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ABSTRACT

ASSESSMENT OF UNDERSAMPLING STRATEGIES
FOR ACCELERATED MULTI-SHELL DIFFUSION MRI

Elif Aygün

M.S. in Electrical and Electronics Engineering

Advisor: Emine Ülkü Sarıtaş Çukur

August 2022

Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive imaging tech-

nique that can probe the Brownian motion of water molecules within the neurite

tissue. Measuring diffusion in the brain by densely sampling the q-space allows

quantification of neural microstructure characteristics on a much smaller scale

than the regular imaging resolution. Diffusion Tensor Imaging (DTI), which can

resolve diffusion anisotropy and primary fiber orientation, is one of the most

clinically adopted dMRI techniques. However, white matter (WM) voxels in

the brain often contain crossing fibers and complex neurite structures, requiring

more sophisticated dMRI techniques. With the goal of resolving multiple dif-

fusion orientations and increasing angular resolution, multi-shell High Angular

Resolution Diffusion Imaging (HARDI) samples the q-space densely on multiple

spherical surfaces with radii determined by the b-values. This technique allows

inferring neurite characteristics of complex fiber bundles, enabling the diagno-

sis of many neurodegenerative diseases. This thesis focuses on two multi-shell

dMRI methods: Multi-Shell Multi-Tissue Constrained Spherical Deconvolution

(MSMT-CSD), a model-free method, and Neurite Orientation Dispersion and

Density Imaging (NODDI), a model-based method. These methods are used to

resolve the Orientation Distribution Function (ODF) and Orientation Dispersion

(OD) in the brain. However, the requirement of high number of q-space measure-

ments, combined with the need to acquire images with reversed phase encoding

(PE) directions for susceptibility artifact correction, causes prolonged acquisition

times and reduces the clinical utility of multi-shell dMRI.

This thesis proposes several different undersampling strategies to accelerate

multi-shell dMRI, and compares their performances based on the quality of es-

timated dMRI metrics and ODFs. The first undersampling approach is directly

applied to the q-space using Electrostatic Energy Minimization (EEM) to produce
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2- or 3-shell schemes with different combinations of gradient directions per shell.

The second approach uses acquisitions with reversed PE directions for a single

b0 volume only. These strategies are applied to achieve acceleration rates of R=2

and R=3 on dMRI data from 20 subjects. The results suggest that each diffusion

metric prefers a different undersampling strategy. For R=2 case, 3-shell strate-

gies perform better in terms of metric fidelity and ODF accuracy. Specifically,

gradient tables with a lower variance in the number of q-space points between

consecutive shells are preferable. For R=3 case, 2-shell strategies perform better

and the strategies containing more gradient points on the outer shell are prefer-

able. The metric maps produced from the undersampled data contain all the

necessary microstructural information and preserve diagnostic properties. These

analyses will be useful in designing disease and metric-specific multi-shell dMRI

gradient tables to ease clinical applications and shorten the acquisition time with

minimum loss of information.

Keywords: Diffusion magnetic resonance imaging, multi-shell diffusion imaging,

undersampling, q-space, b-value, diffusion metrics.



ÖZET

HIZLANDIRILMIŞ ÇOKLU-KABUK DİFÜZYON MRG
İÇİN ALT-ÖRNEKLEME STRATEJİLERİNİN

DEĞERLENDİRİLMESİ

Elif Aygün

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Emine Ülkü Sarıtaş Çukur

Ağustos 2022

Difüzyon manyetik rezonans görüntüleme (dMRG), su moleküllerinin nöral

doku boyunca gerçekleştirdiği Brown hareketine duyarlı noninvaziv bir

görüntüleme yöntemidir. Beyinde gerçekleşen difüzyonun, q-uzayının farklı

yörüngelerle örneklenmesiyle ölçülmesi, dokunun mikroyapısal özelliklerinin stan-

dart görüntüleme çözünürlüğünden çok daha hassas ölçeklerle çözümlenebilmesini

sağlamaktadır. Difüzyon Tensor Görüntüleme (DTG) klinikte en yaygın olarak

kullanılan dMRG yöntemidir ve difüzyon anizotropisiyle birincil lif yönelimini

çözümleyebilmektedir. Ancak beyinde gözlemlenen karmaşık lif yapılarının

görüntülenmesi için birden fazla difüzyon yönelimi için çalışacak teknikler

gerekmektedir. Yüksek Açısal Çözünürlüklü Difüzyon Görüntüleme (HARDI),

q-uzayını olabildiğince yoğun bir alt örnekleme yapısıyla kapsayarak açısal

çözünürlüğü arttıran bir tekniktir. Çoklu-Kabuk HARDI teknikleri, q-uzayını

yarı çapı b-değerince belirlenen küresel yüzeyler üzerinde örnekler ve karmaşık

lif yapılarının çözülmesine olanak sağlayarak pek çok nörodejeneratif hastalığın

teşhisine imkan tanır. Bu tez iki farklı çoklu-kabuk dMRG yöntemine odaklan-

maktadır: Modelden bağımsız bir yöntem olan Çoklu-Doku Çoklu-Kabuk Kısıtlı

Küresel Ters Evrişim (ÇDÇK-KKTE), ve difüzyon modeli tabanlı bir teknik olan

Nörit Oryantasyon Dağılımı ve Yoğunluk Görüntüleme (NODDI). Bu iki yöntem,

beyindeki Yönelim Dağılım Fonksiyonunu (YDF) ve Yönelim Yayılımını (YY)

çözümlemek için kullanılmaktadır. Bu yöntemlerin kullanılması için gerekli olan

yüksek sayıdaki q-uzayı ölçümleri ve difüzyon görüntülerinde manyetik alınganlık

kaynaklı bozulmaların düzeltilmesi için zıt faz kodlama yönlerinde görüntüler

alınması gerekliliği, çoklu-kabuk HARDI protokollerinin çok uzun sürmesine se-

bep olmakta ve yöntemin klinik kullanım için uygunluğunu düşürmektedir.
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Bu tezde, çoklu-kabuk dMRG protokollerinin hızlandırılması için farklı alt-

örnekleme stratejileri önerilmekte, ve bu stratejilerle elde edilen metrik harita-

larının ve YDF’nin doğruluğu karşılaştırılmaktadır. Önerilen ilk alt-örnekleme

yöntemi, q-uzayındaki her bir kabuğun Elektrostatik Enerji Enazlaması (EEE)

yöntemi ile farklı oranlarda alt örneklenilerek yeni 2-kabuklu ya da 3-kabuklu

gradyan tablolarının oluşturulmasıdır. İkinci yöntem ise zıt faz kodlama

yönünde yalnızca tek bir b0 görüntüsü kullanmaktadır. Bu stratejiler, 20

gönüllü için dMRG verisinin R=2 ve R=3 seviyelerinde hızlandırılması için

uygulanmıştır. Sonuçlar her bir metrik için en iyi performans gösteren alt

örnekleme stratejisinin farklı olduğunu belirtmektedir. R=2 için 3-kabuklu strate-

jiler dMRG metriklerinin ve YDF’nin doğruluğu açısından daha iyi performans

göstermektedir. Genellikle birbirini takip eden iki kabuk arasında gradyan noktası

sayısı değişimi az olan stratejiler daha başarılıdr. R=3 için 2-kabuklu stratejiler

daha başarılıdır ve dış kabuklarda daha çok sayıda gradyan noktası barındıran

stratejiler diğerlerinden daha üstündür. Tüm stratejiler altında metrik haritaları,

mikroyapısal özellikleri içermekte ve teşhis için önemli özellikleri korumaktadır.

Bu analizler, çoklu-kabuk dMRG gradyan tabolarının hastalığa ve hedeflenilen

metriğe özel tasarlanması ile klinik uygulamaların kolaylaştırılmasında, ve mini-

mum bilgi kaybıyla veri toplama süresinin kısaltılmasında faydalı olacaktır.

Anahtar sözcükler : Difüzyon manyetik rezonans görüntüleme, çoklu-kabuk

difüzyon görüntüleme, alt örnekleme, q-uzayı, b-değeri, difüzyon metrikleri.
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who became great companions. I am also fortunate to have the chance to meet
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Chapter 1

Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive imaging tech-

nique that can probe Brownian motion of water molecules within the neurite

tissue [1, 2]. The measurement of diffusion in the brain gives dMRI a unique

ability to resolve the underlying microstructure of neurite tissue. The informa-

tion can be used to characterize and quantify diffusion and structural properties

of fiber bundles on a much smaller scale than the regular imaging resolution.

The fibers in neurite tissue biologically restrict the diffusion process, such

that the water molecules randomly move along the fiber or in between the fibers

[2]. The diffusion process depends on the environment, allowing one to map

the microstructural alignment of the white matter (WM) axons, as well as gray

matter (GM) and cerebrospinal fluid (CSF) tissue properties.

MRI pulse sequences can be sensitized to diffusion by applying a pair of gra-

dient fields that induce a signal attenuation in the case of random spin motion

[3, 1].The most common dMRI technique using such diffusion-sensitizing gradi-

ents is Diffusion Tensor Imaging (DTI), which relies on q-space measurements

acquired in at least 6 gradient directions and 1 non-diffusion-weighted measure-

ment to construct a diffusion tensor. From there, two important metrics called

Fractional Anisotropy (FA) and Mean Diffusivity (MD) can be computed [1].
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However, DTI fails to resolve complex fiber geometries, often seen in WM brain

voxels. Therefore, more sophisticated techniques with the capability to resolve

multiple fiber orientations are needed.

