
NOVEL ALGORITHMS AND MODELS FOR
SCALING PARALLEL SPARSE TENSOR

AND MATRIX FACTORIZATIONS

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

computer engineering

By

Nabil F. T. Abubaker

July 2022

Novel Algorithms and Models for Scaling Parallel Sparse Tensor and

Matrix Factorizations

By Nabil F. T. Abubaker

July 2022

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.

Cevdet Ay nat(Advisor)

Bora Uçar

Fah,ı!fll Tornn

Approved for the Graduate School of Engineering and Science:

Orhan Arıkan
Director of the Graduate School

11

Copyright Information

In reference to IEEE copyrighted material which is used with permission in

this thesis, the IEEE does not endorse any of Bilkent University’s products or

services. Internal or personal use of this material is permitted. If interested

in reprinting/republishing IEEE copyrighted material for advertising or promo-

tional purposes or for creating new collective works for resale or redistribution,

please go to http://www.ieee.org/publications_standards/publications/

rights/rights_link.html to learn how to obtain a License from RightsLink.

© 2021 IEEE. Reprinted, with permission, from N. Abubaker, S. Acer, and

C. Aykanat, “True Load Balancing for Matricized Tensor Times Khatri-Rao

Product”, IEEE Transactions on Parallel and Distributed Systems, Jan 2021.

© 2022 IEEE. Reprinted, with permission, from N. Abubaker, M. O. Karsavu-

ran, and C. Aykanat, “Scalable Unsupervised ML: Latency Hiding in Distributed

Sparse Tensor Decomposition”, IEEE Transactions on Parallel and Distributed

Systems, Nov 2022.

iii

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

ABSTRACT

NOVEL ALGORITHMS AND MODELS FOR SCALING
PARALLEL SPARSE TENSOR AND MATRIX

FACTORIZATIONS

Nabil F. T. Abubaker

Ph.D. in Computer Engineering

Advisor: Cevdet Aykanat

July 2022

Two important and widely-used factorization algorithms, namely CPD-ALS for

sparse tensor decomposition and distributed stratified SGD for low-rank matrix

factorization, suffer from limited scalability. In CPD-ALS, the computational

load associated with a tensor/subtensor assigned to a processor is a function of

the nonzero counts as well as the fiber counts of the tensor when the CSF stor-

age is utilized. The tensor fibers fragment as a result of nonzero distributions,

which makes balancing the computational loads a hard problem. Two strategies

are proposed to tackle the balancing problem on an existing fine-grain hyper-

graph model: a novel weighting scheme to cover the cost of fibers in the true

load as well as an augmentation to the hypergraph with fiber nets to encode

reducing the increase in computational load. CPD-ALS also suffers from high

latency overhead due to the high number of point-to-point messages incurred as

the processor count increases. A framework is proposed to limit the number of

messages to O(log2K), for a K-processor system, exchanged in log2K stages.

A hypergraph-based method is proposed to encapsulate the communication of

the new log2K-stage algorithm. In the existing stratified SGD implementations,

the volume of communication is proportional to one of the dimensions of the

input matrix and prohibits the scalability. Exchanging the essential data nec-

essary for the correctness of the SSGD algorithm as point-to-point messages is

proposed to reduce the volume. This, although invaluable for reducing the band-

width overhead, would increase the upper bound on the number of exchanged

messages from O(K) to O(K2) rendering the algorithm latency-bound. A novel

Hold-and-Combine algorithm is proposed to exchange the essential communica-

tion volume with up to O(K logK) messages. Extensive experiments on HPC

systems demonstrate the importance of the proposed algorithms and models in

scaling CPD-ALS and stratified SGD.

iv

v

Keywords: Parallel Algorithms, Combinatorial Algorithms, HPC, Tensor Decom-

position, Matrix Completion, Hypergraph partitioning, Communication cost min-

imization.

ÖZET

PARALEL SEYREK TENSÖR VE MATRIS AYRIŞIMI
IÇIN YENI YÖNTEM VE MODELLER

Nabil F. T. Abubaker

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Cevdet Aykanat

Temmuz 2022

Yaygın olarak kullanılan iki önemli paralel ayrışım algoritmaları, seyrek tensör

ayışımı için CPD-ALS ve düşük kerteli seyrek matris ayrışımı için dağıtık tabakalı

olasılıksal gradyan alçalma (SGD), ölçeklenebilirlik anlamında zayıf kalmaktadır.

CPD-ALS algoritmasında bir işlemciye atanan bir tensör/alt-tensör ile ilişkili

hesaplamasal yük, CSF veri yapısı kullanıldığında tensörün sıfırdışı girdilerinin

sayısı ve ayrıca tensörün fiber sayılarının bir fonksiyonudur. Tensör fiberleri,

sıfırdışı girdilerin bölümlenmesine bağlı olarak parçalanır, bu da işlemcilerin

hesaplamasal yüklerini dengelemeyi zor bir problem haline getirir. Bu prob-

lemin çözümü için mevcut bir ince taneli hiperçizge modeli üzerine iki yeni

strateji önerilmiştir: fiber yüklerini de hesaplayarak gerçek yükü modelleyen

özgün bir ağırlıklandırma şeması ve hesaplamasal yükteki artışı azaltmayı hede-

fleyen yeni fiber hiperkenarlarının hiperçizgeye eklenmesi.CPD-ALS ayrıca işlemci

sayısı arttıkça artan gereken çok sayıda işlemciler arası doğrudan mesaj nedeniyle

yüksek gecikim maliyeti ortaya çıkarmaktadır. Bu mesajların sayısını, K işlemcili

