly increasing convex cost in the

aggregate quantity.

In this context, we characterize the freelancer’s aggregate trades in any pure-strategy

equilibria. Our results can be summarized as follows: We provide two distinct conditions

either of which is sufficient for the existence of a pure-strategy equilibrium. These con-

ditions are also necessary so that there is no pure-strategy equilibrium if both fail to hold.

Furthermore, they depend only on the preferences of the high-type freelancer:

(i) At the no-trade point, the high-type freelancer is not willing to trade any amount of

his time in exchange for a price equal to the average quality of the service.

2A recent study jointly conducted by Upwork (a global freelancing platform) and Freelancers Union
highlights the growing share of the freelancers in the U.S. labor market. For instance, at the release
date of the study, the contribution of freelance income to the U.S. economy is reported to be nearly $1
trillion, which is almost 5% of U.S. GDP. Another important finding is that 45% of freelancers provide
skilled services such as programming, marketing, IT, and business consulting. Hence, nearly half of the
freelancers are offering their expertise in a steadily growing market that constitutes an important part of
the U.S. economy. Source: https://www.cnbc.com/2019/10/03/skilled-freelancers-earn-more-per-hour-than-
70percent-of-workers-in-us.html. Retrieved on 2020-08-20.

3In this chapter, we focus explicitly on a labor market setting where multiple parties are interested in
hiring a freelancer for a service that they cannot provide themselves. Because quantity traded is generally
measured as time in labor markets, we restrict ourselves to the case where the freelancer trades only non-
negative quantities.
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(ii) At any feasible trade point, the high-type freelancer is willing to trade any amount

of his time in exchange for a price equal to the average quality of the service.

If condition (i) holds, then the high-type freelancer does not trade in equilibrium while the

aggregate trade of the low-type depends on his preferences. In such equilibria, the buyers

make zero profit from each of their traded contracts. On the other hand, if condition (ii)

holds, then both types trade at the capacity and, there is cross-subsidization in equilibrium.

In all of these equilibria, aggregate equilibrium trades are unique.

Our results contribute to the literature on competition under adverse selection. There

are two classical papers in this literature: Akerlof [24] considers a market where the sellers

are privately informed about the quality of their goods. The goods are non-divisible, and

all trades take place at the same price. Because uninformed buyers do not consider trading

at a price above the average quality of the goods, sellers of high-quality goods end up not

trading in equilibrium. On the other hand, Rothschild & Stiglitz [25] considers a similar

setup where uninformed buyers compete through contract offers for a divisible good. By

offering different quantities at different unit prices, the buyers can screen the quality of the

goods through sellers’ contract choices. Rothschild & Stiglitz [25] allow only for exclusive

competition, i.e., each seller can only trade with at most one buyer. They show that, when

an equilibrium exists, low-quality sellers trade efficiently while high-quality sellers trade

a non-zero, but sub-optimal quantity.4

Attar et al. [1, 2] are the first to bring nonexclusive competition together with adverse

selection. They observe that in many real-life market situations sellers simultaneously and

secretly trade with several buyers. In their words, “nonexclusivity is the rule rather than

the exception” in many markets. This is also true for the modern labor markets: many

firms are simultaneously and secretly seeking the expertise of a freelancer. Hence, our

4Mas-Colell et al. [26, Chapter 13] provides an analysis of competitive labor markets under adverse
selection as well. In Section B, they apply the model of [24] to the labor market, whereas in Section D, they
consider the exclusive competition approach presented in [25]. Our setting differs from theirs in that the
competition is nonexclusive.
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work is complementary to Attar et al. [1] and Attar et al. [2]. These two papers differ

from our work in two dimensions concerning the seller (the freelancer in our setup): (i)

capacity constraint and (ii) convex cost. In [1], they consider a seller with a linear cost and

a capacity constraint, whereas in [2], they consider a seller who has convex preferences but

does not have any capacity constraints.5 Our model differs from [1] in that the freelancer

has a convex cost in the aggregate quantity traded, and differs from [2] in that the freelancer

is subject to a capacity constraint. Therefore, by bringing the capacity constraint and

convex cost together, not only do we consider a natural and relevant setup for labor markets

but also we provide a bridge between the results of [1] and [2]. Table 3.1 summarizes the

differences between our work and these two papers.6

This Chapter Attar et al. [1] Attar et al. [2]
Freelancer’s

Preferences

Quasilinear with strictly

convex cost
Linear

Strictly

quasiconcave

Capacity

Constraint
✓ ✓ ✗

The quality of

the service
High or Low

Continuum,

discrete, or

mixed

High or Low

Existence of

equilibrium

Exists iff the high type is

either not willing to trade at a

price equal to the average

quality at no-trade or willing

to trade at a price equal to the

average quality at any

feasible trade

Always exists

(for a large class

of type

distributions)

Exists iff the high

type is not willing

to trade at a price

equal to the

average quality at

no-trade

5Even though [2] allow trades to be unrestricted in sign, they elaborate on the necessary changes on their
results when only non-negative quantities can be sold.

6The comparison in Table 3.1 is provided only for the case of non-negative trades in [2].
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Cross-

subsidization

Depends on the preferences

of the high-type

Possible in

equilibrium

Ruled out in

equilibrium

Aggregate

Equilibrium

Trades

Unique (both types trade at

the capacity or the high type

does not trade while the low

type either trades efficiently,

trades all of his capacity, or

does not trade)

Unique (if the

quality is low

enough the

freelancer trades

all of his capacity

or does not trade)

Unique (the high

type does not

trade, the low type

either trades

efficiently or does

not trade at all)

Table 3.1: Comparison with Attar et al. [1, 2]

Our results confirm that the Akerlof-like equilibrium outcomes presented in the earlier

works extend to our setting. For instance, if the freelancer with the high-quality service

is not willing to work at a price equal to the expected quality, then an equilibrium can be

supported where only the low-quality freelancer has a chance to trade. In this case, the

buyers protect themselves against the information asymmetry by offering a contract that

is only acceptable to the low-quality freelancer. On the other hand, when the high-quality

freelancer is willing to work for the price equal to the expected quality, the buyers find it

profitable to offer a pooling contract. Then, no equilibrium can be supported unless the

capacity constraint is low enough in the sense that at any feasible trade point, the marginal

cost of the high type is less than the expected quality. In this case, a pooling equilibrium

exists, and both types trade at the capacity. In any equilibrium, competition pushes the

price up so that the buyers end up having zero expected profit.

Inderst & Wambach [27, 28] study the role of capacity constraints in competitive

screening models, which features an environment à la Rothschild & Stiglitz [25]. Some-

what parallel to our conclusion, they show that the presence of a capacity constraint alle-

viates the problem of non-existence of equilibrium in pure strategies. Their work departs

from ours in two main aspects: They do not allow nonexclusive competition and assume
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that each contract issuer (buyer in our setting) faces a capacity constraint. Such a con-

straint on the buyers’ side limits their ability to unilaterally deviate and make a profit. In

our setting, the capacity constraint is on the freelancer’s side, which, together with the

non-negative trades assumption, limits the set of feasible deviations available to the buy-

ers.

3.2 The Model

A freelancer (seller) faces contract offers from multiple parties (buyers) who seek his ser-

vices. He can serve more than one customer by allocating his working hours accordingly

but, the number of working hours available to the freelancer is limited and denoted by Q̄C .

He privately knows the quality of his service, which can be either H or L. The probability

that the quality is of type i is commonly known to be mi ∈ (0, 1) for i ∈ {H,L}. That is,

mH +mL = 1. The freelancer only cares about the aggregate hours he works, Q, and the

aggregate monetary transfers he receives T . We assume that the freelancer has quasilinear

preferences: The numerical representation of his payoff is ui(Q, T ) = T − ci(Q) where

the cost function, ci for i ∈ {H,L}, is a continuously differentiable, strictly convex real

function defined over [0, Q̄C ]. Hence, type i’s marginal rate of substitution of working

hours for money is equal to his marginal cost, c′i(Q). We assume that for the same level of

aggregate working hours, type H incurs a strictly higher marginal cost than type L. That

is, c′H(Q) > c′L(Q) for all Q ∈ [0, Q̄C ].

On the other side of the market, there are n ≥ 2 identical buyers. Each buyer k offers

a set of contracts, Ck ⊂ R2 consisting of required working hours and transfer bundles,

that is denoted by (q, t).7 We have (0, 0) ∈ Ci for all buyers so that the freelancer may

choose not to trade with any particular buyer. Each buyer only cares about his trade with

7As noted by Attar et al. [1, 2], we do not need to consider more general mechanisms in our setup. See
[29] and [30] for further details.
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the freelancer. Upon agreeing on a contract (q, t) with type i, a buyer earns a profit of

νiq − t where νi is the (constant) marginal benefit of being served by type i. We assume

that the marginal benefit from working with type H is strictly higher than type L. Hence,

the expected quality of the service that is denoted by ν = mHνH +mLνL satisfies νH >

ν > νL.

Upon receiving the set of offers, the freelancer chooses a contract from each of the

offered set of menus. Thus, type i freelancer needs to solve the following maximization

problem:

max
{∑

l

tl − ci(
∑
l

ql) :
∑
l

ql ≤ Q̄C , (q
l, tl) ∈ C l for each l}.

Menus of contracts are assumed to be compact so that, this problem always has a solution.

We use the perfect Bayesian equilibrium concept and focus on pure-strategy equilibria

where each type i of the freelancer chooses to trade a contract, (qki , t
k
i ) from the menus of

contracts offered by each buyer k. Aggregate equilibrium trades for type i is denoted by

(Qi, Ti) = (
∑

l q
l
i,
∑

l t
l
i). We define the indirect utility function that gives the maximum

payoff that type i freelancer can achieve while trading a contract (q, t) with buyer k as

follows:

z−k
i (q, t) = max

(ql,tl)∈Cl
t+

∑
l ̸=k

tl − ci(q +
∑
l ̸=k

ql)

s.t.
∑
l ̸=k

ql ≤ Q̄C − q,

In equilibrium, one should have Ui = ui(Qi, Ti) = z−k
i (qki , t

k
i ) for all i and k. As noted by

Attar et al. [2], z−k
i defined above may have discontinuities due to the capacity constraint.