High Angular Resolution Diffusion Imaging (HARDI) was developed to over-

come the crossing-fibers problem by sampling the q-space as densely as possible

in different trajectories [4, 2]. Multi-shell HARDI is an extension of HARDI,

where the q-space is sampled on multiple spherical surfaces whose radii are de-

termined by the b-values. These spherical surfaces are called ”shells” and this

method simultaneously allows us to benefit from both the high angular resolution

of high b-values and high Signal to Noise Ratio (SNR) of low b-values [2]. Using

the signal attenuation measured with multi-shell HARDI, the diffusion distribu-

tion can be estimated by reconstructing the Orientation Distribution Function

(ODF) or Orientation Dispersion (OD) using either model-free or model-based

approaches. This thesis considers the following multi-shell dMRI methods: (1)

Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD) is

a model-free technique, with metrics of Apparent Fibre Density (AFD) and num-

ber of Fiber Orientations (nuFO) metrics[5]. (2) Neurite Orientation Dispersion

Density Imaging (NODDI) is a Watson-distribution based model-dependent tech-

nique with metrics of Orientation Distribution Index (ODI) and Neurite Density

Index (NDI). The clinical applications of dMRI often rely on such metrics, since

it is possible to map diffusion characteristics such as WM complexity, diffusion

anisotropy, fibre density, etc. via these metrics. Therefore, these metrics can be

considered as biomarkers of neurodegenerative diseases [6, 7, 8, 9].

The main drawback of multi-shell dMRI is the prolonged acquisition time.

The reconstruction of these complex metrics require q-space to be sampled exten-

sively. The necessity to include approximately 45 to 200 gradient points increase

acquisition times, compared to for example DTI acquisition that only requires 7

measurements. Furthermore, dMRI typically utilizes two acquisitions with iden-

tical parameters but in reversed phase encoding (PE) directions for the correction

of magnetic susceptibility induced distortions, causing a doubling of the total ac-

quisition time. Accelerating multi-shell dMRI protocols to increase the efficiency
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and to exploit the full clinical potential of these techniques is one of the impor-

tant research topics in the field of dMRI [10, 11, 12, 13]. Most of these techniques

focused on sparse q-space measurements and recovering fully sampled dMRI data

using various compressed sensing approaches. In addition, several studies inves-

tigated the optimal parameters such as the optimal number of q-space points and

the optimal b-value range for multi-shell dMRI techniques [14, 15].

In this thesis, 20 different undersampling strategies categorized under 3 differ-

ent approaches are proposed for accelerating multi-shell HARDI protocols. The

performances of these strategies are assessed at acceleration rates of R=2 and

R=3. The accuracy of the estimated dMRI metrics for DTI, MSMT-CSD, and

NODDI models, together with the accuracy of the diffusion orientation distri-

butions, are assessed in detail using both qualitative and quantitative analyses.

The results of this thesis will benefit clinical studies to design accelerated multi-

shell HARDI protocols targeting a specific metric and/or a specific disease, with

the goal of minimizing the total acquisition time while preserving the maximum

amount of information.
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Chapter 2

Background and Theory

2.1 Diffusion Principles and Diffusion MRI

Diffusion Magnetic Resonance Imaging is a non-invasive imaging modality based

on measuring random movement of water molecules within the targeted tissues.

The water molecules diffuse in a fluid following a Brownian motion, which can be

described as a random motion whose characteristics depend on the enclosed space.

This random motion is referred to as diffusion, which is observed as isotropic in

a free environment and anisotropic in a hindered or restricted space. In tissue,

especially in the brain where diffusion is often measured, the white matter and

gray matter fiber bundles and neurite structures bound the environment. The

diffusion occurring in intra-neurite compartments, called restricted diffusion, or

in extra-neurite compartments, called hindered diffusion, are both examples of

anisotropic diffusion. By measuring the anisotropic diffusion, it is possible to

reveal important information about the microstructure of the tissue. [16, 4].

Measuring the movement of water molecules within the neurite tissues allows

us to reveal the orientation of axons and map the diffusion anisotropy by Diffusion

Weighted Imaging (DWI). [16]
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2.1.1 Diffusion Magnetic Resonance Imaging

The water molecules in neurite tissue, i.e., in white matter and gray matter fiber

bundles, follow Brownian motion. This motion causes additional spin dephasing

during magnetic field gradients, which essentially leads to signal attenuation and

can be detected with MRI sequences sensitized to diffusion.

Figure 2.1: The spin-echo diffusion MRI sequence. This sequence incorporates two
diffusion-sensitizing gradient pulses, one before and one after the 180◦ refocusing RF
pulse.

One of the first and most frequently used diffusion sensitizing pulse sequences is

a manipulated spin-echo sequence. As shown in Figure 2.1, this sequence basically

incorporates two gradient pulses, one before and one after the 180◦ refocusing RF

pulse. These gradient pulses typically have large gradient amplitudes, long pulse

durations, and long separation time (also known as diffusion time). It is possible

to measure diffusion along a targeted direction by adjusting the applied gradient

direction. The diffusion “sensitivity” of the gradients can be altered by changing

the magnitude or the pulse duration, creating a contrast mechanism that allows

one to measure the Apparent Diffusion Coefficient (ADC) of different tissues.

Here, as shown in Figure 2.1 assume a randomly moving spin with time-varying

position x(t), which experiences a total magnetic field of a combination of a

stationary field B0 and a time-varying diffusion-sensitizing gradient of amplitude

G(t) for a period of time τ . Then, the acquired phase would be [1]:

ϕ(τ) = −γ(B0 +

∫ τ

0

G(t)x(t)dt) (2.1)

5



Here, γ is the gyromagnetic ratio. Now assume that the first diffusion-sensitizing

gradient has a pulse duration of δ and a constant amplitude of G, and the spin is

at a constant position x1 throughout this gradient pulse. Then, considering the

phase negating effect of the 180◦ refocusing RF pulse, the phase shift would be:

ϕ1 = γ(B0 +Gx1)δ (2.2)

Next, assume that the spin moved to the position x2 during the diffusion time ∆

and stayed at that position afterwards. Applying the second diffusion-sensitizing

gradient with a matching amplitude G and pulse duration δ, the acquired phase

shift would be:

ϕ2 = −γ(B0 +Gx2)δ (2.3)

Then, at the echo time (TE) the net phase shift would be [1]:

ϕnet = ϕ1 + ϕ2 = −γ(x2 − x1)δ (2.4)

During the diffusion process, since all spins move randomly, there is always a net

phase shift. For an ensemble of spins, the random phase dispersion causes the

measured diffusion signal to be attenuated, which is an essential phenomenon in

diffusion MRI [1, 4].

The signal in diffusion MRI can be expressed, in the most simplistic sense, as

follows:

S(b) = S0e
−bD (2.5)

Here, S0 = S(b = 0) is the non-diffusion weighted signal, D is the ADC with a

unit of mm2/s, and b is the b-value with a unit of s/mm2. The b-value depends

on the pulse duration, diffusion time, and gradient amplitude, which are used to

tune signal attenuation:

b = q2(∆− δ/3) (2.6)

q = γ∆G (2.7)

Here, q is called the wavevector. By adjusting the gradients one can navigate

and encode the q-space, which can be defined as the diffusion space where we can

measure the diffusion signal attenuation. By changing the b-value, the dephasing
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caused by the gradients can be adjusted, which is essential for dMRI of different

body parts such as brain, spine, and prostate [4]. It is possible to represent dMRI

signal with both q and b.

ADC can be estimated from Eqn. 2.5 by acquiring a single diffusion-weighted

and a single non-diffusion weighted (i.e., b0) measurement. Note that Eqn. 2.5

does not consider the orientation dependence of the diffusion process and is only

valid in the case of free (i.e., isotropic) diffusion. Thus, to measure diffusion in

the neurite tissue, where water molecules move inside of naturally bounded fibers,

this signal model is not sufficient.

2.1.2 Diffusion Tensor Imaging

One of the most popular techniques to model diffusion anisotropy is Diffusion Ten-

sor Imaging (DTI), which requires 6 q-space measurements and 1 non-diffusion

weighted measurement. Since the diffusion phenomenon is assumed to be sym-

metric, the diffusion tensor is represented as a positive definite and symmetric

tensor as follows:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.8)

The eigenvectors and eigenvalues of this tensor are used to construct an ellipsoid

as shown in Figure 2.2(a), which represents the anisotropic diffusion. More specif-

ically, the eigenvectors (e1, e2, e3) determine the orientation of the main axes of

the ellipsoid. In addition, the eigenvalues (λ1, λ2, λ3) represent the diffusion dis-

placements along the three orthogonal directions (e1, e2, e3) and also determine

the length of the principle axes of the diffusion ellipsoid. The eigenvector with

the largest eigenvalue corresponds to the primary fiber orientation. Using the

diffusion tensor, the anisotropic diffusion can be expressed as an extension of

Eqn. 2.5 as follows [4]:

S(g, b) = S0e
−bgTDg (2.9)

Here, g = q/|q| is a unit vector that encodes the gradient direction.
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Important metrics can be derived from the diffusion tensor, which are utilized

in the analysis of diffusion and used frequently in clinical applications for the

diagnosis of several neuro-degenerative diseases. One of the most important met-

rics characterizing the diffusion tensor is Fractional Anisotropy (FA), which is a

measure of diffusion anisotropy of the tissue:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

2
√
λ2
1 + λ2

2 + λ3)2
(2.10)

0 ≤ FA ≤ 1 (2.11)

Another important metric, Mean Diffusivity (MD), maps the average diffusion in

the orientation of the three eigenvectors in each voxel:

MD =
λ1 + λ2 + λ3

3
(2.12)

Figure 2.2: (a) DTI can resolve only the primary fiber orientation. The largest eigen-
value determines the primary fiber orientation in a voxel and can be represented by an
ellipsoid with non-uniform primary axes. (b) When crossing fibers problem is observed
with voxels containing complex fiber structures, DTI fails to resolve the true fiber dis-
trubution, with λ1 = λ2. However, HARDI techniques can estimate ODF coefficients,
whose maximas are aligned with the true fiber distribution.
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2.1.3 Crossing Fibers Problem

DTI can only resolve a single fiber orientation, assuming simple unidirectional

fiber structures exist in each voxel. For example, as shown in Figure 2.2(b),

λ1 = λ2 would correspond to an ellipsoid with two axes of equal length, making

it impossible to resolve the true fiber orientation. Often, there exists more than

one fiber bundle organization in each voxel. Especially in brain tissue consisting

of very complex fiber structures, fibers are often crossing, fanning or tangent to

each other [16]. To resolve such complex structures, more advanced diffusion MRI

techniques are required.