bir bilgisayar için O(log2K) ile limitleyen ve log2K aşamada gerçekleyen bir

yaklaşım önermekteyiz. Ayrıca, bu yeni yaklaşımın gerektirdiği iletişimi mod-

elleyen bir hiperçizge tabanlı bölümleme yöntemi önermekteyiz. Mevcut tabakalı

SGD (SSGD) uygulamalarında, iletişim hacmi girdi matrisinin boyutlarından biri

ile orantılıdır ve ölçeklenebilirliği engeller. İletişim hacmini azaltmak için SSGD

algoritmasının doğruluğu için gerekli olan temel verilerin işlemciler arası doğrudan

mesajlar ile değiş tokuş edilmesi önerilmiştir. Bu yöntem, iletişim hacmini azalt-

mak için paha biçilmez olsa da, mesaj sayısının üst sınırını O(K)’dan O(K2)’ye

artırarak algoritmayı gecikim maliyetlerine bağlı hale getirmektedir. Sadece

temel verinin iletişimini O(K logK) mesaj ile değiş tokuş eden yeni bir Tut-ve-

Birleştir algoritması önerilmiştir. Yüksek başarımlı hesaplama sistemleri üzerinde

gerçekleştirilen kapsamlı deneyler, CPD-ALS ve tabakalı SGD algoritmalarını

ölçeklendirmede önerilen yöntem ve modellerin önemini göstermektedir.

vi

vii

Anahtar sözcükler : Paralel Algoritmalar, Kombinatoryal Algoritmalar, Yüksek

Başarımlı Hesaplama, Tensör Ayrışımı, Matris Tamamlama, Hiperçizge

Bölümleme, İletişim Maliyeti Minimizasyonu.

Acknowledgement

My deepest gratitude goes to my supervisor, Prof. Cevdet Aykanat, for his guid-

ance, patience, and support during my graduate studies at Bilkent. Supervisors

of his kind are very rare nowadays and I feed privileged to work with him and

learn his way of doing scientific research.

I would like to thank the committee members of this thesis: Prof. Özcan

Özturk, Prof. Murat Manguoğlu, Dr. Bora Uçar, and Prof. F. Şukru Torun for

their valuable discussions and feedback.

I would like to thank Bilkent University for supporting my graduate studies

and for their generous scholarships. They are devoted to maintaining excellent

academic environment for researchers in every way possible.

I would like to thank my colleagues Dr. Ozan Karsavuran, Dr. Seher Acer for

their valuable contributions to this thesis. I’m thankful to Dr. Kadir Akbudak

who was my mentor during my M.Sc. studies. Thanks to Dr. R. Oğuz Selvitopi,

I learned a lot from going through his codes. Thanks to Mustafa Duymuş for all

the lovely and joyful chats we had.

I’m grateful to my friends and family in Ankara for all the good times and the

social environment that made my stay tolerable: Tariq (homie), Salman and Elif

(and little Vera Melis), Mohammad and Nour (and their sons Hasan and Adam),

Mohammed and Fatima (and little Yusuf), Omair and Nada (and little Salwa),

Ahmed and Buşra, M. Tarik and his mother, Maen, Ghassan, Fuad, Abulrazzak,

Hana, Hammam and others.

I’m forever grateful to my family: my parents Fuad Abubaker and Haijar

Mahameed, my sisters Mays and Dima, my brother-in-law Ahmad Nazzal , my

nephew Jad, my lovely wife Maha and my daughter Rafif for their continuous

love and support.

Finally, I would like to thank the Scientific and Technological Research Council

of Turkey (TÜBİTAK) for supporting me during my PhD under grants EEEAG-

116E043, EEEAG-119E035 and EEEAG-121E391.

viii

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.1.1 Balancing Computational Loads of MTTKRP 4