Therefore, the proofs in [2] that exploit the continuity of the indirect utility function are no

longer valid in our setup. Yet, using the linearity of the freelancer’s return on transfers, we

can construct simple feasibility arguments to determine the conditions under which pure

strategy equilibrium exists.
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3.3 Equilibrium Characterization

After observing the contract offers, the freelancer solves the corresponding maximization

problem considering the bilateral trades between each buyer and himself. Whenever an

equilibrium exists, no buyer should be able to change his contract offer and increase his

expected payoff. We derive properties of the equilibria which survive well-chosen buyer

deviations following a similar methodology to that of Attar et al. [2], which parallels the

solution methodology in Rothschild & Stiglitz [25]. Under nonexclusive competition, any

buyer can build his deviation on the contracts offered by the other buyers. Considering

type i freelancer’s optimal choice, (Qi, Ti) in aggregate, buyer k can fix arbitrary contracts

from other buyer’s menus which amounts to (Q−k, T−k) and deviate by offering (q, t) =

(Qi − Q−k, Ti − T−k). The first result in [2] derives equilibrium conditions on such a

contract. In our problem setting, the same conditions hold for the feasible set of deviations

even if the indirect utility function of the freelancer is discontinuous. In that vein, Lemma

5 shows that if some buyer k can improve his profits with type i, then his deviation should

be traded by both types of the freelancer and, it should not be profitable in expectation.

We define bki as the profit of the buyer k from his trade with the type i freelancer. That is,

bki = νiq
k
i − tki . Similarly, we define expected profit of buyer k as bk = mLb

k
L +mHb

k
H .

Lemma 5. In equilibrium, for all q ∈ [0, Q̄C ] and t, if the freelancer can trade (Qi −
q, Ti − t) with buyers other than k, then

νiq − t > bki implies νq − t ≤ bk.

Proof. Assume that the freelancer can trade (QH − q, TH − t) with buyers other than k

and νHq − t > bkH holds (the proof for type L is similar).

Consider the following deviation for buyer k: {(0, 0), (q, t + ϵH), (q
k
L, t

k
L + ϵL)} for

ϵH > ϵL > 0. Then, by trading (q, t + ϵH) with buyer k and trading (QH − q, TH − t)

with the buyers other than k, type H can strictly increase his payoff after the deviation.
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Therefore, type H strictly prefers trading (q, t + ϵH) to trading (0, 0) with buyer k. Now,

fix arbitrary contracts from the menus offered by buyers other than k and assume that they

amount to (Q−k, T−k). We know that in equilibrium UH ≥ uH(Q
−k+ qkL, T

−k+ tkL) holds

for all Q−k+ qkL that is less than or equal to the capacity. Since the payoff of the freelancer

is linear in transfers, we have uH(QH , TH+ϵH) > UH+ϵL ≥ uH(Q
−k+qkL, T

−k+tkL+ϵL)

for all feasible Q−k + qkL. Hence, type H freelancer also strictly prefers trading (q, t+ ϵH)

to (qkL, t
k
L + ϵL). On the other hand, type L can strictly increase his profits by trading

(qkL, t
k
L + ϵL). Thus, type L strictly prefers trading (qkL, t

k
L + ϵL) with buyer k to trading

(0, 0) with buyer k. Assume that type L trades (qkL, t
k
L + ϵL) after the deviation. Then,

buyer k earns:

mH(νHq − t) +mLb
k
L − (mHϵH +mLϵL).

This is strictly greater than bk for small enough ϵH and ϵL. Hence, in equilibrium, type L

should also trade (q, t + ϵH), and the resulting profit for buyer k cannot be higher than bk

in equilibrium:

νq − t−mHϵH ≤ bk.

The result follows by letting ϵH approach zero.

In the proof of Lemma 5, we consider a deviation for buyer k in which he offers three

contracts: (0, 0), (q, t) that improves buyer k’s profits with type i, and the equilibrium

contract traded with the other type. Note that monetary transfers of the last two contracts

are increased by a small margin so that their respective types prefer them to no-trade

contracts. If the indirect utility function is continuous as in Attar et al. [2], then one can

choose the increment value for the last contract in a way that type i chooses to trade (q, t)

after the deviation. Although the function zki (q, t) may be discontinuous in our setting,

we make use of the quasi-linear nature of ui to design the deviation contracts in the same

manner. If the other type chooses to trade his equilibrium contract, then this is a profitable

deviation for buyer k. Hence, after the deviation, both types should trade (q, t), and the

resulting payoff should be less than or equal to the equilibrium payoff of buyer k.
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Now, consider the payoff of each type in terms of aggregate equilibrium trades. We can

write the following two inequalities:

TL − cL(QL) ≥ TH − cL(QH),

TH − cH(QH) ≥ TL − cH(QL).

Since the cost function is continuously differentiable, summing up the above inequalities

and employing the fundamental theorem of calculus leads to the following:

cH(QL)− cH(QH) ≥ cL(QL)− cL(QH),∫ QL

QH

c′H(x)dx ≥
∫ QL

QH

c′L(x)dx.

Hence, due to the assumption c′H(Q) > c′L(Q), type L should provide a higher level of

service in any equilibrium, i.e., QL ≥ QH .

Let SL be the aggregate profit of the buyers gained from additionally trading (QL −
QH , TL−TH) with type L freelancer, i.e., SL = νL(QL−QH)−(TL−TH); and similarly,

SH = νH(QH−QL)−(TH−TL). Attar et al. [2] prove that in equilibrium, SL ≤ 0, and the

expected payoff of each buyer is zero. Using these results, they characterize the candidate

equilibria. These conclusions remain to be true in our setting because their proofs rely

only on Lemma 5. Before going further on, we define the aggregate profit of the buyers

from type i freelancer as Bi =
∑

l b
l
i for both i ∈ {H,L}. Hence, the aggregate expected

profit of the buyers is B =
∑

l b
l =

∑
l(mLb

l
L +mHb

l
H) = mLBL +mHBH .

Proposition 8. (Attar et al. [2]) In any equilibrium, SL ≤ 0 and B = 0 so that bl = 0 for

each l. Moreover, the following statements hold.

(i) In any pooling equilibrium, TL = νQL = TH = νQH .

(ii) In any separating equilibrium, QL > QH ≥ 0 holds with TH = νQH and TL−TH =

νL(QL −QH).
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As a consequence of Proposition 8, we obtain the following immediate result, which

will be useful in the remaining proofs.

Corollary 1. In any equilibrium, BH ≥ 0 ≥ BL and SL = 0 hold.

In words, the aggregate profit of the buyers gained from additionally trading (QL −
QH , TL − TH) with the low-type freelancer is always zero in equilibrium. Furthermore,

the profit from the high-type freelancer subsidizes for the loss from the low-type freelancer

if an equilibrium exhibits cross-subsidization.

Next, we derive conditions on the set of equilibria in which buyers make a strictly

positive aggregate profit with the high-type freelancer. Lemma 6 below shows that, in

such equilibria, the marginal cost of the high-type freelancer should be less than or equal

to the expected quality of the service. Furthermore, the contract offers of any single buyer

should not be essential for the aggregate equilibrium trades of the high-type freelancer. In

other words, the high-type freelancer should be able to trade at the same aggregate level

even if a buyer withdraws his offers:

Lemma 6. If in equilibrium BH > 0, then

c′H(QH)

= ν if QH < Q̄C ,

≤ ν if QH = Q̄C .

Moreover, for each buyer k, the freelancer can trade (QH , TH) with buyers other than k.

Proof. The result for c′H(QH) = ν when BH > 0 is due to Lemma 3 of Attar et al.

[2].8 Suppose to the contrary that BH > 0 and QH < Q̄C but c′H(QH) ̸= ν. [2] use the

fact that in equilibrium, when any buyer k deviates by proposing contracts {(0, 0), (QH +

δH , TH + ϵH)} where c′H(QH)δH < ϵH < νδH , he should not make a profit. This leads to

a contradiction.
8In [2], the authors prove that in any equilibrium with BH > 0, marginal rate of substitution for the high

type should be equal to ν. In our setting, this translates to c′H(QH) = ν.
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The above arguments are valid as long as QH ∈ (0, Q̄C). However, when QH = Q̄C ,

the deviation contract defined above is not feasible for positive values of δH . Therefore,

we are able to construct a contradicting argument only for c′H(QH) > ν. This is why

c′H(QH) ≤ ν when BH > 0 and QH = Q̄C .

Next, we show that the freelancer can trade (QH , TH) with buyers other than k. To

do so, we first show that if UH > z−k
H (0, 0) for some k, then buyer k has a profitable

deviation. Indeed, if the freelancer cannot achieve his equilibrium payoff without buyer

k’s offer, then buyer k can deviate to the contract (QH , TH − ϵH) for some positive ϵH .

Such a contract will attract type H for small enough ϵH . If type L is not attracted, then

the payoff of buyer i satisfies mH(BH + ϵH) > 0 for small enough ϵH . If type L also

trades (QH , TH − ϵH), then buyer k’s payoff can be written as νQH − TH + ϵH > 0 since

TH = νQH by Proposition 8. Thus, we must have UH = z−k
H (0, 0). That is, there exists

some aggregate trade (Q−k, T−k) that the freelancer can trade with buyers other than k.

Next, we show that Q−k ̸= QH leads to a contradiction. The proof for the case QH <

Q̄C is due to Lemma 4 of Attar et al. [2]. In this case, we have c′H(QH) = ν. This

fact and strict convexity of the cost function cH imply that T−k > νQ−k. Then, Attar

et al. [2] consider two different contracts (qi, ti) for i ∈ {H,L} that satisfy the equality

(qi, ti) + (Q−k, T−k) = (Qi, Ti) and lead to the desired contradiction.

When QH = Q̄C , we have c′H(QH) ≤ ν. If Q−k ̸= QH the only possible case is

Q−k < QH . Even though the aforementioned deviation contracts are feasible, T−k >

νQ−k is not immediate when c′H(QH) ̸= ν. Below, we show that T−k > νQ−k even

when c′H(QH) ≤ ν. Then, the same profitable deviation argument for the aforementioned

deviation contracts holds, leading to a contradiction. Observe that

UH = TH − cH(QH) = νQH − cH(QH) = T−k − cH(Q
−k).