2.2 High Angular Resolution Diffusion Imaging

High Angular Resolution Diffusion Imaging (HARDI) further extends DWI by

sampling the q-space as extensively as possible, with many gradient directions

and b-values [2]. The diffusion data is then used to estimate the true diffusion dis-

tribution by reconstructing the Orientation Distribution Function (ODF), which

is the diffusion Probability Density Function (PDF). Here, instead of the MRI

signal, the signal attenuation E(q, t) = S(q, t)/S0 is considered as follows:

E(q, t) =

∫
R3

p(r, t)e−2πiqT rdr = F{p(r, t)} (2.13)

Here, p(r, t) is the diffusion propagator function, which measures the probability

of observing the diffusing particle at location r after a diffusion time t. This

function is modeled as a Gaussian in the case of isotropic diffusion [4]. In this

equation, F(·) denotes the Fourier Transformation (FT) relationship between the

signal attenuation in q-space and the diffusion propagator. Therefore, exploiting

this relationship, the diffusion propagator can be reconstructed by taking the

inverse FT of the signal attenuation with respect to q [4]:

p(r, t) = F−1{E(q, t)} (2.14)

Note that the FT relationship would require sampling of the whole q-space to

reconstruct the true propagator, which is practically impossible. Therefore, in

9



many reconstruction techniques, the ensemble average propagator (EAP) is con-

sidered instead of the true propagator.

ODF can be defined from the EAP, and captures the complete angular content

of the true diffusion propagator: [2]:

Ψ(θ, ϕ) =

∫ ∞

0

p(r, θ, ϕ)r2dr (2.15)

Here, p(r, θ, ϕ) is the diffusion propagator expressed in spherical coordinates,

with θ ∈ [0, π] and ϕ ∈ [0, 2π]. ODF succesfully captures the angular information

of HARDI signal and diffusion propagator. The peaks of the ODF are aligned

with the underlying true fiber distribution, allowing many metrics and advanced

visualization approaches to be implemented [4].

There are two main HARDI strategies. The first one is sampling the q-space

using a Cartesian grid as densely as possible, which is generally associated with

Diffusion Spectrum Imaging (DSI) [17, 4]. DSI requires a large number of samples

(N), typically greater than 200, to be collected for the reconstruction of the

diffusion propagator to be accurate. Another method is to sampling the q-space

on a single spherical surface whose radius is determined by the b-value, which is

called Single-Shell HARDI.

2.2.1 Single-Shell HARDI

Single-Shell HARDI is a convenient diffusion imaging technique that allows us to

exploit the angular information of the diffusion propagator. Compared to DSI,

single-shell HARDI is operational with fewer samples of approximately N=60 [2].

It is possible to increase the accuracy of ODF estimation by increasing the density

of the sampling pattern.
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Figure 2.3: Different sampling approaches for HARDI acquisitions. (a,d) DSI samples
the q-space in a Cartesian grid, typically consisting of more than 200 samples for
extensive coverage. (b,e) Single-shell HARDI samples the q-space on a single spherical
surface whose radius is determined by the b-value. This sampling provides high angular
resolutions, with fewer measurements compared to DSI. HARDI aims to reconstruct an
ODF that captures the angular information of the diffusion signal and its maxima are
aligned with the underlying true fiber distributions. (c,f) Multi-shell HARDI extends
the spherical sampling idea to multiple spherical surfaces with radii determined by b-
values. This sampling allows one to benefit both from the high angular resolution of
the high b-value acquisitions and high SNR of the low b-value acquisitions.

2.2.2 Spherical Harmonic Decomposition

Spherical Harmonics (SH) are complex-valued functions that satisfy the Laplace’s

equation in sphrecial coordinates. Importantly, they can be used as orthonormal

basis functions for complex spherical functions defined on the unit sphere [4].

Here, sampled on a sphere with a fixed radius, single-shell HARDI signal is a

complex spherical function that we can decompose using SH basis functions. The

HARDI signal S is measured in each voxel for each one of the N diffusion-weighted

gradient directions of the gradient table: S = {S(g1) · · ·S(gN)}. Assuming that

the HARDI signal is real and symmetric (since the diffusion is also symmetric),

only SHs of even orders (i.e., antipodally symmetric SHs) are utilised in the
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expansion [2].

In order to perform SH decomposition on the HARDI signal directly, it is

necessary to formulate real and symmetric SH basis functions [2]:

Yj =


√
2Re(Y

|m|
l ), if m ≤ 0

Y m
l , if m = 0

√
2(−1)m+1 Im(Y m

l ), if m > 0.

(2.16)

Here, Y m
l (θ, ϕ) is the SH of the order l and degree m, with m = −l, ..., 0, ..., l and

l = 0, 2, 4, ..., L, a new index j(l,m) = (l2+l+2)/2+m is defined. Accordingly, Yj

forms an orthonormal real and symmetric basis for the HARDI signal attenuation,

which can be directly represented with a weighted superposition of SHs:

S(θi, ϕi) =
R∑

j=1

cjYj(θi, ϕi) (2.17)

Here, S(θi, ϕi) is the HARDI signal in diffusion-weighted gradient direction i, and

cj is the SH coefficient, and Yj is the symmetric and orthonormal SH basis func-

tions of order j. In addition, R is the number of terms in the SH decomposition.

2.2.3 Spherical Deconvolution

The measured MRI signal can be defined as the convolution of the actual image

with the imaging point spread function, i.e., the impulse response function. Sim-

ilarly applied to HARDI, the signal measured on a single-shell in q-space can be

expressed as the spherical convolution of the true fiber distribution of the under-

lying tissue in a voxel and the “impulse response function” corresponding to the

single fiber response.

Assuming that all fiber bundles in the brain share the same diffusion charac-

teristics, together with some additional set of assumptions, the signal attenua-

tion measured from the voxels containing only a single coherent fiber population

oriented in a specific direction would be identical except for their orientations.

Therefore, they can be expressed using a single fiber response function, R(θ) [18].
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Then, by rotating the single fiber response to reflect the desired orientation and

weighting it with the accurate volume fraction for that fiber bundle, the HARDI

signal S(θ, ϕ) can be represented as a weighted superposition of single fiber re-

sponses. This operation corresponds to a convolution of the single fiber response

R(θ) and fiber-ODF (fODF), F (θ, ϕ), as follows:

F (θ, ϕ) =
N∑
i=1

viδ(θi, ϕi) (2.18)

S(θ, ϕ) = F (θ, ϕ)
⊗

R(θ) (2.19)

Here, F (θ, ϕ) incorporates the volume fractions of the fibers in the voxel aligned

along the direction (θ, ϕ). vi is the fiber volume fraction, N is the number of

distinct fibers (i.e., the number of volume fractions within the voxel), and δ(θ, ϕ)

is the dirac delta function along the direction (θ, ϕ). Typically, the voxels with

an FA greater than 0.7 are used to estimate the single fiber response function.

Given the underlying convolution relation in Eqn. 2.19, the fODF can be re-

constructed by a spherical deconvolution (SD) operation. Here, the SH basis

introduced in Section 2.2.2 becomes really useful. Firstly, for the lth order SH

representation, Eqn. 2.19 can be rewritten in matrix form as follows:

sl = Rlfl (2.20)

Here, the vectors sl and fl are the l
th order SH space representation of S(θ, ϕ) and

F (θ, ϕ), respectively. Likewise, the matrix Rl is the l
th order SH representation of

the response function R(θ). Using this matrix relation, fl can be obtained by SD,

which now corresponds to a simple matrix inversion. It is possible to solve this

problem by a linear least squares formulation. However, this problem is ill-posed,

and especially for the higher harmonic orders, the solution is unstable [5].

2.2.4 Constrained Spherical Deconvolution

In order to overcome the limitations of SD and prevent negative fODF estima-

tions, a positivity constraint is introduced to the problem, leading to a robust
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fODF estimation. The approach here is to penalize the negative fODF values

after a preliminary estimation of fODF coeficients are made. Then, the con-

straint is enforced as a Tikhonov regularization and the fODF coefficients can be

estimated by iteratively solving the following equation [5]:

f̂ = argmin
f

1

2
||Cf − s||2 subject to Lf ≥ 0 (2.21)

Here, f is the fODF coefficients to be estimated, s is the measured signal intensity,

C is the spherical convolution kernel, and L is the constraint matrix.

One of the main metrics of this Constrained Spherical Deconvolution (CSD)

is Apparent Fiber Density (AFD), which is useful for investigating both the per-

formance of the reconstruction and the possible pathologies altering the diffusion

characteristics of the tissue. AFD is simply defined as the magnitude of fODF.

Another main metric is number of Fiber Orientations (nuFO), which is computed

as the number of maximas (or peaks) of the fODF. Because each maxima of the

fODF is associated with a potential fiber along the corresponding direction, nuFO

is a measure of the local WM complexity.

2.3 Multi-Shell Diffusion Imaging

Multi-Shell HARDI extends the idea of single-shell HARDI by sampling the q-

space on more than one spherical surface, each with a fixed radius determined

by the b-value, as densely as possible. This sampling strategy increases angu-

lar resolution without losing from the Signal-to-Noise Ratio (SNR). High b-value

(e.g., b ≥2000 s/mm2) acquisitions provide high angular resolution at reduced

SNR, whereas low b-value (e.g., b ≤700 s/mm2) acquisitions have high SNR with

reduced angular resolution. Using a multi-shell sampling strategy increases the

ODF estimation accuracy. There exists many methods that utilize multi-shell

HARDI signal to reconstruct the underlying fiber distribution, either by estimat-

ing the ODF coefficients or the orientation dispersion based on both model-free

and model-dependent techniques.
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2.3.1 Multi-Shell Multi-Tissue Constrained Spherical De-

convolution

Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD) is a

model-free technique that further extends the CSD implementation, incorporating

the diffusion characteristics of different tissue types and multi-shell q-space data.