1.1.2 High Latency Overhead in CPD-ALS 5

1.1.3 High Bandwidth Overhead in Distributed Stratified SGD . 6

1.2 Summary of Contributions . 6

1.3 Organization . 8

2 Background 9

2.1 Tensors and Notations . 9

2.2 The Canonical Polyadic Decomposition 10

2.3 Matrix Completion with SGD . 11

2.4 Hypergraph Partitioning (HP) . 12

2.5 Recursive Bipartitioning (RB) . 13

3 True Load Balancing for Matricized Tensor Times Khatri-Rao

Product 15

3.1 Overview . 15

3.2 Preliminaries . 16

3.2.1 Efficient computation of MTTKRP 16

3.2.2 Fine-Grain (FG) Partitioning for MTTKRP 19

3.3 Deficiencies of the Fine-Grain Model 19

3.3.1 Failure to encode processors’ computational loads 19

3.3.2 Increase in total computation 21

3.4 Improving Fine-Grain HP Model 22

ix

CONTENTS x

3.4.1 A novel vertex weighting scheme 22

3.4.2 Improving IFS through utilizing RB 25

3.4.3 Fiber-net augmentation for reducing total flops 27

3.5 Experiments . 30

3.5.1 Setting . 30

3.5.2 Dataset . 31

3.5.3 Performance comparison 32

3.6 Related Work . 43

3.7 Conclusion . 44

4 Latency Hiding in Distributed Sparse Tensor Decomposition 45

4.1 Overview . 45

4.2 Preliminaries: Parallel CPD-ALS 47

4.3 Rearrangement of Parallel CPD-ALS to Enable Embedding 49

4.4 Embedding Sparse Expand and Reduce 52

4.4.1 Naive P2P Embedding . 52

4.4.2 Expand-and-Reduce-Aware Embedding 53

4.4.3 Communication Duality in Embedding 54

4.5 Task-to-Processor Mapping . 55

4.5.1 Hypergraph Model . 57

4.5.2 Recursive-Bipartitioning Scheme 58

4.5.3 Factor-Matrix Row Assignment to Processors 62

4.6 Experiments . 65

4.6.1 Setting . 65

4.6.2 Performance Results . 66

4.7 Related Work . 74

4.8 Conclusion . 76

5 Communication-Efficient Stratified Stochastic Gradient Descent

for Distributed Matrix Completion 77

5.1 Overview . 77

5.2 Preliminaries: Parallel SGD . 78

5.3 Communication in Distributed SSGD 80

5.3.1 Communication in DSGD 81

CONTENTS xi

5.3.2 Essential Communication for distributed SSGD 82

5.4 A Framework for Scaling SSGD 83

5.4.1 Communicating d-gap rows through P2P messages 83

5.4.2 Efficiently constructing d-gap row sets 84

5.4.3 Hold & Combine strategy for reducing latency 85

5.5 HP Model for Reducing Bandwidth Cost 89

5.6 Experimental Evaluations . 91

5.6.1 Experimental Framework 92

5.6.2 Evaluations with Communication Cost Metrics 94

5.6.3 Evaluations with SGD Iteration Time 99

5.6.4 Evaluations with Loss Values 101

5.7 Related Work . 101

5.8 Conclusion . 104

6 Conclusions 105

List of Figures

3.1 A 3-mode tensor (top) and the corresponding CSF storage (bottom). 17

3.2 A bipartition of slice X (:, :, k) to processors p1 and p2, having the

same nonzero count but different flop counts. 20

3.3 Strong scaling curves for parallel CPD-ALS obtained by FG and

impFG using (a) CSF-S and (b) CSF-D 42

4.1 A sample expand operation for a row ri from the owner(ri) = p1

to Si = {p2, p6, p7} in the embedded communication with E-cube

routing. 56

4.2 (a) Conventional cut net splitting, (b) and (c) proposed enhance-

ments for net ni on eight-way partitioning with three levels of RB

steps. 61

4.3 Comparing Strong Scaling curves of P2P-mg, EMB-rand and

EMB-hp with decomposition rank R = 8. 72

4.4 Comparing Strong Scaling curves of P2P-mg, EMB-rand and

EMB-hp with decomposition rank R = 32. 73

4.5 Strong Scaling curves of EMB-rand versus P2P-rand on very large

tensors with decomposition ranks R = 8 and R = 32. 74

xii

LIST OF FIGURES xiii

5.1 Stale updates in simple row- or column-wise partitions (up) versus

stale-free DSGD (bottom). In the row-wise partition of R, the

rows of W are partitioned conformably and thus each W-matrix

row is accessed by one processor. However, this is not the case for

H-matrix rows. For instance, ratings ril and rjl are respectively

distributed to p1 and p2 and both used to update hl possibly at

the same time thus either p1 or p2 will update on a stale hl. Sim-

ilar discussion holds for column-wise partition in a dual manner

regarding rjl, rjn and wj. 78

5.2 The numbers identify the sub-matrix blocks that constitute a stra-

tum in a ring strata with seed=1. Stratum S2 is highlighted. Side

arrows show the processor update order of hi and hj. 81

5.3 An example TSMS for p3. The rows are the processors that p3

communicates with sorted according to their distance from p3. The

columns represent both the sub-epochs and the H-matrix blocks

to be updated at each sub-epoch. An entry (py, Hβ) gives the sub-

epoch at which py updates Hβ after p3 does (note that this sub-

epoch might be in the next epoch). The circles show the messages

that can be combined. 86

5.4 Comparing RAND- and HP-based P2P and H&C methods against

RAND-based DSGD using communication cost metrics (a to c)

and SGD iteration time (d and e) using all dataset matrices on

K = 1024 processors. 95

5.5 Showcasing the upper bound of the max-max messages and sum-

max messages sent per sub-epoch using the H&C method compared

to P2P on K = {64, . . . , 1024} processors. 98

5.6 Strong scaling curves of DSGD, P2P and H&C on K =

{64, 128, 256, 512, 1024} processors using all dataset matrices with

two F values. 100

5.7 Loss versus time and iteration counts for different methods and K

values. 102

List of Tables

3.1 Properties of Test Tensors . 31

3.2 Performance comparison in terms of computational and communi-

cation cost metrics on P = 512 processors for CSF-S. 34

3.3 Performance comparison in terms of parallel runtimes on P = 512

processors for CSF-S. 36

3.4 Performance comparison in terms of total volume during MT-

TKRP along the longest mode and other N−1 modes on P = 512

processors for CSF-S. 37

3.5 Computational and communication cost metrics (in terms of R) of

the impFG method with different α values on P = 512 for CSF-S. 37

3.6 Performance comparison in terms of computational and total vol-

ume metrics on P = 512 processors for CSF-D. 39

3.7 Performance comparison in terms of parallel runtimes on P = 512

processors for CSF-D with R = 64. 40

4.1 Properties of the Test Tensors . 66

4.2 Max/Avg number of messages in a CPD-ALS iteration on K = 4096 67

4.3 Improvement of Expand/Reduce-aware EMB against Naive EMB 68

4.4 Performance of EMB-hp against EMB-rand on K = 4096 69

4.5 Performance of Proposed Row-to-Processor Assignment 70

5.1 Properties of matrices in the dataset 93

xiv

Chapter 1

Introduction

1.1 Motivation and Scope

The vast majority of the data generated to be analyzed nowadays, whether by

scientific or industrial applications, is sparse. For instance, graphs that model

various types of networks (e.g., social, biological, industrial) are represented by

sparse adjacency matrices. Domains like e-commerce, social networks, tracking

applications, generate data in the form of multi-way observations (e.g., {user,

item, timestamp} triplets for online purchasing) that are naturally represented

by sparse tensors.