Thus, T−k = νQ−k + ν(QH −Q−k) + cH(Q
−k)− cH(QH). Moreover, as the function cH
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is strictly convex, we have the following:

cH(QH) = cH(Q
−k) +

∫ QH

Q−k

c′H(x)dx < cH(Q
−k) + c′H(QH)(QH −Q−k).

Combining with the inequality c′H(QH) ≤ ν, we obtain the desired result:

T−k = νQ−i + ν(QH −Q−k) + cH(Q
−k)− cH(QH),

> νQ−k + (ν − c′H(QH))(QH −Q−k) ≥ νQ−k.

In the proof of Lemma 6, we first show that in any equilibrium with BH > 0, one must

have c′H(QH) = ν. Otherwise, there exists a contract in the neighborhood of (QH , TH)

that is profitable if type L is not attracted. If type L also trades the deviation contract, but

c′H(QH) = ν does not hold, then choosing the neighborhood carefully still pays off. The

existence of such profitable deviations in equilibrium is a contradiction. However, unlike

Attar et al. [2], the deviation contracts designed for the case where type H’s marginal cost

is strictly less than ν are not feasible when QH = Q̄C . Hence, in our setting, we might have

c′H(Q̄C) ≤ ν together with BH > 0 in equilibrium. In the remaining part of the result, we

show that buyer k has a profitable deviation if the payoff of the freelancer decreases when

buyer k withdraws his contract offers. Therefore, in equilibrium, the freelancer should be

able to achieve his equilibrium payoff without relying on buyer k. In other words, there

exist aggregate trades with buyers other than k that amount to (Q−k, T−k) and satisfy

uH(Q
−k, T−k) = UH . When c′H(QH) = ν and Q−k ̸= QH , strict convexity of the cost

function implies T−k > νQ−k. In this case, buyer k has a profitable deviation. Hence, in

equilibrium, the freelancer should be able to trade (QH , TH) with buyers other than k. This

is not immediate when c′H(QH) < ν, which is possible in equilibrium when QH = Q̄C

in our setup. In such a case, we show that T−k > νQ−k still holds, and hence, the same

profitable deviation argument applies.

Next, we show that the buyers cannot make aggregate profits with one type of the
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freelancer and make losses with the other as long as the high-type freelancer does not

trade at the capacity. That is, there is no cross-subsidization in equilibrium unless the

high-type freelancer trades at the capacity.9

Proposition 9. In any equilibrium with QH < Q̄C , Bi = 0 for each i.

Proof. Suppose to the contrary that we have an equilibrium with QH < Q̄C and Bi >

0 for some i. From Corollary 1, we know that i must be H . Then, any buyer k with

bkH > 0 can deviate to the following set of contracts: {(0, 0), (QL − QH + δL, TL −
TH + ϵL), (q

i
H , t

k
H + ϵH)} where c′L(QL + δL)δL < ϵL and ϵH strictly positive. Note that

by Lemma 6, type L can trade (QH , TH) with buyers other than k. Combining with the

contract (QL − QH + δL, TL − TH + ϵL), type L can trade (QL + δL, TL + ϵL) after the

deviation and strictly increase his payoff because of the choice of δL and ϵL and since we

know from Corollary 1 that SL = 0.10

Now, as in the proof of Lemma 5, fix arbitrary trades from the other buyers’ menu

of contracts and assume that they amount to (Q−k, T−k). In equilibrium, we know that

UL ≥ uL(Q
−k+ qkH , T

−k+ tkH) holds for any such Q−k satisfying Q−k+ qkH ≤ Q̄C . Then,

for ϵH strictly less than ϵL − δLc
′
L(QL + δL), type L strictly prefers trading (QL −QH +

δL, TL − TH + ϵL) with buyer k to trading (qkH , t
k
H + ϵH) after the deviation. That is, for

any feasible Q−k:

uL(QL + δL, TL + ϵL) = TL + ϵL − cL(QL + δL),

> TL + ϵL − cL(QL)− δLc
′
L(QL + δL),

> UL + ϵH ≥ uL(Q
−k + qkH , T

−k + tkH + ϵH).

9Attar et al. [2] shows that no-cross-subsidization holds in any equilibrium in their setting. As we shall
see, this is not true in our setup.

10When QH = Q̄C , we must have QH = QL = Q̄C , and hence deviation contracts become
{(0, 0), (δL, ϵL), (qkH , tkH+ϵH)}. As negative trades are not allowed, δL must be non-negative. Then, type L
cannot trade (QL+ δL, TL+ ϵL) after the deviation and strictly increase his payoff because QL+ δL > Q̄C

is infeasible. Hence, we cannot rule out cross-subsidization for the case QH = Q̄C .
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Note that the first inequality above is due to strict convexity of cL, i.e.,

cL(QL + δL) = cL(QL) +

∫ QL+δL

QL

c′L(x)dx < cL(QL) + δLc
′
L(QL + δL),

holds irrespective of the sign of δL. After the deviation, type H strictly prefers trading

(qkH , t
k
H + ϵH) to (0, 0). If type H ends up trading this contract, then buyer k strictly

increases his profits for small enough δL, ϵL, ϵH , since SL = 0 and bkH > 0:

mL

(
νL(QL −QH + δL)− TL − TH − ϵL

)
+mH(νHq

k
H − tkH − ϵH)

= mL(νLδL − ϵL) +mH(b
k
H − ϵH) > 0.

Hence, due to the zero-profit result, in equilibrium, type H should also trade (QL −QH +

δL, TL − TH + ϵL) after the deviation, and buyer k should not make any profit:

ν(QL −QH + δL)− (TL − TH + ϵL) = ν(QL −QH + δL)− νL(QL −QH)− ϵL ≤ 0.

(3.1)

Letting δL, ϵL go to zero yields (ν− νL)(QL−QH) ≤ 0. Since ν > νL and QL ≥ QH , we

must have QL = QH . Then, inequality (3.1) reduces to νδL − ϵL ≤ 0. That is, νδL ≤ ϵL

must hold for any feasible values of δL and ϵL, that satisfy c′L(QL)δL < ϵL. When negative

trades are not allowed, and QL = QH , the deviation contract (QL − QH + δL, νL(QL −
QH) + ϵL) is feasible only for positive values of δL. Then, it must be that c′L(QL) ≥ ν,

for otherwise, one can find a pair of positive δL and ϵL values such that νδL ≤ ϵL is not

satisfied. Since we have c′H(QH) = ν due to Lemma 6, this contradicts the assumption

c′H(Q) > c′L(Q) for any Q ∈ [0, Q̄C ].

The proof of Proposition 9 shows the following contradiction: If BH > 0 in an equilib-

rium with QH < Q̄C , then some buyer k making profits with the high-type freelancer has

a profitable deviation. The following deviation contracts from Attar et al. [2] are useful in

our setting: no-trade contract, a contract for the additional aggregate trade made with the
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low-type, (QL −QH , TL − TH), and his equilibrium trade with the high-type, (qkH , t
k
H). In

the proof, the last two contracts are slightly altered so that the low-type freelancer prefers

trading (QL−QH , TL−TH) after the deviation, whereas the high-type prefers trading either

of the last two contracts. Note that due to Lemma 6, when BH > 0, the high-type free-

lancer can achieve his aggregate equilibrium trades, (QH , TH), without relying on buyer

k’s offer. Hence, after the deviation, the low-type freelancer can trade (QL−QH , TL−TH)

with buyer k and trade (QH , TH) with the other buyers. Since SL = 0 by Corollary 1, after

the deviation, buyer k makes zero profit with the low-type freelancer. On the other hand,

if the high-type freelancer trades (qkH , t
k
H) after the deviation, then buyer k makes a strictly

positive profit. Hence, the high-type freelancer should also trade (QL − QH , TL − TH)

after the deviation, and the expected profit of buyer k should be at most zero. This is only

possible if QL = QH and c′L(QL) ≥ ν, since otherwise, there exists a contract in the neigh-

borhood of (QL − QH , TL − TH) that leads to a profitable deviation. Since c′H(QH) = ν

when QH < Q̄C from Lemma 6, this contradicts the assumption c′H(Q) > c′L(Q) for any

Q ∈ [0, Q̄C ].

The deviation contracts used in the proof of Proposition 9 are not feasible when QH =

Q̄C , since they require a service level that is greater than Q̄C . This is why we require QH

to be strictly less than the capacity in the statement of Proposition 9.

Proposition 10 below puts more detail on any equilibrium with no-cross-subsidization:

We understand that in such an equilibrium, each traded contract yields zero profit, and

type H chooses not to trade.

Proposition 10. In any equilibrium with BH = BL = 0, bki = 0 and qkL ≥ qkH = 0 for all

i and k.

Proof. Consider an equilibrium with BH = BL = 0. By definition, BH = 0 implies

TH = νHQH . On the other hand, we have TH = νQH due to Proposition 8. This is only

possible if (QH , TH) = (0, 0). Since only non-negative trades are allowed, we also have

qkH = 0 for all k. If tkH = 0 for all k, then the proof is complete due to the zero-profit
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result. Otherwise, there exists some buyer k with tkH < 0. In this case, type H can strictly

increase his profit by trading (0, 0) with buyer k, a contradiction.

Propositions 9 and 10 lead to the following immediate result: In any equilibrium, the

high-type freelancer either does not trade or his capacity constraint is binding, which we

formalize below.

Corollary 2. In any equilibrium, either QH = 0 or QH = Q̄C .

Lemma 7 below derives necessary conditions regarding the marginal cost of both types

of the freelancer for any equilibrium with no-cross-subsidization.

Lemma 7. In any equilibrium with BH = BL = 0, if QL > 0, then

c′L(QL)

= νL if QL < Q̄C ,

≤ νL if QL = Q̄C .

Moreover, if Qi = 0, then c′i(0) ≥ min {νi, ν} for i ∈ {H,L}.