In the case of the brain, there exist three main tissue types: white matter (WM),

grey matter (GM), and cerebrospinal fluid (CSF). The previous implementations

of CSD would produce noisy and unstable single fiber response estimations for

GM and CSF due to their distinct diffusion characteristics. To overcome this

problem, the CSD problem introduced in Eqn. 2.21 can be extended to include

n tissue types within a voxel and diffusion data acquired on m shells as follows

[19]:
f̂1
...

f̂n

 = arg min
f1
...

fn



1

2

∥∥∥∥∥∥∥∥

C1,1 · · · C1,n

...
. . .

...

Cm,1 · · · Cm,n



f1
...

fn

−


s1
...

sm


∥∥∥∥∥∥∥∥
2

2

subject to


L1 0 0

0
... 0

0 0 Ln



f1
...

fn

 ≥ 0 (2.22)

Here f̂j is the vector of estimated fODF coefficients for the jth tissue, si is the vec-

tor of HARDI signals measured on the ith shell, Ci,j is the spherical convolution

kernel matrix for the jth tissue on the ith shell, and finally Lj is the constraint ma-

trix for the jth tissue. Here, WM ODF is assumed to be anisotropic. In contrast,

CSF and GM ODFs are assumed to be isotropic, which can be represented with

an SH basis of order zero [19]. This technique not only increases the accuracy of

ODF estimation of WM fibers, but also allows one to estimate ODFs of GM and

CSF volume fractions.
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2.3.2 Neurite Orientation Dispersion Density Imaging

Different than CSD techniques, Neurite Orientation Dispersion Density Imaging

(NODDI) is a multi-shell HARDI technique that introduces a three compartment

tissue model consisting of intra-neurite, extra-neurite, and CSF volume fractions.

Here, the orientation-dispersed cylinder model is used to estimate the neurite

density and the orientation dispersion in each volume fraction [20]. The tissue

model is defined considering distinct diffusion profiles (i.e., restricted, hindered,

and isotropic) as follow:

A = (1− νiso)(νicAic + (1− νic)Aec) + νisoAiso (2.23)

In this equation, Aic, Aec, and Aiso are the normalized HARDI signals measured

in intra-neurite, extra-neurite, and isotropic/CSF compartments, respectively.

In addition, νic and νiso are the intra-neurite and isotropic volume fractions,

respectively. More specifically, the intra-neurite and extra-neurite signals can be

expressed as:

Aic =

∫
f(n)e−bd||(q·n)2dn (2.24)

logAec = −bqT

(∫
f(n)D(n)dn

)
q (2.25)

In these equations, D(n) is the cylindrically symmetric tensor with n correspond-

ing to its principal direction of diffusion. In addition, d|| and d⊥ are the intrinsic

diffusivities parallel and perpendicular to the direction n, respectively, and are

related by d⊥ = d||(1− νic). Finally, f(n) is the ODF, modeled as a Watson dis-

tribution instead of the SH representations introduced in the previous sections.

Here, the main goal is to estimate the orientation dispersion (OD) rather than

the ODF [20]. Finally, the CSF signal is modeled as isotropic diffusion with a

Gaussian distribution.

Orientation Dispersion Index (ODI), which is the primary metric of NODDI,

is defined as [20]:

ODI =
2

π
arctan

(
1

κ

)
(2.26)

Here, κ is the concentration parameter of the Watson distribution in the axon-

stick model used in NODDI. It measures the orientation dispersion around the
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mean orientation of the Watson distribution. Another important metric of

NODDI is Neurite Density Index (NDI), which can be mapped with the esti-

mated intra-neurite volume fraction, νic.

NODDI fits the model to the HARDI signal through the Gauss-Newton opti-

mization, which determines the Maximum-Likelihood Estimation (MLE) of the

parameters. The main aim is to estimate κ, which quantifies the orientation dis-

persion, as accurately as possible. The model depends on a set of fixed a-priori

parameters [20]. NODDI requires a multi-shell HARDI acquisition of at least two

shells.

2.4 Multi-Shell Diffusion MRI Metrics

Multi-shell dMRI techniques allow microstructure of the neurite tissue to be re-

solved with high resolution and high SNR at the same time, which is valuable to

map the neurite density, diffusion anisotropy, fiber orientations, and fiber disper-

sion. These properties are clinically valuable and they are used in the diagnosis

of many degenerative diseases. Thus, multi-shell dMRI metrics, derived from the

estimated coefficients and visualized as metric maps, can be considered as the

most important outputs of the techniques described in the previous sections.

The metrics introduced in the earlier sections can be regrouped as anisotropy

indices and fiber density indices. In this thesis, 6 different diffusion metrics are

investigated: FA and MD for DTI, AFD and nuFO for MSMT-CSD, and ODI

and NDI for NODDI.

As introduced in Section 2.1.2, FA is a measure of diffusion anisotropy and

MD is the overall average diffusivity. Although these metrics contains a lot of

information about the WM integrity and tissue characteristics, HARDI metrics

provide more specific and sensitive analysis. For instance, NDI and ODI are

measures for density and orientation dispersion of the fibers. These NODDI

metrics resolve two main components of FA, allowing more in depth analysis of
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anisotropy observed through fiber bundles [20]. Similarly, AFD highlights the

fiber density per unit volume and is a more biologically specific and accurate

metric, especially in voxels containing crossing fibers. AFD is proportional to

the intra-neurite volume fraction and can be computed for each fiber bundle

separately [19]. In addition, nuFO is the number of fODF maxima in a voxel,

and is used as a metric to measure the local WM complexity. Similar to the

NODDI metrics, these MSMT-CSD metrics also provide an in depth analysis of

the tissue, allowing one to investigate the components contributing to diffusion

characteristics separately.

The most valuable aspect of these dMRI metrics is their suitability for being

used as biomarkers for neurodegenerative diseases. For the diagnosis of temporal

lobe epilepsy AFD changes becomes a diagnostic tool [8], while the low intensity

patches in NDI maps are used to ease diagnosis of focal cortical dysplasia [21].

NODDI metrics ODI and NDI can be further used to detect glioma [22], and a

decrease in NDI was observed in the WM tissue of tuberculosis sclerosis patients

[23]. Increased MD and decreased FA were reported for Alzherimer’s Disease

patients in several studies [24, 25].

Although multi-shell dMRI metrics are valuable in the diagnosis of neurodegen-

erative diseases and provide information at an increased resolution compared to

DTI metrics (especially in the voxels with multiple fiber orientations and complex

fiber structures), they come with a major disadvantage of prolonged acquisition

times. Both NODDI and MSMT-CSD methods require multi-shell HARDI data

to be collected, whose protocols have an acquisition time of approximately 30

minutes. These long acquisition times are especially problematic for the patients

with neurological diseases such as epilepsy, Multiple Sclerosis (MS), Alzheimer’s

Disease, etc. Therefore, shortening the acquisition time of multi-shell dMRI ac-

quisitions becomes vital and is an active area of research [10, 11].
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Chapter 3

Methods

This chapter is based in parts on the following publications:

• Aygun E, Saritas EU. Performance Analysis of Undersampling Strategies for

Multi-Shell Diffusion MRI. In the Proceedings of the 30th Annual Meeting

of ISMRM, London, United Kingdom, 2022.

• Aygun E, Saritas EU. Comparison of Diffusion Metrics under Different Un-

dersampling Strategies for Multi-Shell Diffusion MRI. 2021 Medical Tech-

nologies Congress (TIPTEKNO), 2021, pp. 1-4, DOI: 10.1109/TIPTE-

KNO53239.2021.9632947.

3.1 Dataset

The undersampling strategies for multi-shell dMRI were evaluated using the Hu-

man Connectome Project (HCP) 1200 Subjects Data release [26]. For this eval-

uation, 20 healthy subjects were chosen randomly. HCP multi-shell dMRI data

was acquired with a multi-band multi-shell diffusion protocol on a 3 T Siemens

scanner, using a spin-echo echo planar imaging (EPI) sequence. The diffusion

gradient table consists of 6 non-diffusion weighted volumes (i.e, b=0 s/mm2) and
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3-shells of b=1000, b=2000, and b=3000 s/mm2 with 30, 29, and 30 gradients

directions, respectively. The resulting multi-shell q-space sampling scheme has

89 b-vectors, which are displayed in Figure 3.1(a). Other imaging parameters

were: FOV = 210×180 mm, 1.25 mm isotropic resolution, TR/TE= 5520/89.5

ms. The total acquisition time was approximately 20 minutes.

Diffusion MRI images suffer from the magnetic susceptibility induced artifacts

that highly affect both visual and quantitative quality of the diffusion metrics.

To overcome this problem, the HCP dataset contains 2 volumes acquired with the

same diffusion gradient table and imaging parameters, albeit with reversed PE

directions of Right-to-Left (RL) and Left-to-Right (LR). Susceptibility induced

distortions occur along the PE direction of the EPI images. Therefore, the re-

versed PE acquisitions experience distortions in opposite directions, which can

be observed in the example images shown in Figure 3.3(a-b). These acquisitions

can then be utilized to estimate the susceptibility induced off-resonance field map

and correct the susceptibility induced artifacts using FSL TOPUP [27], [28].