Factorization of sparse tensors and matrices is essential in many fields, includ-

ing scientific computing, machine learning, data analysis, medical imaging, and

more [1, 2]. The need for efficiently parallel algorithms to compute tensor and

matrix factorization is growing by the day. This need stems from two facts: (i)

the sparse data being generated is exponentially growing beyond the capacity of

a single machine’s memory, and (ii) the factorization is becoming a kernel oper-

ation within large frameworks/applications that operate on large-scale systems;

and the scalability of the kernel factorization operation is crucial to the scalabil-

ity of the parent framework/application. A milestone in the world of computing

1

has been recently announced as the Frontier supercomputer at the Oak Ridge

National Labs, USA, has achieved 1.102 Exaflop/s marking the beginning of the

exascale era. Utilizing such valuable resources requires careful design of parallel

algorithms such that high computational balance is achieved while minimizing

the communication overhead.

In this dissertation, we focus on two factorization algorithms: (i) The

CPD-ALS algorithm which computes the Canonical Polyadic Decomposition of

a sparse tensor utilizing the alternating least squares method, and (ii) the dis-

tributed stratified stochastic gradient descent algorithm which computes a low-

rank factorization of a sparse matrix.

Canonical Polyadic (or CANDECOMP/PARAFAC) decomposition (CPD) is

an extension of singular value decomposition of matrices to tensors and a funda-

mental tool for the analysis of multiway data. It approximates a given tensor by

the sum of multiple rank-one tensors so that each rank-one tensor corresponds to

a structural feature in the data set. CPD is a fundamental tool in unsupervised

learning setting [3–6], used for dimensionality reduction, data completion and

compression, and finds application in various domains such as neuroscience [7, 8],

machine learning [9, 10], chemistry [11], cybersecurity [12], signal processing [13],

and network analysis [14]. It has also become an integral part of different ma-

chine learning fields either as a method (e.g., regression [15], supervised classifi-

cation [16]), or as a support tool (e.g., compression for Deep Learning [17–19])

and more [20]. Each iteration of the CPD-ALS algorithm computes a new factor

matrix for each mode by performing several computational steps. Among those

steps, matricized tensor times Khatri-Rao product (MTTKRP) constitutes the

biggest bottleneck because of its high computational cost.

The low-rank matrix factorization utilizing stochastic gradient descent can be

utilized in many fields [21–24]. We focus on the most famous one, collaborative

filtering for recommender systems, and present our findings in its context. Recom-

mender systems are omnipresent in e-commerce as well as social, professional and

academic networks. These systems help businesses improve profit by targeted ad-

vertisements to interested parties, facilitate the recruitment process by matching

2

more relevant candidates to jobs, and help academics explore cross-disciplinary

research works as well as expand their collaboration networks. Recommender

systems can involve one or more techniques, among which Collaborative Filter-

ing (CF) is the most widely used. Collaborative filtering approaches recommend

an item to a target user by using other users’ ratings given that those other users

and the target user have rated some other items similarly.

Matrix factorization have been successfully used in collaborative filtering via

revealing feature vectors that represent the users and the items (latent factors). A

sparse rating matrix is factorized into two dense matrices representing the feature

vectors of items and users, and these dense matrices are then used to predict

missing entries in the original rating matrix. This use of matrix factorization

is commonly referred to as matrix completion. The matrix factorization can be

computed with different methods, including stochastic gradient descent (SGD),

alternating least squares (ALS), cyclic coordinate descent (CCD) and more [25].

SGD is very efficient and usually achieves high completion accuracy compared

to other methods. However, given its sequential nature it has been a challenge to

efficiently parallelize while maintaining accuracy and convergence guarantee. For

this reason, serializable parallel SGD algorithms are most desired. Serializability

of parallel SGD refers to the existence of an equivalent serially-executed SGD

algorithm with the same update order. Serializability guarantees the convergence

and assures that no two processors update the same feature vector at the same

time (race condition) thus leading to faster convergence [26]. Stratified SGD

(SSGD) [27] is the de-facto algorithm for achieving a serializable parallel SGD.

Both CPD-ALS and stratified SGD are usually executed multiple times by

practitioners with different factorization ranks. For this reason, it is important

that each execution runs in a fast and efficient manner to reduce the turnaround

time, which in turn speeds up the process of extracting information, and to reduce

energy consumption. This dissertation focuses on addressing three major issues

in the two algorithms that degrade their performance and limit their scalability.

3

1.1.1 Balancing Computational Loads of MTTKRP

When CPD-ALS is performed on a sparse tensor and on a distributed-memory

setting, the optimization of the MTTKRP operation becomes more tedious due

to the irregular sparsity pattern of the tensor nonzeros. Practitioners usually

perform tensor decomposition many times with different ranks, which makes the

optimization of MTTKRP even more crucial for reducing the turnaround time of

their analysis. For achieving a performant and scalable parallel decomposition,

one should take the sparsity information into account in crucial design decisions

associated with high communication and computational costs. These decisions

involve

(i) how the input tensor is distributed among processors,

(ii) how the tensor nonzeros are stored in each processor,

(iii) and how MTTKRP is realized on the given storage.

To address (i), several successful partitioning models [28–31] have been pro-

posed with the goal of reducing the communication cost of MTTKRP while main-

taining a balance on its computational costs on all processors. To address (ii)

and (iii), several storage formats [32–34] have been proposed, usually together

with a new method to realize MTTKRP on the proposed format. Among those,

compressed sparse fiber (CSF) proves to be the most commonly-used storage for-

mat due to its efficiency in terms of both memory and computation [30, 32, 33].