Proof. For the case QL > 0 and QL < Q̄C , the result c′L(QL) = νL follows from Lemma

6 of Attar et al. [2]. Suppose that in an equilibrium with BH = BL = 0, we have QL ∈
(0, Q̄C) and c′L(QL) ̸= νL. Then, any buyer k can propose the contract (QL+ δL, TL+ ϵL)

for some small δL and ϵL that satisfy c′L(QL)δL < ϵL < νLδL. Attar et al. [2] show that

this is a profitable deviation, contradicting the fact that we are in an equilibrium.

On the other hand, when QL = Q̄C , the deviation contract defined above is infeasible

for the positive values of δL and ϵL. But, c′L(QL)δL < ϵL < νLδL can still be satisfied for

negative values of δL and ϵL. Therefore, a similar contradiction arises only for c′L(QL) >

νL in this case. Hence, c′L(QL) ≤ νL when QL = Q̄C .

Finally, the result c′i(0) ≥ min {νi, ν} whenever Qi = 0 follows from Lemma 5 of

[2].
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Lemma 7 presents conditions for equilibria with no-cross-subsidization for the cases

QL > 0, QL = 0, and QH = 0. We do not consider the case QH > 0 since we know that

the high-type freelancer does not trade in any equilibrium with no-cross-subsidization by

Proposition 10.11

3.4 The Main Results

The results that we obtain in the previous section lead us to our first main result, which

provides a characterization of aggregate equilibrium trades as well as necessary conditions

for the existence of a pure-strategy equilibrium:

Theorem 7. If an equilibrium exists, then ν ≤ c′H(0) or c′H(Q̄C) ≤ ν. Moreover, the

following statements hold.

(i) If c′H(Q̄C) ≤ ν, all equilibria are pooling with QL = QH = Q̄C .

(ii) If νL ≤ c′L(0) and ν ≤ c′H(0), all equilibria are pooling with QL = QH = 0.

(iii) If c′L(0) < νL and ν ≤ c′H(0), all equilibria are separating with:

QL =

Q∗
L if c′L(Q̄C) > νL,

Q̄C if c′L(Q̄C) ≤ νL,
and QH = 0,

where Q∗
L satisfies c′L(Q

∗
L) = νL.

Proof. Suppose that an equilibrium exists. First, observe that the hypothesis of (i), (ii),

and (iii) are mutually exclusive and collectively exhaustive for ν ≤ c′H(0) or c′H(Q̄C) ≤ ν.

11In the proof of Lemma 7, we use the deviation contracts that are presented in a similar result by Attar et
al. [2], but we adjust the arguments according to the feasibility of these contracts.
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Furthermore, by Corollary 2, in any equilibrium, either QH = 0 or QH = Q̄C . There-

fore, the conclusions of the implications of (i), (ii), and (iii) are mutually exclusive and

collectively exhaustive for all possible aggregate equilibrium trades.

(i) If QH = Q̄C , then we must have a pooling equilibrium with QL = QH = Q̄C , since

we know that Q̄C ≥ QL ≥ QH holds in any equilibrium. In this case, BH > 0

follows from Proposition 8, and then c′H(Q̄C) ≤ ν follows from Lemma 6.

On the other hand, if QH < Q̄C , then two different equilibria may occur. In either of these,

there is no cross-subsidization due to Proposition 9, and QL ≥ QH = 0 by Proposition 10.

(ii) If it is a pooling equilibrium, then it must be QL = QH = 0. In this case, we have

c′i(0) ≥ min {νi, ν} for i ∈ {H,L} due to Lemma 7.

(iii) If it is a separating equilibrium, then it must satisfy QL > QH = 0. Depending on

the feasibility of Q∗
L, two different cases are possible for QL: If Q∗

L < Q̄C , then

by the strict convexity of cL, we have c′L(Q̄C) > νL. In this case, one must have

QL = Q∗
L by Lemma 7. If Q∗

L ≥ Q̄C , then by the strict convexity of cL, we have

c′L(Q̄C) ≤ νL. Then by Lemma 7, we have QL = Q̄C . In either case, c′L(0) < νL

follows from strict convexity of cL, and c′H(0) ≥ ν follows from Lemma 7.

Finally, notice that the cases above together imply that an equilibrium exists only if ν ≤
c′H(0) or c′H(Q̄C) ≤ ν holds. Since both the hypotheses and the conclusions of (i), (ii), and

(iii) are mutually exclusive and collectively exhaustive of all aggregate equilibrium trades,

the proof is complete.

The proof of Theorem 7 characterizes the necessary conditions both for the pooling and

the separating equilibria. If there exists an equilibrium with QH < Q̄C , then by Proposi-

tion 9, we know that there is no cross-subsidization. In this case, the aggregate equilibrium

trades must satisfy QL ≥ QH = 0 by Proposition 10. Hence, in a pooling equilibrium with
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no-cross-subsidization, both types of the freelancer must not trade. Lemma 7 gives the no-

trade-equilibrium conditions on the marginal costs of both types as c′i(0) ≥ min {νi, ν} for

i ∈ {H,L}. On the other hand, in a separating equilibrium with no-cross-subsidization,

we must have QL > QH = 0. In this case, the aggregate equilibrium trade of the low-type

freelancer depends on the feasibility of Q∗
L. If it is feasible, then the low-type freelancer

trades efficiently in equilibrium. Otherwise, he will trade at the capacity. In either of the

cases, strict convexity of the cost function implies c′L(0) < νL, whereas c′H(0) ≥ ν follows

from Lemma 7.

Since Q̄C ≥ QL ≥ QH in any equilibrium, it follows from Corollary 2 that the only

remaining case is a pooling equilibrium where both types trade at the capacity. Due to

Proposition 8, the aggregate equilibrium trades, in this case, are characterized by QH =

QL = Q̄C and TH = TL = νQ̄C , which result in cross-subsidization. Then by Proposition

8, the buyers make aggregate profits with the high-type freelancer. Hence, by Lemma 6,

in such an equilibrium, we have c′H(Q̄C) ≤ ν.

Next, we show that any aggregate equilibrium trade can be supported by at least two

buyers posting the same linear tariffs (described in Theorem 8). Furthermore, the neces-

sary conditions for equilibrium existence given in Theorem 7 are also sufficient.

Theorem 8. An equilibrium exists if and only if ν ≤ c′H(0) or c′H(Q̄C) ≤ ν. Moreover,

the following statements hold.

(i) If ν ≤ c′H(0), any equilibrium can be supported by at least two buyers posting the

same tariff

t(q) = νLq, 0 ≤ q ≤ Q̄C ,

while the other buyers remain inactive.

(ii) If c′H(Q̄C) ≤ ν, any equilibrium can be supported by at least two buyers posting the

same tariff

t(q) = νq, 0 ≤ q ≤ Q̄C ,
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while the other buyers remain inactive.

Proof. We first show that if ν ≤ c′H(0), then there exists an equilibrium. Fix an integer K

satisfying 2 ≤ K ≤ n and suppose that K buyers post the tariff given in (i) while the other

buyers remain inactive. This means, in the aggregate, competitors of any buyer post the

tariff T−(Q−) = νLQ
− for 0 ≤ Q− ≤ Q̄ where Q̄ is either KQ̄C or (K−1)Q̄C . Note that

Q̄ cannot be smaller than Q̄C since K ≥ 2. Suppose a buyer deviates and ends up trading

the contracts (qL, tL) and (qH , tH) with types L and H , respectively. At least one of these

contracts should give positive profits if the deviating buyer has a profitable deviation.

First, we consider the contract (qH , tH): For this contract to give positive profit, we must

have νHqH > tH . When only non-negative trades are allowed, we can directly deduce that

qH ∈ (0, Q̄C ]. Define Q−
i ∈ [0, Q̄C ] as the quantity type i ∈ {H,L} trades with the

deviator’s competitors after the deviation. Define the total quantity traded by i ∈ {H,L}
as Q̂i = qi+Q−

i and similarly T̂i = ti+T−(Q−
i ). Since type H prefers trading (Q̂H , T̂H),

we have:

uH(Q̂H , T̂H) ≥ uH(0, 0).

Together with ν ≤ c′H(0), the above inequality implies T̂H > νQ̂H since otherwise, type

H would prefer no-trade to (Q̂H , T̂H).

Let us consider the payoff of type L if he also trades (qH , tH) with the deviator. He

would choose a feasible Q− maximizing uL(qH +Q−, tH + T−(Q−)). This optimization

problem is subject to the following feasibility constraints: 0 ≤ Q− ≤ Q̄C − qH . We

now show that Q− = Q̂L − qH is a feasible solution. Firstly, the capacity constraint

is satisfied since Q̂L ≤ Q̄C by definition. For the non-negativity constraint, recall that

Q̂L ≥ Q̂H holds due to the assumption c′H(Q) > c′L(Q) for any Q ∈ [0, Q̄C ]. Then,

we have Q̂L − qH ≥ Q−
H ≥ 0. Thus, after the deviation, type L can receive at least

uL(Q̂L, tH + T−(Q̂L − qH)). By the definition of the tariff given in (i), we can rewrite the
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aggregate transfers as follows:

tH + T−(Q̂L − qH) = T̂H + T−(Q̂L − qH)− T−(Q−
H) = T̂H + νL(Q̂L − Q̂H).

Since type L prefers trading (Q̂L, T̂L), it follows that T̂L ≥ T̂H + νL(Q̂L− Q̂H). Then, the

aggregate profit written below can be at most zero because T̂H > νQ̂H :

νQ̂H − T̂H +mL[νL(Q̂L − Q̂H)− (T̂L − T̂H)] ≤ 0.

By the definition of the tariff given in (i), the competitors of the deviator cannot make

losses. Hence, the deviator does not have a profitable deviation.

Next, we consider the contract (qL, tL): For this contract to give a positive profit, we

must have νLqL > tL, and qL must be strictly positive. By the definition of the tariff

given in (i), competitors of the deviator cannot make losses. Hence, νLqL > tL implies

νLQ̂L > T̂L. Thus,

uL(Q̂L, νLQ̂L) > uL(Q̂L, T̂L).

We know that the inequalities Q̂L ≤ Q̄C ≤ Q̄ hold. Since type L can trade (Q̂L, νLQ̂L)

with the competitors of the deviator, we arrive at a contradiction.