3.2 Undersampling Strategies

To investigate the effects of decreasing the total acquisition time of HARDI pro-

tocols on the multi-shell diffusion MRI metrics, we designed different q-space

undersampling strategies for acceleration rates of R=2 and R=3. The strategies

incorporate the effects of choosing different number of gradient directions per

shell, different number of shells, and different susceptibility artifact correction

techniques. To this end, by undersampling the original q-space data, 10 different

undersampling strategies were designed and applied for both R=2 and R=3, cre-

ating a unique gradient table for each case. Independent from the acceleration

rate and the strategy, q-space was undersampled based on electrostatic repulsion

algorithm [29]. For this purpose, Camino subsetpoints tool was utilized to under-

sample the q-space points on each shell separately, using the Electrostatic Energy

Minimization (EEM) technique [30].
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The strategies for R=2 decreased the total acquisition time to approximately

10 minutes. The 10 gradient schemes applied for this case, together with the

reference fully-sampled HCP diffusion gradient table properties, can be seen in

Figure 3.1. Here, the first 9 strategies depend on undersampling the q-space

points, i.e., decreasing the total number of b-vectors to 45. The last strategy

reduces the acquisition time by acquiring reversed PE images for a single b0

volume only. Overall, these strategies can be grouped under 3 different categories:

• 3-shell Strategies: All 3-shell gradient schemes contained 45 b-vectors

distributed over 3 shells with b=1000, 2000, and 3000 s/mm2 at different

rates. Six different strategies were considered. In the first strategy titled

“3-13-29”, the b-vectors were distributed in proportion with the surface

area of each shell, so that the b-vector density was approximately the same

on all shells. For the strategies titled “5-15-25” and “10-15-20”, the density

of the b-vectors was increased gradually for the lower shells. Each shell was

undersampled so that the difference between the number of b-vectors of

consecutive shells was 10 and 5 for “5-15-25” and “10-15-20”, respectively.

The strategies titled “5-20-20” and “10-10-25” were modified versions of the

previous two strategies, such that they have the same number of b-vectors

on either the last two or the first two shells. A scheme with 15 b-vectors in

each shell, labeled as ”15-15-15”, was also included to compare the effect of

uniform vs. non-uniform b-vector distributions.

• 2-shell Strategies: All 2-shell schemes contained 45 b-vectors distributed

over b=1000 and 2000 s/mm2 shells. Here, the first two shells were chosen

to maintain high SNR in the measurements. Three different schemes were

considered. The gradient scheme titled “22-23” distributed the b-vectors

as close to uniformly as possible, while “16-29” and “30-15” fully preserved

the second and first shell while undersampling the first and second shell,

respectively.

• Single b0 TOPUP: All of the aforementioned strategies focus on under-

sampling the b-vectors directly, and apply the same susceptibility correc-

tion technique based on reversed PE images (see Section 3.3 for details).
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However, the process of acquiring images in reversed PE directions doubles

the total acquisition time of the HARDI protocols. Eliminating all volumes

acquired in the reversed PE direction would effectively accelerate the multi-

shell HARDI protocol. Here, instead of acquiring reversed PE directions

for every b-vector, the reversed PE directions are acquired for a single b0

volume only, whereas the diffusion-weighted volumes are acquired fully but

with a single PE direction. This scheme effectively applies an accelera-

tion of R=2, while preserving the original diffusion gradient table with 89

b-vectors. In this case, the distortion correction needs to be applied differ-

ently, using Jacobian modulation technique of TOPUP (see Section 3.3 for

details). Since HCP dataset contains 6 b0 volumes acquired in reversed PE

directions, we separated one of the b0 volumes from the LR acquisition to

be used as the only opposing PE b0 volume.

Similar to the R=2 case, we also created diffusion gradient tables for an accel-

eration rate of R=3 to apply similar undersampling strategies, which are shown

in Figure 3.2. Again, these strategies can be grouped under 3 different categories:

• 3-shell Strategies: There are 6 undersampling strategies under this group,

which are adapted from the 3-shell strategies presented for the R=2 case.

These strategies reduce the total acqusition time to one-third by under-

sampling the q-space data with EEM technique, and contain 30 b-vectors

distributed over 3 diffusion shells. The first strategy titled “2-9-19” under-

samples b-vectors in proportion to the surface areas of the shells. “5-10-15”

and “7-10-13” strategies gradually increase the b-vector density over the

lower shells, and have a difference in b-vectors of 5 and 3 between two con-

secutive shells, respectively. The strategies titled “5-12-13” and “7-7-16”

are modified versions of the previous two strategies, such that they sample

either the last two or the first two shells uniformly (or approximately uni-

formly). Finally, the strategy labeled as “10-10-10” uniformly samples all

3 shells.

• 2-shell Strategies: These strategies contain 30 b-vectors distributed over
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the first 2-shells, b=1000 and 2000 s/mm2. The strategy labeled as “15-

15” uniformly distributes the b-vectors. The strategies titled “10-20” and

“20-10” perform non-uniform undersampling and distribute the b-vectors

in proportion and in inverse proportion to the b-values of the two shells.

• Single b0 TOPUP: The main idea in this strategy is to not undersample

the b-vectors, but to eliminate the reversed PE acquisitions for diffusion-

weighted volumes. To adapt this idea to the R=3 case, the total number of

b-vectors should be 60, i.e., twice the number of b-vectors when compared

to 3-shell and 2-shell schemes. Here, we preserved the first two shells to

maintain high SNR, and removed the b=3000 s/mm2 shell entirely. Then,

a single reversed PE b0 volume is acquired, and the distortion correction

is applied using Jacobian modulation. This scheme effectively reduces the

total acqusision time to one-third.

Two-shell and 3-shell undersampling strategies fully preserved the original 6 b0

volumes presented in the reference, fully sampled HCP data. “Single b0 TOPUP”

strategy preserved the 6 b0 volumes for one of the PE directions, and acquired a

single b0 volume from the opposing PE direction.

3.3 Data Preprocessing

As the first preprocessing step, the susceptibility artifacts in the images were

corrected using FSL TOPUP [27], [28]. An example case is shown in Figure 3.3.

First, the reversed PE b0 images as shown in Figure 3.3(a,e) were separated

from the diffusion-weighted volumes. Then, TOPUP was used to generate off-

resonance field map using the b0 volumes acquired in RL (blip-up) and LR (blip-

down) PE directions. The pair of diffusion volumes were corrected using the

Least-Squares-Restoration (LSR) method of TOPUP using the estimated field

coefficients (see Figure 3.3(b-c)), and the output was used in the analysis. This

approach was the default distortion correction technique used in this thesis for 3-

shell and 2-shell undersampling strategies. For the “Single b0 TOPUP” scheme,
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on the other hand, Jacobian modulation method of TOPUP was applied to resam-

ple the distorted RL (blip-up) image to the undistorted space (see Figure 3.3(f-g)).

Here, only a single pair of b0 volumes were acquired in reversed PE directions to

estimate the off-resonance field map. Then, the distortions in the RL (blip-up)

volume were corrected using Jacobian modulation.

As shown in Figure 3.4(a-b), to increase the accuracy of the quantitative qual-

ity assessments for DTI, NODDI, and MSMT-CSD metrics, the background noise

and non-brain voxels were removed with a binary mask generated with FSL BET

tool, using the distortion-corrected image [31]. To improve the MSMT-CSD and

DTI analyses, Marchenko-Pastur principal component analysis was applied to the

undersampled multi-shell dMRI data for denoising [32] using the DiPY toolbox

[33]. CSF is typically not the tissue of interest in dMRI studies [34]. Therefore,

as shown in Figure 3.4(c-d), CSF regions were suppressed to assess the effects of

undersampling on WM and GM regions. For this purpose, tissue segmentation

masks for WM, GM, and CSF volume fractions were generated with FSL FAST

and used to conduct quantitative analysis on WM and GM regions only [35].

3.4 Quality Assessment of Multi-Shell Diffusion

Metrics

The performance of the proposed undersampling strategies were compared for

several multi-shell dMRI methods. DTI, MSMT-CSD, and NODDI were used

to extract diffusion orientation information and estimate ODF coefficients for

each undersampled gradient scheme, which were then utilized in diffusion metric

calculations. Both qualitative and quantitative analyses were performed on the

metric maps and ODF coefficients (for DTI and MSMT-CSD). DTI and MSMT-

CSD analyses were completed using the DiPY toolbox, where AFD and nuFO

maps were retrieved from MSMT-CSD ODF coeffients and FA and MD were

computed from the diffusion tensor [33]. For MSMT-CSD, a SH basis of order 8

was utilized. The single fiber response estimation was performed for three tissue
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compartments, using voxels with FA > 0.7 for WM and FA> 0.3 for GM regions.

ODF of MSMT-CSD was estimated with a relative peak threshold chosen as the

half of the maximum peak amplitude in a voxel and the number of maximum

peaks were set to 5. Both DTI and MSMT-CSD ODFs were computed on a

sphere with 724 fixed directions, independent of the undersampling technique.

ODI and NDI were obtained for NODDI analysis, computed using the AMICO

toolbox [36] with the parameters as given in [20].

For each undersampling strategy and for every metric, a map was generated

for visual inspection. As shown in Figure 3.4, the background voxels, non-brain

voxels, and CSF regions were masked out. Then, Structural Smilarity Index

Measure (SSIM) [37] and Peak Signal-to-Noise Ratio (PSNR) were computed for

quantitative quality assessments. PSNR can be expressed as follows:

PSNR = 10 log10

(
max(Iund)

2

MSE(Iund, Iref )

)
(3.1)

MSE(Iund, Iref ) =
1

NM

∑
N,M

(Iref (n,m)− Iund(n,m))2 (3.2)

Here, Iund and Iref are undersampled and reference maps of sizes N×M, respec-

tively.