CSF is an extension of the compressed sparse row format to tensors and the total

flop count in the CSF-oriented MTTKRP is proportional to the total number of

nonzeros and fibers (along a specified mode) in the given tensor. The flop count

of the CSF-oriented MTTKRP is significantly smaller than the flop count of the

MTTKRP based on the coordinate-format [32, 33].

Besides the popularity of the CSF format, tensor partitioning models still as-

sume the computational cost of MTTKRP to be proportional to the total number

of nonzeros in the input sparse tensor. This creates a discrepancy when the tensor

4

is stored in a CSF format and hence a CSF-oriented MTTKRP operations are

performed in a processor. This is because when CSF is used, the computational

cost of a local MTTKRP is a function of the nonzero count as well as the fiber

count of the sparse subtensor assigned to that processor. This discrepancy leads

to a failure in balancing the computational loads of processors in the distributed-

memory parallelization. This failure becomes more prominent as the variance on

the nonzero counts of fibers becomes larger, that is, as the tensor becomes more

irregular.

1.1.2 High Latency Overhead in CPD-ALS

In distributed-memory parallel CPD-ALS, each MTTKRP operation needs sparse

reduce and expand communications as well as two dense reduce communications.

The sparse reduce/expand are irregular due to the sparsity pattern of the ten-

sor and they are performed with point-to-point (P2P) messages. On the other

hand, the dense reduce communications involve data of sizes proportional to the

decomposition rank, which are required by all processors and thus are performed

using the collective ALL-REDUCE operation from the MPI primitives.

Inter-processor communication cost ideally consists of latency term and band-

width term. The latency term is proportional to the number of messages sent,

whereas the bandwidth term is proportional to the volume of data transferred.

If the number of messages is high, the latency cost might dominate the overall

communication component since each message’s startup time might be higher

than that of sending a few kilobytes of data [35].

The bandwidth overhead of MTTKRP scales with both tensor size and decom-

position rank, whereas latency overhead increases with increasing number of pro-

cessors as well as with increasing irregularity in the sparsity pattern of the tensor.

That is, CPD-ALS becomes latency bound for small decomposition rank values.

Although current distributed-memory parallel CPD-ALS algorithms, which uti-

lize P2P communication scheme [36–45], scale well up to a certain number of

processors, these algorithms fail to scale after some number of processors. We

5

empirically find this number to be around 512–1024 processors as also reported

in [37, 44]. Thus, optimizing the latency overhead is a key point for scaling

CPD-ALS on large number of processors.

1.1.3 High Bandwidth Overhead in Distributed Stratified

SGD

The state-of-the-art methods implementing SSGD [27, 46, 47] achieve the inter-

processor communication necessary for the correctness of the SSGD through send-

ing/receiving feature vectors with counts proportional to one of the dimensions

of the input rating matrix. These methods do not utilize the sparsity of the

rating matrix thus producing a huge amount of extra unnecessary communica-

tion especially when the nonzero density of the rating matrix is low. The extra

communication did not pose a concern because these methods are tested on a

relatively small number of processors (up to 64) in distributed setting. At such

scale, the SGD runtime is expected to be dominated by computation and invest-

ing in improving the communication component does not significantly affect the

overall running time. On larger scale, however, the communication component

becomes dominant, and therefore reducing the communication overhead becomes

essential. Therefore, eliminating the huge extra communication volume, mani-

fested as bandwidth overhead, in these algorithms is a primary parallelization

consideration on large-scale systems.

1.2 Summary of Contributions

This dissertation presents the following contributions to address the three prob-

lems mentioned in the previous section:

v To address load balancing of MTTKRP:

6

G We identify a load-balancing problem of the nonzero-based parallel

MTTKRP that utilizes the CSF storage format: (i) balancing the

computation loads of processors becomes harder as the fiber counts

depend on the nonzero distribution (which causes fiber fragmenta-

tion), and (ii) the total fiber count is not constant and might increase

depending on the nonzero distribution and the number of processors

used.

G We propose a framework to capture true computational loads in a

fine-grain (FG) hypergraph model of the MTTKRP. The framework

enables the FG model to encapsulate reducing the increase in computa-

tional loads due to fiber fragmentation through augmenting the model

with nets that represent these fibers. Furthermore, the framework in-

cludes a novel weighting scheme, realized with recursive biparitioning,

to include the costs of fibers in the computational loads of processors.

v To address the high latency overhead in distributed CPD-ALS:

G We propose a framework for embedding latency-heavy point-to-point

messages into a global collective (an All-reduce operation). The frame-

work begins with a computation/communication reordering scheme for

the CPD-ALS algorithm to enable the embedding. The scheme does

not affect the mathematical results of reordered operations or the flow

of the algorithm. Then, since these point-to-point messages consti-

tute sparse expand and reduce operations, the framework presents an

expand-and-reduce-aware embedding algorithm to avoid communicat-

ing any duplicate entities during the embedded communication. The

algorithm is inspired by the hypecube-based all-reduce and accom-

plishes both an all-reduce operation and a sparse expand (or reduce)

by the end of its execution.

G We propose a partitioning method based on a hypergraph model for re-

ducing the communication overhead during the embedding algorithm.

The HP model encapsulates reducing a concurrent communication

metric that mimics the communication behavior of the hypercube-

based algorithm. The partitioning method utilizes the RB scheme

7

to correctly allow encapsulating the concurrent communication met-

ric through two novel strategies: net anchoring and sibling subnet

removal.

v To address the high bandwidth overhead in distributed SSGD:

G We propose a communication-efficient framework for the SSGD al-

gorithm. Our framework consists of efficiently finding the essential

feature vectors to be communicated between processors and communi-

cating them through point-to-point (P2P) messages. This contributes

to reducing the bandwidth overhead through avoiding the extra unnec-

essary communication. This approach has the down side of increasing

the number of messages sent per processor, thus increasing the latency

overhead and possibly affecting the scalability.