Now, keeping the same notation introduced above, we assume that c′H(Q̄C) ≤ ν and

let K ≥ 2 many buyers offer the tariff given in (ii) while the others remain inactive. In

this case, competitors of any buyer post T−(Q−) = νQ− in aggregate for 0 ≤ Q− ≤ Q̄

where Q̄ is either KQ̄C or (K − 1)Q̄C . Suppose a buyer deviates and ends up trading the

contracts (qL, tL), and (qH , tH) with the types L and H , respectively. Defining Q̂i, T̂i, Q−
i
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and T−
i as before, we must have:

uH(Q̂H , T̂H) ≥ uH

(
qH + (Q̄C − qH), tH + T−

H (Q̄C − qH)
)
,

tH + T−
H (Q−

H)− cH(Q̂H) ≥ tH + T−
H (Q̄C − qH)− cH(Q̄C),

cH(Q̄C)− cH(Q̂H) ≥ T−
H (Q̄C − Q̂H),∫ Q̄C

Q̂H

c′H(x)dx ≥ ν(Q̄C − Q̂H),

since type H can trade Q̄C − qH with the competitors of the deviator who offer the tariff

given in (ii). Since cH is strictly convex and c′H(Q̄C) ≤ ν, the inequalities above can

be satisfied only if Q̂H = Q̄C . Then Q̂L ≥ Q̂H implies that both types trade at the

same aggregate level and they are indifferent between trading (qH , tH) + (Q−
H , T

−
H ) and

(qL, tL) + (Q−
L , T

−
L ). Since the deviator does not know the type of the freelancer, his

expected payoff from the contract (qi, ti), if traded by the freelancer, can be written as

νqi− ti for i ∈ {H,L}. On the other hand, if the freelancer prefers trading (qi, ti) over the

contracts of the tariff given in (ii), then it must be that ti ≥ νqi for i ∈ {H,L}. Hence, the

deviator does not have a profitable deviation.

The proof of Theorem 8 shows that when either of the necessary conditions presented

in Theorem 7 is satisfied, then at least two buyers offering the corresponding tariff leads

to an equilibrium. Therefore, either of the necessary conditions presented in Theorem 7 is

also sufficient for the existence of a pure-strategy equilibrium.

To sum up, our main results fully characterize the aggregate equilibrium trades of a

freelancer under nonexclusive competition when there is adverse selection.12 We provide

12Our proofs employ deviation contracts tailored to each type of the freelancer, similar in spirit to Attar et
al. [2], who note that “beyond two types, it becomes hard, if not intractable, to control the behavior of each
type following such a deviation” under nonexclusive competition. In a subsequent paper [31], they extend
their model to arbitrary discrete distributions under the assumption that the buyers offer convex menus,
ensuring that the seller’s indirect utility functions satisfy a single-crossing property. In the present chapter,
we do not impose any restrictions on the contract offers, and hence, unable to speculate beyond two-type
settings.
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necessary and sufficient conditions for the equilibrium existence and show that if an equi-

librium exists, then the aggregate equilibrium trades are unique. In equilibrium, each buyer

makes zero profit in expectation, even though they can make a positive profit from a con-

tract traded with the high-type freelancer. Furthermore, any equilibrium can be supported

by linear tariffs. Depending on the preferences of the high-type freelancer, details of equi-

libria can be summarized as follows. If the high-type freelancer is not willing to serve at

a price equal to the expected quality, then we obtain an Akerlof-like result: The high-type

freelancer does not trade in equilibrium, and there is no cross-subsidization. In this case,

the cost function of the low-type freelancer determines his aggregate equilibrium trades:

He might trade efficiently, not trade at all, or exhaust her capacity. On the other hand, if

the high-type freelancer is willing to serve for the price equal to the expected quality at

every feasible level, then both types exhaust their capacity in every equilibrium, and there

is cross-subsidization.

3.5 Concluding Remarks

Our results point out an Akerlof-like market breakdown as the high-type freelancer prefers

not to trade in equilibrium—when he is not willing to trade at a unit price equal to the

expected quality of the service. One implication of this result is that if the high-type

freelancer can credibly signal his type to the buyers, then he may increase his payoff by

extracting rents from the buyers due to nonexclusive competition. Hence, it is reasonable

to expect the rise of intermediaries that help freelancers to signal their types credibly by

exerting a cost. This is indeed the case for many labor markets: There are intermediaries

for freelancers such as Upwork (formerly ODesk), peopleperhour.com, or guru.com. As

noted by Pelletier & Thomas [32], “missing information hampers the level of activity in

these markets.” In other words, these markets are negatively affected by adverse selec-

tion. Hence, according to our results, prices observed in these markets should be equal

to the expected quality of the service. Although these platforms provide information on
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the freelancer to hinder the effects of adverse selection, the freelancers who are new to the

market do not have much to offer in this aspect. As reported by Pallais [33], some of the

entry-level freelancers of ODesk are “inefficiently unemployed” due to uncertainty about

their abilities. Building on this result, Stanton & Thomas [34] note the emergence of inter-

mediaries that enables the freelancers to signal their quality. Their results suggest that the

freelancers who are not affiliated with any of these intermediaries earn substantially less

at the beginning of their careers compared to similar freelancers who have an affiliation.

In other words, the buyers protect themselves against adverse selection by offering low

prices to the entry-level freelancers. Therefore, these empirical results are in line with our

theoretical findings.

There are minor differences between our setting and those of Attar et al. [1] and At-

tar et al. [2]. One question that comes to mind is whether it is possible to find a direct

relationship between the changes in the problem settings and the differences in the re-

sults. In [2], the authors compare their results to those of [1] and conclude that no-cross-

subsidization result is not attainable in [1] because of the capacity constraint. Our results

confirm this assessment. When the marginal cost of the high-type freelancer is smaller than

the expected quality at any feasible service level, there exists a pooling equilibrium with

cross-subsidization. On the other hand, when the marginal cost of the high-type freelancer

is greater than the expected quality at the no-trade point, all equilibria exhibit no-cross-

subsidization. Hence, the aggregate trades derived in our setting resemble those of [1], but

in our setup, equilibrium does not need to exist. As in [2], preferences of the high-type

freelancer regulate the existence of a pure-strategy equilibrium while preferences of the

low-type freelancer shape the aggregate equilibrium trades.

Finally, we highlight the welfare implications of the capacity constraint, which is the

key difference between our study and Attar et al. [2]. For the case of non-negative trades,

Attar et al. [2] find that the high-type freelancer remains inactive in any pure-strategy

equilibrium. Our results suggest that adding a capacity constraint to the freelancer’s side

does not disturb these equilibria, but the capacity constraint may prevent the low-type
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freelancer from trading efficiently. Hence, he may be worse off because he is unable to

realize some of the profits due to the capacity constraint. On the other hand, the capacity

constraint leads to an additional pooling equilibrium. Both types exhaust their capacity

at a price equal to the expected quality in this equilibrium, whereas the buyers continue

to make zero profit. We see that the low-type freelancer is better off while the high-

type freelancer is worse off in this pooling equilibrium when compared to the complete

information case with the capacity constraint.
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Chapter 4

Prophet Inequalities & Polyhedrons

4.1 Introduction

Consider a gambler who wants to maximize his gains from a box opening game. The

rules of the game are as follows. Each box contains a non-negative reward, independent

draws from known distributions (not necessarily identical). The contents of the boxes are

revealed sequentially to the gambler as the game proceeds. Each time a box is opened, the

gambler must choose one of the following. He can either claim the last unboxed reward or

discard it and move on. How should the gambler play this game to maximize his expected

gain? Optimal stopping literature, as its name suggests, deals with the extensions of this

problem, while we will be interested in another dimension. Note that the above-mentioned

problem can be solved via Dynamic programming.

Now, consider a prophet who can foresee all reward realizations to come. Such a player

can choose the highest reward in any instance of the game, hence gaining the expected

value of the maximum reward. Krengel & Sucheston [35] showed that the optimal strategy

96



of the gambler yields at least half of the optimal strategy of the prophet. This approxima-

tion result has become known as the prophet inequality, and it is known to be tight, i.e.,

there is an instance where the gambler cannot gain more than half of what the prophet

gains. This seminal work inspired many others to study prophet inequalities in different

fields, including Mechanism design.

In this chapter, we use tools from linear programming to obtain prophet inequalities for

extensions of the gambler’s problem where he is constrained to choose a strategy from a

given polyhedron. This methodology was first used by Epitropou & Vohra [36], who also

inspired this work. Epitropou & Vohra [36] consider the online version of allocation with

costly verification problem (see the introduction of Chapter 2 for the offline version). In

their words, “the agents arrive and depart one at a time, and the decision to allocate the

object to an agent must be made upon the arrival of an agent. If the principal declines to

allocate the object to an agent, the agent departs and cannot be recalled. If the principal

allocates the object to an agent, the decision is irreversible.” They showed that this prob-

lem could be posed as a compact linear program, which allows them to derive a prophet

inequality through feasibility arguments. Similarly, the main idea of our methodology is

to find a feasible strategy for the gambler that chooses each box at least half as much as

the prophet in expectation. Compared to the prophet inequality literature methods, such as

dynamic programming, induction, conditioning, conjugate duality, algebraic inequalities,

and moment theory (see Hill & Kertz [37] for details), this approach gives a systematic

and straightforward way of deriving prophet inequalities.

We contribute to the literature by re-establishing three different results. Note that we

assume independently drawn rewards unless otherwise stated.

(i) 1
2
-prophet inequality when the player is restricted to a polymatroid, which has non-

negative coefficients in its unique Minkowski sum of simplices.

(ii) 1
n

-prophet inequality when there are n boxes, the reward distributions can be depen-

dent, and the gambler is restricted to an arbitrary polyhedron.
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(iii) 1
K+1

-prophet inequality when the gambler is subject to K many constraints.

Although our contribution is solely methodological for now, we hope that the simplicity

of our method may lead to novel prophet inequalities.