Additionally, to further assess the performance of the undersampling strate-

gies for MSMT-CSD and DTI, the ODFs estimated for undersampled and fully

sampled cases were compared using the Jensen Shannon Distance (JSD). JSD

is a metric that measures the similarity between two PDFs defined on the same

space and can be expressed as follows [38]:

JSD(P |Q) =

√
H(

(P +Q)

2
)− H(P ) +H(Q)

2
(3.3)

H(X) = −
∑
x∈X

P (x) log2(P (x)) (3.4)

Here, P and Q represent the ODFs reconstructed for reference and undersampled

cases, respectively. Note that the ODF coefficients estimated given a fixed set of

directions on a sphere represent the diffusion PDF. In this thesis, independent

of the undersampling approach, the ODF coefficients were estimated on a sphere
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with 724 fixed directions. For each direction on the sphere, the corresponding

ODF coefficient quantifies the probability of a fiber existing along that direction.
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(a) Reference Fully Sampled Scheme and Undersampled Gradient Schemes for R=2

(b) Gradient Table Parameters for R=2

Figure 3.1: (a) The undersampled gradient schemes in q-space for the acceleration
rate of R=2. The reference fully sampled scheme has 89 diffusion-weighted and 6 b0
acquisitions. The first nine undersampling strategies are obtained by applying EEM
algorithm to the gradient points of each diffusion shell separately to decrease the number
of b-vectors to 45. The last undersampling strategy labeled “Single b0 TOPUP” uses
identical b-vectors as the reference. (b) The diffusion parameters and distribution of b-
vectors on each shell. For the first nine undersampling strategies, 45 gradient points are
either distributed on 3 or 2 shells. The last gradient scheme preserves all 89 b-vectors,
but the reversed PE directions are acquired for a single b0 volume only.
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(a) Reference Fully Sampled Scheme and Undersampled Gradient Schemes for R=3

(b) Gradient Table Parameters for R=3

Figure 3.2: (a) The undersampled gradient schemes in q-space or the acceleration
rate of R=3. The reference fully sampled scheme has 89 diffusion-weighted and 6 b0
acquisitions. The 3-shell and 2-shell strategies are obtained by direct undersampling
of q-space data using EEM technique applied to each diffusion shell separately. The
scheme labeled “Single b0 TOPUP” is obtained by applying discarding the 3rd shell
entirely and acquiring reversed PE directions for a single b0 volume only. All these
techniques approximately decrease the total acquisition time to its one-third. (b) The
parameters for each gradient table is presented together with the number of shells
and the specific b-vector distributions for each strategy. Each column corresponds
to the undersampling technique applied for the R=2 case, but altered to achieve an
acceleration rate of R=3.
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Figure 3.3: Susceptibility induced artifact correction process. (a,e) For each q-space
point, the dataset contained two volumes acquired in reversed PE directions (RL and
LR). (b-c) The artifacts are corrected using the Least-Squares Restoration (LSR) tech-
nique, where the off-resonance field map is estimated from all pairs of b0 volumes with
reversed PE directions. (f-g) It is also possible to perform this correction using the
Jacobian modulation technique, where the off-resonance field map is estimated using
a single b0 volume acquired in reversed PE direction. The diffusion-weighted volumes
are acquired with a single PE direction (i.e., RL only). (d) The difference of estimated
field maps obtained from all b0 volumes and a single b0 volume shows large deviations
on the periphery of the brain. (h) The difference between the images corrected with the
LSR and Jacobian modulation shows deviations between the two techniques especially
in regions where their estimated field maps differ. In general, the Jacobian modulation
correction produces images with reduced quality compared to the LSR correction.
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Figure 3.4: (a) After the distortion correction, a binary brain mask is produced with
FSL BET tool, (b) which is then used to suppress non-brain voxels and background
noise to increase the accuracy of the quantitative quality assessments. (c) A CSF
segmentation mask is generated with FSL FAST, (d) which is used for suppressing the
CSF regions to increase the accuracy of quantitative quality assessments for WM and
GM tissues. Here, the masking process is demonstrated on an MD map.
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Chapter 4

Results

4.1 Visual Comparisons

The metric maps together with the absolute error images corresponding to the

axial middle slice for one of the subjects at the acceleration rate of R=2 are

shown in Figs. 4.1, 4.2, and 4.3 for DTI, MSMT-CSD, and NODDI metrics,

respectively. For R=3, the results for DTI, MSMT-CSD, and NODDI metrics for

the same subject are shown in Figs. 4.4, 4.5, and 4.6, respectively. One can see

that for both R=2 and R=3, a different undersampling strategy is preferred by

each metric. For instance, based on the error images for R=2, the error increases

for 2-shell strategies for nuFO and AFD, especially in CSF regions, while the

errors in WM and GM regions are minimized with the strategy titled “10-15-20”.

For MD, the error in CSF regions is minimum for the “3-13-29” strategy, while the

error increases similarly for the 2-shell strategies. For R=3, a similar behaviour

is still observable. For ODI and NDI, the error is minimized for the“Single b0

TOPUP” strategy, whereas for MD the strategy producing the least error is the

“2-9-19” strategy.

Overall, the metrics computed from the undersampled data preserve the struc-

tural tissue properties. In each metric map, WM, GM, and CSF regions can be
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clearly delineated. The error images show that, especially for DTI and NODDI

metrics, the error accumulates in CSF regions, while a homogeneous error distri-

bution is observed in WM and GM regions. These observations indicate that the

metric maps can still be used as biomarkers, since diffusion anisotropy and WM

complexity can be visually resolved at a sufficient level using the undersampled

data.

Comparing the performances of the undersampling strategies for R=2 versus

R=3, one can see that the 3-shell strategies perform favorably at R=2, whereas

2-shell strategies are preferable at R=3. Note that 45 and 30 b-vectors were

distributed over 3-shells or 2-shells for R=2 and R=3, respectively. At R=3,

the number of b-vectors is not large enough to sample the highest order shell

extensively enough while preserving the multi-shell sampling pattern. Hence,

these results suggest that as the number of b-vectors decreases, having high SNR

measurements becomes more important than having increased angular resolution.

Additionally, for all equivalent undersampling strategy pairs at R=2 and R=3,

the strategies proposed for R=2 always outperform the strategies for R=3. This

observation supports the expectation that a denser coverage of the q-space im-

proves the quality of the metric maps.

4.2 Quantitative Comparisons

4.2.1 SSIM and PSNR Results

SSIM and PSNR were calculated for each metric map after suppressing the CSF

regions. The median and interquartile-range (IQR) values for SSIM and PSNR

computed across 20 subjects for R=2 are reported in Fig. 4.7 and Fig. 4.8, re-

spectively. Likewise, SSIM and PSNR results for R=3 are reported in Fig. 4.10

and Fig. 4.11, respectively. Here, the best performing strategy for each metric is

marked with green bold font, the second best strategy is marked in green regular

font, the worst performing strategy is marked in red bold font, and the second
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worst strategy is marked in red regular font. These results support the qualita-

tive observation that for both R=2 and R=3, a different undersampling strategy

is preferred by each metric. As expected, the SSIM and PSNR values obtained

for R=2 are always higher than those for R=3, as the q-space coverage directly

affects the accuracy of the estimated metrics.

For the acceleration rate of R=2, 3-shell strategies perform generally better

than the competing strategies. Although 3-shell strategies are preferable on aver-

age, for FA, ODI, and nuFO, some of the 2-shell strategies still produce promis-

ing results, especially the ones labeled as “16-29” and “30-15”. The “Single b0

TOPUP” strategy produces mediocre or even poor results compared to other

strategies for the majority of the metrics, despite preserving the original q-space

data with 89 b-vectors. The overall best performing strategy is the one titled “10-

15-20”, which has the highest (or the second highest) PSNR and SSIM values for

the majority of the diffusion metrics.

For R=3, the trends observed at R=2 are reversed, such that the 2-shell strate-

gies outperform the 3-shell strategies. The non-uniform 2-shell strategy titled “10-

20” is the overall best performing strategy. Here, 30 b-vectors were distributed

over 3- or 2-shells. Interestingly, the counterparts of the 3-shell strategies with

poor performances for the R=2 case still perform poorly at R=3, producing the

worst results overall. For example, for nuFO at R=2, “5-15-25” is the worst

performing strategy with 0.823 SSIM and 19.43 dB PSNR. Its R=3 counterpart

“5-10-15” again has the worst performance for nuFO, with further decreased

SSIM and PSNR values of 0.750 and 17.61 dB, respectively. Similarly, the worst

performance for ODI at R=2 is obtained under “3-13-29” with 23.89 db PSNR

and 0.914 SSIM. Its R=3 counterpart “2-9-19” produces further decreased per-

formance with an SSIM of 0.848 and PSNR of 21.21 dB. Note that for R=3,

the counterpart of the best performing R=2 strategy titled “10-15-20” is the “7-

10-13” strategy, which has a mediocre performance. This strategy has reduced

SSIM and PSNR compared to its R=2 counterpart, and shows mediocre SSIM

and PSNR values compared to the other R=3 strategies. Finally, the “Single b0

TOPUP” strategy produces decent performing results for several metrics such as

nuFO and ODI, but produces the worst performing results for FA with increased
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IQR values relative to other strategies.

4.2.2 JSD Results

JSD was computed for ODFs associated with DTI and MSMT-CSD analyses.

Note that JSD was not computed for NODDI, as this technique is not based on

orientation distribution but rather focuses on orientation dispersion by assuming

a Watson distribution based axon-stick model. In NODDI analysis, ODI is the

measure of the orientation dispersion, κ. Hence, evaluating the accuracy of the

ODI metric suffices in the case of NODDI.

JSD measures the similarity between the reference ODF coefficients and those

estimated from the undersampled data. To compute ODF for each, a sphere with

724 directions was utilized. JSD results for R=2 and R=3 are given in Figs. 4.9

and 4.12, respectively. A small JSD indicates a higher similarity between the

compared ODFs, and therefore corresponds to a higher fidelity ODF estimation

in the case of undersampling.

At R=2, the best performance in terms of DTI ODF retrieval, which is the

ellipsoid constructed with the eigenvectors of the diffusion tensor, is the strat-

egy labeled “3-13-29”. This strategy provides the best performance for FA, and

the worst performance for MD in terms of SSIM with the worst performance

visually. It could be said that since the accuracy of ODF highly depends on

diffusion anisotropy retrieval accuracy, there could be an agreement between the

performances seen for FA and DTI ODF. For MSMT-CSD, the minimum JSD

is obtained for the strategy titled “30-15”, which is in accordance with the fact

that the same strategy had the best performance for nuFO in terms of SSIM and

PSNR. The second best performing strategy is “10-15-20”, which is in accordance

with the high performance of this strategy evaluated visually and quantitatively.