G To reduce the increase in the number messages, we propose a novel

approach called hold and combine that reduces the upper bound on

the number of messages from O(K2) to O(K lgK).

G We also propose to further reduce the bandwidth overhead of the P2P

messages by using an intelligent partitioning method. This method

utilizes a hypergraph model that correctly encapsulates the total vol-

ume of communication between processors.

1.3 Organization

The rest of this dissertation is organized as follows: Chapter 2 provides all relevant

backgrounds on Tensors, CPD, matrix completion through SGD, the HP problem

and the recursive biparitioning paradigm. Chapter 3, 4 and 5 discuss the proposed

algorithms and models addressing the problems receptively defined in 1.1.1, 1.1.2

and 1.1.3. Each chapter contains specific preliminaries, detailed descriptions of

the proposed methods and algorithms, experimental evaluations, related works

and a conclusion. Finally, Chapter 6 concludes the dissertation.

8

Chapter 2

Background

2.1 Tensors and Notations

We denote tensors by calligraphic letters (X) and matrices by bold capital letters

(A). The number of dimensions of a tensor, denoted by N , is called the mode

of the tensor. Note that matrices and vectors are 2-mode and 1-mode tensors,

respectively. For the sake of simplicity, we assume 3-mode tensors of size I×J×K.

Fibers are analogous to matrix rows or columns, which can be obtained by fix-

ing all but one indices of the tensor. In 3-mode tensors there are row, column and

tube fibers which are respectively denoted by X (i, :, k), X (:, j, k) and X (i, j, :).

Slices are analogous to matrices and can be obtained by fixing all but two indices.

In 3-mode tensors, there are horizontal (e.g., X (i, :, :)), lateral (e.g., X (:, j, :)) and

frontal (e.g., X (:, :, k)) slices. Matricization of a tensor means unfolding it into a

matrix shape along one of its modes. For instance, the matricization of X along

the first mode, denoted by X(1), is a matrix of size I × JK. We refer the reader

to the survey by Kolda and Bader [1] for more details on tensor decompositions.

9

2.2 The Canonical Polyadic Decomposition

The CPD decouples a tensor into R rank-1 components as X ≈∑R
i=1Xi, where

rank-1 component Xi is the outer product of 3 vectors (or N vectors in the general

case) ai ◦ bi ◦ ci. The a, b and c components in each of the R rank-one tensors

are assembled to respectively form factor matrices A ∈ RI×R, B ∈ RJ×R and

C ∈ RK×R. Here, R is called the decomposition rank. We use A(i, :) to denote

the ith row of A. When the mode of the tensor is irrelevant to the discussion,

we use ri to refer to a row in a factor matrix along any mode.

Algorithm 1 CPD-ALS for 3-mode Tensors

1: procedure CPD-ALS(X)
2: Initialize matrices A, B and C randomly
3: while not converged do
4: A′ ← X(1)(B�C) . MTTKRP

5: A← A′(CTC ∗BTB)−1

6: Normalize columns of A into λ
7: B′ ← X(2)(C�A) . MTTKRP

8: B← B′(CTC ∗ATA)−1

9: Normalize columns of B into λ
10: C′ ← X(3)(B�A) . MTTKRP

11: C← C′(BTB ∗ATA)−1

12: Normalize columns of C into λ

return [[λ; A,B,C]]

The goal of an algorithm computing the CPD is to find the best approximation

of a tensor X using R components that minimizes a norm of X −∑R
i=1 λiXi.

Here, the vectors used to construct Xi are normalized to length 1, and the value

λi is used as a scaling factor to the normalized rank-1 component tensor Xi.
The most commonly used algorithm to compute the CPD is CPD-ALS, which

uses the Alternating Least Squares approach. Algorithm 1 shows the steps of

the CPD-ALS algorithm. During each iteration, two factor matrices are fixed

to find the remaining one by solving a linear alternating least squares problem.

For instance, minA||X(1) − A(C � B)T ||2R is solved to find A by computing

X(1)(C�B)(CTC∗BTB). The columns of factor matrices are then normalized to

length one, and the actual lengths are stored in λ. The operations � and ∗ denote

the Khatri-Rao and the Hadamard products, respectively. In the algorithm, the

10

result of the MTTKRP operation along the first, the second and the third mode

is respectively stored in A′, B′ and C′.

2.3 Matrix Completion with SGD

We define the matrix completion problem in the context of collaborative filtering

as follows: Given a set U of N users, a set I of M items, and a set of ratings

Ω as the known entries of a sparse rating matrix R ∈ RN×M . The problem

is to find two dense factor matrices W ∈ RN×F and H ∈ RM×F such that a

low-rank approximation R ≈ WH> is achieved. Here, F � M,N is called the

dimension or the rank of the factorization. Then, a missing rating r̂ij /∈ Ω can be

approximated as

r̂ij = wih
>
j , (2.1)

where wi and hj respectively denote the ith row of W and the jth row of H. The

quality of the approximation is usually measured by an application-dependent loss

function L, thus the problem becomes arg minW,H L(R,W,H). For collaborative

filtering, L is usually the Euclidean distance and thus the problem becomes

arg min
W,H

∑
(i,j) s.t. rij∈Ω

(
(rij − r̂ij)2 + γ(‖wi‖2 + ‖hj‖2

)
, (2.2)

where γ is a regularization parameter to avoid over-fitting, and r̂ij is an approx-

imation of an existing rij and is computed with (2.1).