Literature Review. The literature on prophet inequalities is vast. An interested reader

can see Hill & Kertz [37] for a classic survey. Here, we intend to review the recent work

that links prophet inequalities to robust mechanism design. Mechanism design literature

traditionally focuses on the offline setting where the set of buyers is static, and each agent

is present when the mechanism undergoes. This assumption is not fit for online markets

where buyers arrive and depart dynamically. Hence, parallel to the rise of online auc-

tions, literature on online mechanism design has accumulated since 2000. The first paper

that utilizes prophet inequalities to obtain a mechanism with a constant-approximation

guarantee is by Hajiaghayi et al. [38], who leveraged the monotonicity property of some

algorithms from the prophet inequality literature to find direct online mechanisms. Then,

Chawla et al. [39] showed that one could guarantee to obtain half of the payoff of the

optimal offline Bayesian mechanism using sequential posted price mechanisms, which are

especially important for the online setting as they are easy to use. Alaei [40] improved the

prophet inequality for the setting where the gambler can choose k many random variables

before stopping and applied it to a more general mechanism design framework than [39].

Finally, Kleinberg & Weinberg [41] considered the setting where the gambler is subject to

a matroid constraint and proved the 1
2
-prophet inequality by constructing an algorithm for

the gambler, whereas Dütting & Kleinberg [42] extended this result to polymatroids. In

[42], the authors showed that polymatroids could be reduced to block-structured matroids

and utilized the algorithm developed by [41]. Both [41] and [42] discuss the applications

of their results to mechanism design problems. For further reading on the literature that

connects prophet inequalities to mechanism design, one can refer to Lucier [43].
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4.2 Model

The gambler must select an element (called a ‘box’) with an associated reward in the

original problem. There are n boxes, and ri denotes the reward of the ith box, which is a

random draw from a known distribution Fi (with density fi). We will deal with a general

version of the fractional prophet problem, in which the gambler is allowed to acquire a

fraction of a reward. The generality comes from the fact that the gambler can choose any

subsets of boxes from a prescribed family of subsets, which a collection of inequalities

can describe.

We first define the variables for the online problem. Let qi(r1, . . . , ri) be the fraction of

reward acquired from box i = 1, . . . , n, given that the profile of rewards (r1, . . . , ri) was

realized. As in the mechanism design literature, we will refer to q as ex-post allocation

variables. For all i, let

q⃗(r1, . . . , ri) = [q1(r1), . . . , qi(r1, . . . , ri)].

To describe the set of feasible ex-post allocations, let A be a non-negative K × n matrix.

Let Ai be the submatrix of A containing the first i columns of A and denote the jth column

of A by aj . Then, q⃗ is feasible if for all 1 ≤ i ≤ n

Aiq⃗(r1, . . . , ri) ≤ b ∀r1, . . . , ri.

It will sometimes be helpful to write this expression down completely. If akj denotes the

entry in the kth row and jth column, we require that for all i ≤ n, for all k ∈ {1, . . . , K}
and all profiles (r1, . . . , ri): ∑

j≤i

akjqj(r1, . . . , rj) ≤ bk.
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We describe a more compact formulation using the variables Qj(rj) defined as follows:

Qj(rj) = Er1,...,rj−1
[qj(r1, . . . , rj)].

The variables Qj(rj) are sometimes called interim allocations. A formulation of the

prophet problem in terms of the interim allocations is called the reduced form representa-

tion.

An interim allocation Q is implementable up until round i if there exists an ex-post

allocation q⃗ satisfying the following set of constraints (FP i[Q]):

Aiq⃗(r1, . . . , ri) ≤ b ∀r1, . . . , ri,

Er1,...,rj−1
[qj(r1, . . . , rj)] ≥ Qj(rj) ∀rj, ∀j ≤ i,

q⃗(r1, . . . , ri) ≥ 0 ∀r1, . . . , ri.

If the interim allocation Q is implementable up until round i, we will say that FP i[Q] ̸= ∅.

An interim allocation Q is implementable if FP i[Q] ̸= ∅ for all i = 1, . . . , n.

Consider the following optimization problem:

hi+1(Q1, . . . , Qi) = max
q1,...,qi

Er1,...,ri [z(r1, . . . , ri)]

s.t. Aiq⃗(r1, . . . , ri) + ai+1z(r1, . . . , ri) ≤ b ∀r1, . . . , ri, (4.1)

Er1,...,rj−1
[qj(r1, . . . , rj)] ≥ Qj(rj) ∀rj, ∀j ≤ i, (4.2)

q⃗, z ≥ 0. (4.3)

Lemma 8. Q is implementable if and only if Qi+1(ri+1) ≤ hi+1(Q1, . . . , Qi) for all re-

wards ri+1 and all i = 1 . . . , n− 1.

Proof. If Q is implementable, the statement is clearly true. So, suppose to the con-

trary that Qi+1(r) ≤ hi+1(Q1, . . . , Qi) for all rewards r and all i = 1 . . . , n, but Q is
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not implementable, i.e., FP i+1[Q] = ∅. Let (q⃗, z) be an optimal solution that yields

hi+1(Q1, . . . , Qi) and therefore satisfies (4.1-4.3). Notice, q⃗ is a feasible ex-post alloca-

tion in FP i[Q]. Then, there does not exist any qi+1 that solves the following system of

inequalities together with q⃗:

Aiq⃗(r1, . . . , ri) + ai+1qi+1(r1, . . . , ri+1) ≤ b ∀r1, . . . , ri+1, (4.4)

Er1,...,ri [qi+1(r1, . . . , ri+1)] ≥ Qi+1(ri+1) ∀ri+1, (4.5)

q⃗, z ≥ 0. (4.6)

Let yr1,...,ri be the optimal dual variables associated with (4.1). Then, for all

(r1, . . . , ri+1):

yr1,...,riAiq⃗(r1, . . . , ri) + yr1,...,ria
i+1qi+1(r1, . . . , ri+1) ≤ yr1,...,rib,

qi+1(r1, . . . , ri+1) ≤
yr1,...,rib− yr1,...,riAiq⃗(r1, . . . , ri)

yr1,...,ria
i+1

.

We can use this to upper bound each qi+1(r1, . . . , ri+1). Knowing that (4.4-4.6) is infeasi-

ble implies that even if we set each qi+1(r1, . . . , ri+1) at its upper bound, we must violate

one of the constraints in (4.5). Hence, there is an ri+1 such that:

Qi+1(ri+1) > Er1,...,ri [
yr1,...,rib− yr1,...,riAiq⃗(r1, . . . , ri)

yr1,...,ria
i+1

]

= Er1,...,ri [z(r1, . . . , ri)] = hi+1(Q1, . . . , Qi).

The penultimate equation follows by complementary slackness, and we obtain a contra-

diction.

Now we describe a linear programming formulation for the problem solved in hind-

sight, i.e., the offline version. In the offline problem, the fraction of reward acquired from i

is based on the entire profile of rewards. Denote by wi(r1, . . . , rn), the ex-post allocation to
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i at reward profile (r1, . . . , rn). Let w⃗(r1, . . . , rn) = [w1(r1, . . . , rn), . . . , wn(r1, . . . , rn)].

As before, we define the interim allocation probabilities as follows:

Wi(ri) = Er−i
[wi(ri, r−i)].

Here r−i denotes the profile (r1, . . . , ri−1, ri+1, . . . , rn). The offline problem can be ex-

pressed as follows:

max
n∑

j=1

Erj [rjWj(rj)]

s.t. Aiw⃗(r1, . . . , rn) ≤ b ∀r1, . . . , rn, ∀i ≤ n,

Wi(ri) = Er−i
[wi(ri, r−i)] ∀ri, ∀i,

w⃗(r1, . . . , rn) ≥ 0 ∀r1, . . . , rn.

Denote the optimal solution to the offline problem by (w⃗∗,W ∗).

If we can show that hi+1(0.5W
∗
1 , . . . , 0.5W

∗
i ) ≥ 0.5W ∗

i+1(ri+1) for all ri+1, then, from

Lemma 8, it follows that an online solution with a value of at least half the optimal of-

fline solution is implementable. In other words, we obtain a prophet inequality with a

bound of 1/2. We first apply this idea to the case when K = 1, i.e., there is only

one constraint. Note that Epitropou & Vohra [36] are the first to consider this method-

ology in a mechanism design setting with one constraint. They prove the feasibility of

0.5W ∗ = (0.5W ∗
1 , . . . , 0.5W

∗
n) in their online problem to obtain a 1

2
-prophet inequality.

We present an alternative proof for a more general class of singly constrained stopping

problems.

Proposition 11. Given a scalar b and a non-negative n dimensional vector A, if the gam-

bler is subject to the constraints Aq⃗(r1, . . . , rn) ≤ b for all r1, . . . , rn, then the interim

allocation 0.5W ∗ is implementable.

Proof. Notice that (0.5W ∗
1 , 0.5W

∗
2 ) is feasible in any online problem with nonnegative A
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thanks to scaling by 0.5. Hence, we can proceed as follows. Assume that there exists

some i < n such that hj(0.5W
∗
1 , . . . , 0.5W

∗
j−1) ≥ 0.5W ∗

j (rj) for all rj and j ≤ i. Then,

the problem hi+1(0.5W
∗
1 , . . . , 0.5W

∗
i ) is feasible. Therefore, for any feasible q⃗ with the

expected values (0.5W ∗
1 , . . . , 0.5W

∗
i ), it is optimal to set:

z∗(r1, . . . , ri) = b−
∑
j≤i

ajqj(r1, . . . , rj) ∀r1, . . . , ri,

as there is only one constraint for each r1, . . . , ri. Then, the objective becomes:

hi+1(0.5W
∗
1 , . . . , 0.5W

∗
i ) = Er1,...,ri [z

∗(r1, . . . , ri)] = Er1,...,ri [b−
∑
j≤i

ajqj(r1, . . . , rj)]

= b−
∑
j≤i

ajErj [0.5W
∗
j (rj)] = 0.5b ≥ 0.5W ∗

i+1(ri+1) ∀ri+1.

Hence, via induction and Lemma 8, we conclude that 0.5W ∗ is implementable.

4.3 Results

4.3.1 Polymatroids

This section considers the gambler who has to choose his strategy from a polymatroid.

The gambler’s feasible set of strategies can be described as follows:

∑
j∈I

qj(r1, . . . , rj) ≤ g(I) ∀r1, . . . , rn, ∀I ⊆ [n],

where [n] denotes the set {1, . . . , n}, and g : 2[n] 7→ R is a nondecreasing submodular

function.