The accuracy of AFD and nuFO metrics directly depend on the accuracy of ODF

estimation. Since AFD is the magnitude of ODF peaks and nuFO is the number

of ODF peaks, an error in the ODF estimation directly affects the accuracy of the

metric maps. Therefore, for these metrics, JSD, PSNR, and SSIM results favor
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similar strategies.

For ODF obtained with DTI analysis at R=3, the best performing strategy

becomes the non-uniform 3-shell strategy titled “2-9-19”, while the worst perform-

ing strategy is “20-10”. The PSNR and SSIM metrics, together with the visual

results suggested that the best strategy for MD is the same strategy “2-9-19”,

while for FA, which resolves the diffusion anisotropy in DTI, the best strategy

was the ones titled “15-15” and “10-20”, both consisting of 2 shells. Although for

FA and MD the best performing strategy varies, the JSD results suggests that for

ODF, the 3-shell “2-9-19” strategy better resolves the overall shape of the DTI

ellipsoid when compared to the competing strategies. These results may suggest

that although 2-shells strategies provide a good performance for measuring the

average diffusivity in the tissue, they resolve a more sensitive diffusion orientation

and fiber geometry than the fully sampled 3-shell case for the DTI analysis.

For ODF obtained with MSMT-CSD analysis at R=3, the best performance

in terms of ODF retrieval with minimum JSD is achieved for the strategy titled

“10-20”. This result is consistent with the performances of metric maps in terms

of visual inspection, as well as PSNR and SSIM results. The worst performing

strategy is “5-10-15”, which is also in accordance with the results obtained from

the visual error maps, PSNR, and SSIM.

Overall, the JSD results for DTI analysis demonstrate poor performance when

compared to the JSD results for MSMT-CSD analysis, as indicated with larger

JSD values at both R=2 and R=3. These results suggest that MSMT-CSD,

with its ability to resolve complex fibre structures and retrieve multiple fibre

orientations, is more robust against undersampling. However, the DTI metrics

FA and MD are more robust against undersampling, producing the highest PSNR

and SSIM values at both R=2 and R=3.

Comparing the JSD results for R=2 and R=3, it is clear that the JSD values

are always smaller at R=2 than at R=3. This results indicates that, as expected,

the ODFs estimated estimated at R=2 better capture the underlying fibre distri-

butions. Among all schemes at R=2, the strategy titled “10-15-20” is the overall
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best performing strategy in terms of visual and quantitative analysis of metric

maps and ODF accuracy. At R=3, the favorable choice is the “10-20” strategy,

which provides a further accelerated multi-shell HARDI acquisition with slightly

reduced but still acceptable performance. Importantly, both quantitative and vi-

sual analyses suggest that each metric prefers a different strategy, which further

changes depending on the acceleration rate. Therefore, the best approach is to

design the gradient tables based on the clinical study, the targeted neurodegen-

erative disease, and the targeted dMRI metric.

Figure 4.1: MD and FA maps from DTI analysis using the undersampled multi-shell
HARDI data for one of the subjects at R=2. The absolute error images show the
errors with respect to the reference metric maps with the original 89 diffusion-weighted
gradient directions.
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Figure 4.2: nuFO and AFD maps obtained from MSMT-CSD analysis using the un-
dersampled multi-shell HARDI data at R=2 for one of the subjects. Each metric map
is shown with the corresponding absolute error image computed with respect to the
reference metric maps with the original 89 diffusion-weighted gradient directions.

Figure 4.3: ODI and NDI maps constructed with NODDI analysis using the under-
sampled multi-shell HARDI data at R=2, shown for one of the subjects. The absolute
error image for each metric was computed with respect to the reference metric maps
obtained with the original 89 diffusion-weighted gradient direction.
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Figure 4.4: MD and FA maps, obtained through DTI analysis of the undersampled
multi-shell HARDI data for R=3. The metric maps and error images are shown for one
of the subjects. The absolute error images compares the performances of undersampling
strategies with respect to the reference, fully sampled case.

Figure 4.5: nuFO and AFD maps from MSMT-CSD analysis using the undersampled
multi-shell HARDI data for the case of R=3. Each metric map for the specific under-
sampling strategy is presented with the corresponding absolute error images, computed
with respect to the reference fully sampled case.
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Figure 4.6: ODI and NODDI maps computed with NODDI analysis using the un-
dersampled multi-shell HARDI data for R=3. The first and third row corresponds to
the metric maps of a subject chosen from the dataset, and the second and forth rows
correspond to the absolute error images computed with respect to the reference metric
maps, obtained from the fully sampled case.

Figure 4.7: SSIM results of the undersampling strategies computed for R=2. SSIM of
the undersampling strategies were computed for each subject, after CSF regions were
supressed with a binary mask. For each metric, the median (interquartile range) for
SSIM across 20 subjects is presented. The best performing strategy is presented in
green bold font, the second best is presented in green regular font, the worst strategy
is presented in red bold font, and the second worst strategy is presented in red regular
font. Overall, the strategy titled “10-15-20” shows a favorable performance.
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Figure 4.8: PSNR results of the undersampling strategies computed for R=2. For each
metric, the median (interquartile range) across 20 subjects is presented. PSNR was
computed after the CSF regions were masked out with a binary tissue mask. The best
performing strategies are presented with green bold font, while the worst performing
strategies were presented in red bold font. Overall, the non-uniform 3-shell strategy
titled “10-15-20” outperforms the other proposed strategies.

Figure 4.9: JSD results for ODFs of MSMT-CSD and DTI analyses computed for R=2.
For each case, the median (interquartile range) of JSD across 20 subjects is presented for
ODFs computed using a sphere with 724 independent directions for all undersampling
strategies. Smaller JSD indicates higher similarity to the reference ODF from the fully
sampled case. The smallest JSD indicating the highest similarity is obtained for the
2-shell strategy titled “30-15” for MSMT-CSD, whereas the 3-shell strategy titled “10-
15-20” has the second highest similarity. For DTI, the best ODF retrieval is achieved
with the non-uniform 3-shell strategy titled “3-13-29”.

Figure 4.10: SSIM results of the undersampling strategies computed for R=3. The
median (interquartile range) across 20 subjects is presented. Overall, the best perform-
ing strategy is the one titled “10-20”, which is a non-uniform 2-shell undersampling
strategy consisting of 30 non-diffusion weighted gradient directions.
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Figure 4.11: PSNR results of the undersampling strategies computed for R=3. The
median (interquatile range) across 20 subjects is presented. Overall, the best per-
forming strategy is the one titled “10-20”, which consists of 30 non-diffusion weighted
gradient directions non-uniformly distributed over 2 shells.

Figure 4.12: JSD results for ODFs of MSMT-CSD and DTI analyses computed for
R=3. The median (interquartile range) of JSD across 20 subjects is presented. The
best performing strategy in terms of ODF retrieval for MSMT-CSD with the minimum
JSD is the one titled “10-20”, which is a non-uniform 2-shell strategy. For DTI, the
best ODF retrieval is achieved with the non-uniform 3-shell strategy titled “2-9-19”,
and the uniform 3-shell strategy titled “10-10-10” is a close second.
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Chapter 5

Discussion and Conclusion

In this thesis, several undersampling strategies were proposed and assessed to

speed up multi-shell dMRI protocols by acceleration rates of R=22 and R=3.

At R=2, the total acquisition time was reduced to 10 minutes, and at R=3, it

was reduced to approximately 7 minutes. Two different approaches were utilized

to decrease the total acquisition time: (1) The q-space data was directly under-

sampled with the EEM technique applied to each shell separately at different

rates to reach different combinations for the number of b-vectors per shell. (2)

The distortion correction was applied using the Jacobian modulation, which re-

quires only a single b0 volume acquired in reversed PE directions to estimate

the magnetic susceptibility off-resonance field coefficients, together with diffusion

volumes acquired in a single PE direction. For R=2, this strategy decreases the

total acquisition time to half. For R=3, this strategy was modified by discarding

the 3rd shell to reduce the acquisition time to approximately one-third.

DTI, MSMT-CSD, and NODDI analyses were applied to retrieve the diffusion

orientations, as well as to compute the dMRI metrics FA, MD, AFD, nuFO,

ODI and NDI for 20 subjects. The visual comparisons of the metric maps and

absolute error images suggest that both for acceleration rates of R=2 and R=3,

the metric maps from the undersampled data preserve sufficient microstructural

and anatomical information about the underlying neurites, especially in WM and
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GM regions, for being used as biomarkers. In CSF regions, an error accumulation

was observed especially in MD and NDI, which characterize mainly the diffusion

magnitude and neurite density in the intra-neurite space.

These results suggest that the studies targeting to capture changes in CSF

for indication of possible diseases could lose their efficacy while utilizing under-

sampled HARDI data. Because dMRI studies do not commonly investigate the

diffusion characteristics in CSF regions, the error accumulation in those regions

could be acceptable for many studies. In contrast, in GM and WM regions, the er-

rors seem to be dispersed homogeneously and specific high-error regions were not

observed. Overall, the metric maps computed in the case of undersampling can

be said to preserve their fidelity and are therefore suitable for usage as biomarkers

in the diagnosis of neurodegenerative diseases causing changes to the WM and

GM areas.

Comparing the absolute error images obtained for a given metric under differ-

ent undersampling strategies at the same acceleration rate, it is seen that overall

error visibly increases for some strategies. For instance, for the “Single b0-volume

TOPUP” approach, the error increases in FA and ODI metrics at R=2, while a

smaller error is observed in MD. These results suggest that instead of choosing a

single common strategy for all metrics, the specific metric should be considered

while choosing the acceleration technique, as it is clear that each metric prefers a

different strategy. For instance, visually, the absolute error is minimized for the

strategy titled “3-13-29” and“2-9-19” for MD, while FA prefers strategies titled

“3-13-29” and “single b0 TOPUP” at R=2 and R=3, respectively. This result

depends on the fact that while FA measures the diffusion anisotropy and there-

fore the diffusion direction, MD measures the average diffusivity in a voxel. The

benefit obtained from increased angular resolution and increased SNR in these

two strategies creates the differences observed in the performances.