Since the minimization problem in (2.2) has two unknowns W and H, L is

a non-convex function [21]. SGD has been widely used to optimize (minimize)

such functions due to its ability to escape local minimas. At an SGD epoch,

each rating rij ∈ Ω is used to update the objective function’s parameters. The

gradient of the objective function at point rij is calculated (∇rijLrij(R,W,H))

and the corresponding wi and hj rows are updated as

wi = wi − ε[(rij − r̂ij)hj + γwi], (2.3)

hj = hj − ε[(rij − r̂ij)wi + γhj] (2.4)

where ε is the step size.

11

2.4 Hypergraph Partitioning (HP)

A hypergraph H=(V ,N) is defined as a set of vertices V and a set of nets N .

Each net n∈N connects a subset of vertices, which is denoted by Pins(n). Each

net n is assigned a cost c(n), whereas each vertex v maybe assigned C weights

denoted by wc(v) where c ∈ {1, 2, .., C}. For C > 1, the HP problem is commonly

known as multi-constraint HP.

ΠK(H) = {V1,V2, ...,VK} denotes a K-way partition of H if the vertex parts

are mutually exclusive and exhaustive. For a given partition Π,

W c(Vk) =
∑
vi∈Vk

wc(vi),∀c ∈ {1, 2, .., C}. (2.5)

denotes the cth weight of part Vk. In Π, a net is said to connect a part if it

connects at least one vertex in that part. We define Λ(n) as the set of parts that

n connects. That is,

Λ(n) = {Vk ∈ ΠK(H) | Vk ∩ Pins(n) 6= Ø}.

Furthermore, λ(n) = |Λ(n)| is called the connectivity of n. Net n is called cut if

it connects at least two parts, i.e., λ(n) > 1, and called internal otherwise.

The HP problem refers to obtaining ΠK(H) while optimizing an objective

function defined over N and maintaining a balance constraint between the parts

defined over V . The two mostly common objective functions are minimizing the

cut-net metric

cutnet(Π) =
∑

n � λ(n)>1

c(n) (2.6)

and the connectivity−1 metric

conn−1(Π) =
∑

n � λ(n)>1

c(n)(λ(n)− 1). (2.7)

while maintaining balance on the part weights as

W c(Vk) ≤ W c
avg(1 + ε),∀Vk ∈ Π,∀c ∈ {1, 2, . . . , C}, (2.8)

12

where W c
avg=

∑K
k=1W

c(Vk)/K denotes the average part weight for the cth con-

straint and ε denotes the maximum allowed imbalance ratio. The keyword cutsize

is used to refer to the total cutsize of ΠK(H) with the used metric. In HP with

fixed vertices, part assignment of some vertices are given a priori to partitioning.

2.5 Recursive Bipartitioning (RB)

Recursive bipartitioning (RB) is a common scheme to obtain K-way partitions by

recursively bipartitioning an input hypergraph. The RB scheme generates a tree

of lgK levels. Given an initial hypergraph H0
0, at each level ` ∈ {0, 1, . . . , lgK−1}

there are 2` subhypergraphs H`
0,H`

1, . . . ,H`
2`−1

; each two of which are constructed

from two-way partitioning (Π2) of a parent hypergraph in level ` − 1 and will

be bipartitioned to construct two subhypergraphs in level ` + 1. RB has been

successfully used to allow HP methods encode complex partitioning objectives

for scientific computing and machine learning applications [44, 48–51].

Given H`
k, 0 ≤ k ≤ 2`− 1, constructing subhypergraphs H`+1

2k and H`+1
2k+1 using

Π2(H`
k) = {VL,VR} is achieved as follows: The vertex sets of H`+1

2k and H`+1
2k+1 are

respectively VL and VR. The net sets of H`+1
2k and H`+1

2k+1 are constructed according

to the net categorization (cut or internal) by Π2(H`
k) while following a strategy

to maintain a correct cutsize metric. For the sake of simplicity, whenever the

discussion is about H`
k at an arbitrary ` and arbitrary k, we use H to represent

H`
k and HL = (VL,NL) and HR = (VR,NR) to respectively represent H`+1

2k and

H`+1
2k+1. Here, L and R are used to refer to the two parts as Left and Right,

respectively.

In order to maintain the cut-net metric given in (2.6), cut nets are removed and

internal nets are inherited to their respective subhypergraphs following VL and

VR. This way, each cut net contributes its cost once to the cutsize. If each cut net

is split into two sub-nets assigned to the left and right sub-hypergaphs, that is, a

cut net n in Π2 is split into two subnets n′ and n′′, where Pins(n′) = Pins(n)∩VL
and Pins(n′′) = Pins(n) ∩ VR, then each net can be split at most K−1 times

13

during RB, where K is the desired number of partitions. This directly allows

encoding the “connectivity-1” metric given in (2.7) as proposed in [52] since net

n contributes its cost to the cutsize λ(n)−1 times during RB.

14

Chapter 3

True Load Balancing for

Matricized Tensor Times

Khatri-Rao Product

3.1 Overview

In this chapter, we propose a tensor partitioning model with true load balancing

for the MTTKRP operation when the CSF format is used. Our model is based

on the fine-grain model [28], which is (theoretically and practically) the most

successful model in reducing the total communication volume and balancing the

number of tensor nonzeros in processors.

The rest of the chapter is organized as follows. In Section 3.2 preliminaries on

efficient MTTKRP and the HP-based fine-grain method for CPD-ALS are given.

The deficiencies of the HP-based fine-grain method are discussed in Section 3.3.

In Section 3.4, our proposed framework is presented and discussed in details.

Experimental results are given and discussed in Section 4.6. Related work is

given in Section 3.6 and the chapter is concluded in Section 3.7.