We now introduce some notation from the literature on generalized permutohedrons,
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which contains the polymatroids. A generalized permutohedron is a polytope defined as

follows:

Pn({zI}) = {(q1, . . . , qn) ∈ Rn :
n∑

j=1

qj = z[n],
∑
j∈I

qj ≥ zI ∀I ⊆ [n]},

where z∅ = 0, and zI is a real number for each I ⊆ [n]. Given a polymatroid P associated

with g, we can define a generalized permutohedron that includes P . To this end, we first

raise the dimension of P to Rn+1 through another polytope:

P̄ := {(q1, . . . , qn+1) ∈ Rn+1 : qn+1 = g([n])−
n∑

j=1

qj, (q1, . . . , qn) ∈ P}.

We also define ḡ as ḡ(I) := g(I) if I ⊆ [n], and ḡ(I) := g([n]) if I ∋ n + 1. It

is easy to check that ḡ is a nondecreasing submodular function, and P̄ is a generalized

permutohedron:

P̄ = Pn+1({zI}),

where z[n] = ḡ([n]), and zI = ḡ([n]) − ḡ([n] \ I) for each I ⊆ [n]. Note that raising the

dimension of P does not necessarily change the optimal solution to the stopping problem,

as we can set all rewards of the box n+ 1 to zero.

We need to introduce two more concepts before stating our result. The Minkowski sum

of polytopes P and Q in Rn is defined as P + Q = {p + q : p ∈ P, q ∈ Q}. Moreover,

the Minkowski difference P − Q is equal to R if we have Q + R = P . Finally, we let ∆

denote the standard unit (n− 1)-simplex:

∆ = {(q1, . . . , qn) ∈ Rn
+ :

n∑
j=1

qj = 1} = conv{e1, . . . , en},

where ei is a binary vector of size n with the only one appearing in the ith column. Also
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let the faces of ∆ be denoted by

∆I = conv{ej : j ∈ I} ∀I ⊆ [n].

The following result from the generalized permutohedron literature will prove to be

helpful.

Proposition 12 (Ardila et al. [44]). Every generalized permutohedron Pn({zI}) can be

written uniquely as a signed Minkowski sum of simplices:

Pn({zI}) =
∑
I⊆[n]

yI∆I ,

where yI =
∑

J⊆I(−1)|I|−|J |zJ for each I ⊆ [n].

We utilize Proposition 11 and Proposition 12 to obtain a 1
2
-prophet inequality for a

particular class of generalized permutohedron.

Theorem 9. Consider a stopping problem with independently drawn nonnegative rewards

where the feasible online policies live in a generalized permutohedron Pn({zI}) ⊆ Rn. If

Pn({zI}) has only nonnegative coefficients in its unique signed Minkowski sum represen-

tation, the optimal online strategy achieves at least 1
2

of the prophet’s value.

Proof. Let w∗ ∈ Pn({zI}) be the optimal offline solution. As any Pn({zI}) has a unique

signed Minkowski sum representation due to Proposition 12, there must exist w∗
I ∈ ∆I for

all I ⊆ [n] such that w∗ =
∑

I⊆[n] yIw
∗
I .

Assume that the signed Minkowski sum of Pn({zI}) only has non-negative coefficients,

i.e., yI ≥ 0 for all I ⊆ [n]. Then, as the objective function of the problem is linear over

w∗, we can choose each w∗
I to be the optimal offline solution of the problem when the

prophet is limited to ∆I . If we let Zoff (P ) denote the optimal objective value of the
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offline problem under some polyhedron P , then the following equality must hold:

Zoff

(
Pn({zI})

)
=

∑
I⊆[n]

yIZoff (∆I).

Notice that any simplex ∆ and all its faces contain only one constraint. Therefore, utilizing

Proposition 11, we deduce that they should admit 1
2
-prophet inequality. Letting Zon(P )

denote the optimal objective value of the online problem under some polyhedron P , this

translates as:

0.5Zoff (∆I) ≤ Zon(∆I) ∀I ⊆ [n].

Therefore, we can conclude our proof using the above prophet inequalities:

0.5Zoff

(
Pn({zI})

)
= 0.5

∑
I⊆[n]

yIZoff (∆I) ≤
∑
I⊆[n]

yIZon(∆I) ≤ Zon

(
Pn({zI})

)
,

where the last inequality follows from the fact that the Minkowski sum of the optimal

online solutions q∗I ∈ ∆I , I ⊆ [n] is again an online solution, and it is an element of

Pn({zI}).

Theorem 9 provides a simple way to derive 1
2
-prophet inequalities for a class of poly-

matroids, as well as the intuition behind this result. Moreover, it gives an easy roadmap

to construct an online strategy with half the optimal offline value. When the polymatroid

has a Minkowski sum representation with only nonnegative coefficients, we can focus on

simplices, which admit easy-to-use online strategies from literature with half the optimal

offline value, and take their Minkowski sum.

To underline the potential of our approach, we summarize the results of Kleinberg &

Weinberg [41], who consider a stopping problem under a matroid constraint. Kleinberg

& Weinberg [41] first introduce a property for some α > 1 and say that any deterministic

monotone algorithm satisfying this property has α-balanced thresholds. The property en-

sures that the gambler does not lose much when he sticks to the algorithm. Then, their first
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result states that following a monotone algorithm with α-balanced thresholds, the gambler

gains at least 1
α

of the prophet’s gain. To prove their main result, i.e., the prophet inequality

for α = 2, they introduce an algorithm and show that it has 2-balanced thresholds. Specif-

ically, they use some basic properties of matroids to show that their algorithm satisfies the

property for balanced thresholds when α = 2.

4.3.2 Correlated Rewards

Notation: In this subsection and the following, we denote the set of rewards as R. Also,

r⃗ denotes the vector of rewards (r1, . . . , ri), to which we also refer as (rj, r⃗−j) given any

state j = 1, . . . , i. Here, r⃗−j is obtained from removing the jth reward from r⃗.

In this section, we drop the assumption of independent rewards and reproduce the 1
n

-

prophet inequality result from Hill & Kertz [37]. To this end, we will prove feasibility of

the following system of inequalities for all i+ 1 ≤ n.

Er⃗[z(r⃗)] ≥
1

i+ 1
min
k

bk

z(r⃗) +
∑
j≤i

akjwj(r⃗) ≤ bk ∀r⃗, ∀k ≤ K,

wj(r⃗) = qj(r1, . . . , rj) ∀r⃗, ∀j ≤ i,

Er⃗−j | rj [wj(r⃗)] ≥
1

i+ 1
Wj(rj) ∀rj, ∀j ≤ i,

z(r⃗) ≥ 0 ∀r⃗,

wj(r⃗) ≥ 0 ∀r⃗, ∀j ≤ i,

qj(r1, . . . , rj) ≥ 0 ∀r1, . . . , rj, ∀j ≤ i.

Without loss of generality, we can assume that z variables have coefficient 1 in each con-

straint, as we can either ignore the constraint (when the coefficient is zero) or scale it by

the coefficient of z. We work with wj variables in this model to avoid any confusion due to
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dependence between states. The third constraint ensures that for any j ≤ i, wj(r1, . . . , ri)

variables have the same value for all rj+1, . . . , ri. In other words, w agrees with some

online rule q. These constraints are called non-anticipativity constraints in the literature.

Furthermore, due to dependence, Wj(rj) is now defined as
∑

r⃗−j
f(r⃗−j | rj)wj(r⃗). The

above model can also be written as follows:∑
r⃗

f(r⃗)z(r⃗) ≥ 1

i+ 1
min
k

bk

f(r⃗)
[
z(r⃗) +

∑
j≤i

akjwj(r⃗)
]
≤ f(r⃗)bk ∀r⃗, ∀k ≤ K,

f(r⃗)wj(r⃗) = f(r⃗)qj(r1, . . . , rj) ∀r⃗, ∀j ≤ i,∑
r⃗−j

f(rj, r⃗−j)

f(rj)
wj(rj, r⃗−j) ≥

1

i+ 1
Wj(rj) ∀rj, ∀j ≤ i,

z(r⃗) ≥ 0 ∀r⃗,

wj(r⃗) ≥ 0 ∀r⃗, ∀j ≤ i,

qj(r1, . . . , rj) ≥ 0 ∀r1, . . . , rj, ∀j ≤ i.

(4.7)

Theorem 10. Consider a stopping problem with nonnegative rewards where the feasible

online policies live in a polymatroid described by A ∈ RK×n
+ and b ∈ Rn. The optimal

online strategy achieves at least 1
n

of the prophet’s value.

Proof. If the model in (4.7) is feasible, then its Farkas’ alternative must be infeasible:

f(r⃗)
[∑

k

µk(r⃗)− τ
]
≥ 0 ∀r⃗, (4.8)

∑
k

akjf(r⃗)µk(r⃗) + f(r⃗)βj(r⃗)−
f(rj, r⃗−j)

f(rj)
λj(rj) ≥ 0 ∀r⃗, ∀j ≤ i, (4.9)

−
∑

rj+1,...,ri

f(r1, . . . , ri)βj(r1, . . . , ri) ≥ 0 ∀r1, . . . , rj, ∀j ≤ i, (4.10)∑
k

∑
r⃗

bkf(r⃗)µk(r⃗)−
∑
j≤i

∑
rj

Wj(rj)

i+ 1
λj(rj)− τ

mink bk
i+ 1

< 0, (4.11)
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where all variables, except β, are nonnegative. We want to show that the above alternative

is infeasible. That is, all nonnegative (µ, λ, τ) that satisfy the first three constraints lead

to:

∑
k

bkEr⃗[µk(r⃗)]−
∑
j≤i

∑
rj

Wj(rj)

i+ 1
λj(rj)− τ

mink bk
i+ 1

≥ 0,

contradicting (4.11).

First, notice that β variables are free and do not appear in (4.11). Moreover, decreasing

β variables do not violate (4.10) so that we can focus on the solutions where (4.9) are

always binding:

f(r⃗)βj(r⃗) =
f(rj, r⃗−j)

f(rj)
λj(rj)−

∑
k

akjf(r⃗)µk(r⃗) ∀r⃗, ∀j ≤ i.