Comparing the visual results obtained from R=2 and R=3, it is seen that the

metric maps are highly affected from the number of q-space measurements. The

error increased for every undersampling strategy for every metric for the R=3

case. This observation becomes more prominent in CSF regions and the error
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maps of the worst performing strategies.

PSNR and SSIM metrics are computed for each subject and median (interquar-

tile range) across all subjects were reported. From the quantitative results, again,

it is seen that the best performing strategy changes depending on the metric.

Overall, comparing the metric-wise results, the 3-shell strategies performs better

for R=2 compared to other approaches. Among the 3-shell strategies, the one

titled “10-15-20” can be considered to be the best performing strategy. For R=3,

however, the 2-shell strategies outperform other undersampling approaches, and

the non-uniform strategy titled “10-20” can be considered to be the best per-

forming one.

For PNSR values of R=2, there seems to be a general consensus about the

best performing strategies, method-wise and metric-wise. In contrast, the best

performing strategy changes for R=3 for each metric. For instance both NDI and

ODI metrics of NODDI perform the best under the strategy titled “10-15-20”

in terms of PSNR for the R=2 case, but ODI prefers the strategy titled “10-

20” while NDI prefers “10-10-10” for the R=3 case. This increased variability

in the best performing strategy as the acceleration rate increases, weakens the

confidence in a common best strategy.

For the majority of the metrics at both R=2 and R=3 cases, the “Single b0

TOPUP” strategy, which achieves acceleration by changing the distortion cor-

rection technique, is not preferred. Overall, this strategy produces mediocre and

even poor results. Therefore, to increase the visual and quantitative performance

of the metrics, for each q-space point a pair of opposite PE directions should

be acquired to be utilized in TOPUP to estimate the field map and to correct

images using the LSR method. Undersampling the q-space directly should be the

preferred approach to accelerate the multi-shell HARDI protocols. Here, one im-

portant remark is that for ODI and nuFO, “single b0 TOPUP” seems to produce

relatively better results for R=3 case when compared to the alternative strate-

gies. This could be the effect of having an increased number of b-vectors of 60.

The other strategies at R=3 had a relatively small number of b-vectors of 30. In

previous studies, it was shown that the ODF retrieval performance of gradient
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tables with less than 45 b-vectors was not optimal, and they produced poor fiber

tractography results [14]. Hence, the slight increase in performance of the “single

b0 TOPUP” strategy might be because of the increased number of b-vectors,

instead of the success of the Jacobian modulation distortion correction approach.

Both the visual and quantitative results show that DTI metrics, which are

relatively low dimensional compared to MSMT-CSD and NODDI metrics that

resolve diffusion characteristics into their specific components, are more robust

against undersampling. Here, there exist approximately a 0.1 difference in SSIM,

10 dB difference in PSNR values between FA, MD, and other metrics. Even for

the acceleration rate of R=3, MD and FA produce PSNR values of 38.90 dB and

29.07 dB and SSIM values of 0.956 and 0.992 for the best performing strategies,

which can be considered very successful considering the high acceleration rate

and low number of b-vectors.

To enhance the quantitative analysis, JSD was used to compare the ODFs

retrieved from the undersampled data using the DTI and MSMT-CSD analyses.

JSD directly compares the performances of these undersampling strategies to re-

trieve the diffusion propagator, compared to the indirect comparisons provided

through the metric maps. This comparison is beneficial to understand how an-

gular resolution is affected by the different undersampling approaches and also

to analyze the accuracy of these techniques in resolving the fiber geometries and

orientations.

For DTI, the best ODF retrieval performance is achieved with the strategies

labeled as “3-13-29” and “2-9-19” at R=2 and R=3, respectively. The visual

maps and quantitative SSIM and PSNR results suggest that for R=2, MD and FA

perform their best for different strategies. For instance, in terms of visual metric

maps, these two metrics have minimized error maps for the strategies titled “3-

13-29” and “Single b0 TOPUP”. In terms of SSIM, however, MD prefers “Single

b0 TOPUP” while FA prefers “3-13-29”. For R=3, these two metrics prefer the

strategies titled “2-9-19” and “10-20”, respectively, in terms of PSNR, SSIM, and

visual results.
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The contrast between JSD and other quantitative results may suggest that

while certain strategies could provide good results in terms of the dMRI metrics,

their ODF retrieval performances are not optimal. For MSMT-CSD, the min-

imum JSD for R=2 case is achieved for the non-uniform 3-shell strategy titled

“30-15”. MSMT-CSD analysis depends mostly on the angular resolution, since

the main goal is to estimate orientation distribution in each voxel. The metrics

derived from MSMT-CSD highly depends on ODF and its peaks and magnitudes,

which agrees with the performance achieved for nuFO. The next best perform-

ing strategy in terms of JSD is “10-15-20”, which is the overall best performing

strategy.

At R=3 for DTI, the uniform 3-shell strategy titled “2-9-19” outperforms the

2-shell undersampling approaches in terms of JSD. DTI estimates the primary ori-

entation from the diffusion tensor eigenvalues and eigenvectors, which determines

the orientation of the diffusion ellipsoid. This ellipsoid is considered as the ODF

and highly depends on q-space acquisitions. Both FA and MD are also derived

from the diffusion tensor, but they are not directly affected by the accuracy of

the diffusion orientation itself. FA measures the anisotropy of the diffusion, with

high values signifying that a clear diffusion orientation exists. However, it does

not measure the accuracy of the estimated fiber orientation. Hence, while FA

performs well with the “10-20” or “15-15” strategies, these strategies do not cap-

ture the ODF well enough. At R=3 for MSMT-CSD, the best performance was

obtained with a 2-shell strategy titled “10-20”. Once again, this result supports

the results obtained from PSNR, SSIM, and visual inspection results obtained for

AFD and nuFO.

Considering the worst performing strategies in terms of JSD, most of the 3-shell

non-uniform strategies produce mediocre and even poor results. These results

suggest that for R=3, data utilizing a 3-shell approach is not sufficient to sample

each diffusion shell densely enough for an accurate ODF estimation. Hence, 3-

shell strategies become relatively unfeasible with low q-space coverage and the

HARDI protocols lose both from SNR and angular resolution at the same time.

Comparing the R=2 and R=3 results together, it is concluded that ODF highly
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depends on the number of q-space acquisition, as JSD is always lower at R=3 than

at R=2. Although R=3 produces clinically acceptable metrics with relatively

high structural integrity within an acceptable acquisition time, the ODFs lose

their accuracy, which may affect more sophisticated applications. Note that the

ODF accuracy also depends on the distortion correction approach. “single b0

TOPUP” approaches in both cases have higher q-space coverage with 89 and 60

b-vectors, respectively. However, they produce bad and even the worst results for

some of the metrics. This observation supports the failure of “single b0 TOPUP”

approaches in visual inspection, as well as in PSNR and SSIM analyses. While

designing an accelerated HARDI protocol, it can be suggested that two volumes

should be acquired in reversed PE directions and the undersampling should be

performed in q-space directly.

For an acceleration rate of R=2, to achieve an overall well performing strat-

egy, the gradient table should be designed to include three diffusion shells with a

non-uniform distribution with low variance in the number of q-points between the

consecutive shells. For R=3, the strategy should consist of non-uniform distribu-

tion of q-space points over two shells. Overall non-uniform strategies outperform

uniform strategies, allowing high b-value shells with large surface areas to be

sampled more extensively and thus benefiting from the increased angular resolu-

tion. It was observed from JSD results that ODFs are more accurately resolved

for non-uniform 3-shells strategies for the R=2 case. If a multi-shell HARDI data

will not to be used in tractography studies, which requires highly sensitive fiber

distribution reconstructions, R=3 strategies can provide sufficient accuracy in

terms of metric maps, as proven by visual inspection, PSNR, and SSIM. Thus, if

the priority constraint is the total acquisition time, one can decide using R=3, by

sacrificing from the ODF accuracy and angular resolution. Still, it is suggested

to design the strategy based on the metric, clinical study, and diagnosed disease

to achieve the best performance.

Quantitative metrics, providing beneficial analysis on the performances of un-

dersampling strategies sometimes provide mediocre sensitivity. For instance, for

the R=3 case, ODI has a range of SSIM values with a maximum difference be-

tween the worst and the best performing strategies of 1.61 dB and a minimum
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difference of 0.05 dB. This signifies that the performance differences between

some of the strategies are not significant enough. In contrast, MD, which is a

low dimensional metric, has a PSNR difference ranging from 0.20 dB to 14.91

dB, allowing one to clearly assess the best performing strategy. Low dimensional

metrics, providing a sharper difference in quantitative metrics, produce distin-

guishable results and are more robust against undersampling. For SSIM, a sim-

ilar trend is observed. Among the metrics and strategies, a maximum difference

of 0.073 and a minimum difference of 0.001 is observed. For JSD, a maximum

difference of 0.055 and a minimum difference of 0.003 was observed. These values

are distinguishable in the sense that the best and the worst performing strategies

could be identified, and there exist at least 0.027 difference in JSDs between R=2

and R=3 strategies. Nonetheless, the sensitivity of JSD alone could only detect

a slight difference in the performances. Although the best and the worst per-

forming strategies can still be clearly identified based on the SSIM, PSNR, and

JSD metrics, the performances of the remaining strategies are harder to rank by

looking only at the quantitative metrics.

In conclusion, this thesis proposes and analyzes 20 different undersampling

approaches at two different acceleration rates. The results will be beneficial for

future designs of gradient tables for clinical studies aiming to diagnose a spe-

cific disease using multi-shell dMRI metrics as biomarkers, within a significantly

reduced acquisition time.
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