Hence, the constraint (4.10) becomes:

∑
rj+1,...,ri

∑
k

akjf(r⃗)µk(r⃗)−
∑

rj+1,...,ri

f(rj, r⃗−j)

f(rj)
λj(rj) ≥ 0 ∀r1, . . . , rj, ∀j ≤ i. (4.10’)

Using this new constraint, we can upper bound λ variables as follows. We first sum

(4.10’) over r1, . . . , rj−1:

∑
k

∑
rj+1,...,ri

akjf(r⃗)µk(r⃗) ≥
∑

rj+1,...,ri

f(rj, r⃗−j)

f(rj)
λj(rj) ∀r1, . . . , rj, ∀j ≤ i,

∑
k

∑
r⃗−j

akjf(rj, r⃗−j)µk(rj, r⃗−j) ≥
∑
r⃗−j

f(rj, r⃗−j)

f(rj)
λj(rj) ∀rj, ∀j ≤ i.
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As
∑

r⃗−j
f(rj, r⃗−j) = f(rj), we can rewrite the above upper bound as follows:

∑
k

f(rj)
∑
r⃗−j

akj
f(rj, r⃗−j)

f(rj)
µk(rj, r⃗−j) ≥ λj(rj) ∀rj, ∀j ≤ i,

∑
k

f(rj)akjEr⃗−j
[µk(rj, r⃗−j) | rj] ≥ λj(rj) ∀rj, ∀j ≤ i.

Substituting λ variables with these upper bounds gives us the following lower bound for

the left-hand side of (4.11):

∑
k

bkEr⃗[µk(r⃗)]−
∑
j≤i

∑
rj

Wj(rj)

i+ 1

∑
k

f(rj)akjEr⃗−j
[µk(rj, r⃗−j) | rj]− τ

mink bk
i+ 1

.

(4.11’)

Now, we go back to the offline problem to develop a lower bound for the second term

of (4.11’). Ignore the rewards after period i and assume that we only solve for the first i

random variables. Let ŵ denote the optimal solution of this problem and let Ŵj(rj) denote

its expectation over r⃗−j given reward rj . We multiply both sides of all constraints by f(r⃗)

and sum them over r⃗−j:

akjŵj(r⃗) ≤ bk ∀r⃗, ∀j ≤ i, ∀k ≤ K,

f(rj)
f(r⃗)

f(rj)
akjŵj(r⃗) ≤ f(r⃗)bk ∀r⃗, ∀j ≤ i, ∀k ≤ K,

f(rj)akjŴj(rj) ≤ f(rj)bk ∀rj, ∀j ≤ i, ∀k ≤ K.

Notice that since we ignore the rewards after period i, for any j ≤ i, optimal values of ŵ

should always be bigger than the optimal solution of the original offline problem. Hence,

we have Wj(rj) ≤ Ŵj(rj) for all rj and j ≤ i. Then, we can substitute Ŵj(rj) from the

left-hand side of the above inequality with Wj(rj). To obtain the promised lower bound,

we multiply both sides of the above inequality by Er⃗−j
[µk(rj, r⃗−j) | rj], which are all
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nonnegative. As a result, we obtain the following inequalities for all ri, j ≤ i, and k ≤ K:

f(rj)akjWj(rj)Er⃗−j
[µk(rj, r⃗−j) | rj] ≤ f(rj)bkEr⃗−j

[µk(rj, r⃗−j) | rj].

Summing these inequalities over rj yields:

∑
rj

f(rj)akjWj(rj)Er⃗−j
[µk(rj, r⃗−j) | rj] ≤ bkEr⃗[µk(r⃗)] ∀j ≤ i, ∀k ≤ K.

Finally, we sum them over j ≤ i and k ≤ K to obtain a lower bound for the second term

of (4.11’).

∑
j≤i

∑
k

∑
rj

f(rj)akjWj(rj)Er⃗−j
[µk(rj, r⃗−j) | rj] ≤ i

∑
k

bkEr⃗[µk(r⃗)].

Thus, (4.11’) is bounded below by:

∑
k

bkEr⃗[µk(r⃗)]−
i

i+ 1

∑
k

bkEr⃗[µk(r⃗)]− τ
mink bk
i+ 1

.

The following arguments verify that this lower bound is nonnegative:

1

i+ 1

∑
k

bkEr⃗[µk(r⃗)]− τ
mink bk
i+ 1

≥ 1

i+ 1
min
k

bk
∑
k′

Er⃗[µk′(r⃗)]− τ
mink bk
i+ 1

,

≥ 1

i+ 1
min
k

bk

[∑
k′

Er⃗[µk′(r⃗)]− τ
]
,

=
1

i+ 1
min
k

bk

[
Er⃗[

∑
k′

µk′(r⃗)]− τ
]
≥ 0,

where the last inequality follows due to (4.8). This observation lets us conclude that the

considered Farkas’ alternative is infeasible, which means:

hi+1(
W1

i+ 1
, . . . ,

Wi

i+ 1
) = maxEr⃗[z(r⃗)] ≥

1

i+ 1
min
k

bk ≥
Wi+1(ri+1)

i+ 1
∀ri+1.
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Hence, via induction and Lemma 8, we conclude that W ∗

n
is implementable.

4.3.3 K Many Constraints

In this section, we prove that any stopping problem with independently drawn rewards and

K many constraints admits 1
K+1

-prophet inequality. As in Subsection 4.3.2, we will show

that hi+1(
1

K+1
W ∗

1 , . . . ,
1

K+1
W ∗

i ) ≥ 1
K+1

W ∗
i+1(ri+1) for all ri+1.

Theorem 11. Consider a stopping problem with independently drawn nonnegative re-

wards where the feasible online policies live in a polymatroid described by A ∈ RK×n
+

and b ∈ Rn. The optimal online strategy achieves at least 1
K+1

of the prophet’s value.

Proof. First, notice that ( 1
K+1

W ∗
1 , . . . ,

1
K+1

W ∗
K+1) is feasible thanks to scaling by 1

K+1
.

Hence, as an induction hypothesis, we can assume that there exists some i < n such that:

hj(
1

K + 1
W ∗

1 , . . . ,
1

K + 1
W ∗

j−1) ≥
1

K + 1
W ∗

j (rj) ∀rj, ∀j ≤ i.

Then, the problem hi+1(
1

K+1
W ∗

1 , . . . ,
1

K+1
W ∗

i ) is feasible, and for any feasible q⃗ with the

interim values ( 1
K+1

W ∗
1 , . . . ,

1
K+1

W ∗
i ), it is optimal to set:

z∗(r⃗) = min
k

{bk −
∑
j≤i

akjqj(r1, . . . , rj)} ∀r⃗.

We partition the set of rewards R into K sets with respect to the tightest bound on z∗(r⃗)

variables. Define a family of subsets (Rk)
K
k=1 as follows:

Rk = {r⃗ ∈ R| z∗(r⃗) = bk −
∑
j≤i

akjqj(r1, . . . , rj)} ∀k = 1, . . . , K,

such that ∪K
k=1Rk = R, and Rk ∩Rl = ∅ for all k, l ∈ {1, . . . , K} with k ̸= l.
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We can use (Rk)
K
k=1 to write the objective function as follows:

hi+1(0.5W
∗
1 , . . . , 0.5W

∗
i ) = Er⃗[z

∗(r⃗)] =
K∑
k=1

∑
r⃗∈Rk

f(r⃗)[bk −
∑
j≤i

akjqj(r1, . . . , rj)].

Finally, we define probability fk =
∑

r⃗∈Rk
f(r⃗) for all k = 1, . . . , K and set K =

{k| fk ≥ 1
K+1

}. Notice that K cannot be empty since otherwise, we would have the

following contradiction:
K∑
k=1

fk <
K∑
k=1

1

K + 1
< 1.

Then, the objective has the following lower bound:

hi+1(0.5W
∗
1 , . . . , 0.5W

∗
i ) ≥

∑
k∈K

fkbk −
∑
k∈K

∑
r⃗∈Rk

f(r⃗)
∑
j≤i

akjqj(r1, . . . , rj),

≥
∑
k∈K

fkbk −
∑
k∈K

∑
r⃗∈R

f(r⃗)
∑
j≤i

akjqj(r1, . . . , rj),

=
∑
k∈K

fkbk −
∑
k∈K

∑
j≤i

akj
∑
rj

f(rj)
Wj(rj)

K + 1
.

We know from the offline problem that
∑

j≤i akj
∑

rj
f(rj)

Wj(rj)

K+1
≤ bk

K+1
. Hence, the

following lower bound follows:

hi+1(0.5W
∗
1 , . . . , 0.5W

∗
i ) ≥

∑
k∈K

(
fk −

1

K + 1

)
bk ≥

∑
k∈K

(
fk −

1

K + 1

)
min

l∈{1,...,K}
bl

=
(∑

k∈K

fk −
|K|

K + 1

)
min

l∈{1,...,K}
bl

=
(K + 1− |K|

K + 1
−
∑
k/∈K

fk

)
min

l∈{1,...,K}
bl >

1

K + 1
min

l∈{1,...,K}
bl

≥ 1

K + 1
W ∗

i+1(ri+1) ∀ri+1,

where the penultimate inequality follows from the fact that
∑

k/∈K fk <
K−|K|
K+1

. Hence, via
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induction and Lemma 8, we conclude that W ∗

K+1
is implementable.

4.4 Concluding Remarks

By utilizing the extensive tools in the linear programming literature, we more straight-

forwardly reproduced various results from the prophet inequality literature. Hence, our

methodology proves to be fruitful and promising. Here we note that our result in Subsec-

tion 4.3.1 is valid only for a subset of polymatroids. Specifically, we show that a polyma-

troid admits 1
2
-prophet inequality if its unique signed Minkowski sum only has nonnegative

coefficients. As the 1
2
-prophet inequality result is already proven for all polymatroids by

Dütting & Kleinberg [42], we conjecture that our proof extends to all polymatroids. Hope-

fully, our results will provide new insights and eventually lead to novel prophet inequalities

and robust mechanism designs.
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