15

3.2 Preliminaries

3.2.1 Efficient computation of MTTKRP

The MTTKRP operation, which is the target operation in this chapter, takes

place in lines 4, 7, and 10 of Algorithm 1, each of which is for computing a

factor matrix along a different mode. Although it is shown as a multiply of an

unfolded (matricized) tensor (e.g., X(1)) with a large matrix (e.g., (B � C)),

this is basically for simplicity and the corresponding multiply is impractical for

sparse tensors. Many implementations prefer to realize the MTTKRP operation

A′ ← X(1)(B�C) in a rowwise way for A′, such as

A′(i, :) =
∑

X (i,j,k) 6=0

X (i, j, k)[B(j, :) ∗C(k :)]. (3.1)

This computation style is preferred when the tensor is stored as a list of

(i, j, k, val) coordinates, called the COO format. Note that in this formulation,

the corresponding rows of B and C are retrieved and multiplied for each nonzero.

As a better alternative, the software toolkit SPLATT [32] uses the flops-

reducing formulation

A′(i, :) =
∑

j�nnz(X (i,j,:)) 6=0

B(j, :) ∗
∑

k�X (i,j,k)6=0

X (i, j, k)C(k :) (3.2)

which uses a fiber-centric data structure (to be discussed in the next subsection).

Hereafter, nnz(.) refers to the number of nonzeros in a (sub)tensor. In (3.2),

the outer and inner summations respectively run over all nonzero fibers of slice

X (i, :, :), and all nonzero entries of fiber X (i, j, :).

The efficient formulation in (3.2) can be realized using the Compressed Sparse

Fibers (CSF) scheme, which was first introduced by Smith and Karypis [33]. The

CSF storage scheme can be considered as a natural extension of the Compressed

Sparse Rows/Columns schemes widely used for sparse matrices. Fig. 3.1 shows

an illustration of the CSF storage format for a 3-mode sparse tensor. In the

16

1

2

3

1 2 3
4

+

+

Figure 3.1: A 3-mode tensor (top) and the corresponding CSF storage (bottom).

figure, the pSlice and pF iber arrays respectively represent the compressed slices

and fibers. The pSlice array consists of pointers to the starting indices of the

compressed fibers of the respective slices in the pF iber array. Similarly, the

pF iber array consists of pointers to the starting indices of the nonzeros of the

respective fibers in V als. The iSlice, iF iber and iV als arrays respectively store

the i, j and k indices of the respective nonzero slices, fibers and entries.

Two CSF-based computational schemes are used for computing the MTTKRP

operations in Algorithm 1 using the formulation in (3.2). These two schemes will

be referred to as CSF-S and CSF-D, where “-S” and “-D” refer to the use of

Single and Double storage, as will be explained shortly.

The CSF-S scheme operates on a single CSF storage of the tensor, where the

compressed fibers are the tensor’s fibers along the longest mode. This scheme

is proposed by Smith and Karypis [33] and currently used in SPLATT. CSF-S

utilizes Algorithm 2 for computing the MTTKRP operations along all modes

but the longest mode, while it utilizes Algorithm 3 to compute the MTTKRP

operation along the longest mode.

The CSF-D scheme uses two different CSF storages of the tensor. The first

17

storage s1 is the same as of CSF-S, while the second storage s2 utilizes the fibers

along the second longest mode as the compressed pF iber array. This scheme

was used in several works that target computing the MTTKRP in distributed

settings [30, 32, 53]. CSF-D utilizes Algorithm 2 for computing the MTTKRP

operations along all modes but the longest mode by feeding s1, and it utilizes the

same algorithm to compute the MTTKRP operation along the longest mode by

feeding s2. Although CSF-D has a larger memory footprint compared to CSF-S,

it has the advantage of avoiding the use of costly mutexes when used in hybrid

(distributed + shared) settings [33].

Algorithm 2 MTTKRP used by both CSF-D and CSF-S

Require: Tensor X stored in CSF, A,B and C
1: for i← 1 to size(pSlice) do
2: is← iSlice[i]
3: for j ← pSlice[i] to pSlice[i+ 1]− 1 do
4: jf ← iF iber[j]
5: if pF iber[j + 1]− pF iber[j] = 1 then
6: k ← pF iber[j]
7: Â(is, :)+=V als[k]∗C(iV als[k])∗B(if, :)
8: else
9: acc(:)← 0

10: for k ← pF iber[j] to pF iber[j + 1]− 1 do
11: acc(:)+= acc(:) + V als[k] ∗C(iV als[k], :)

12: Â(is, :)+= acc(:) ∗B(jf, :)

Algorithm 3 MTTKRP used by CSF-S

Require: Tensor X stored in CSF, A,B and C
1: for i← 1 to size(pSlice) do
2: is← iSlice[i]
3: for j ← pSlice[i] to pSlice[i+ 1]− 1 do
4: jf ← iF iber[j]
5: if pF iber[j + 1]− pF iber[j] = 1 then
6: k ← pF iber[j]
7: Ĉ(iV als[k], :)+= V als[k] ∗A(is, :) ∗B(jf, :)
8: else
9: acc(:)← A(is, :) ∗B(jf, :)

10: for k ← pF iber[j] to pF iber[j + 1]− 1 do
11: Ĉ(iV als[k], :)+= acc(:) ∗ V als[k]

18

3.2.2 Fine-Grain (FG) Partitioning for MTTKRP

In the work by Kaya and Uçar [28], a fine-grain task is defined as the multiplica-

tion of a tensor nonzero by the Hadamard product of the corresponding rows of

the factor matrices along all but the mode of the factor matrix being computed

(according to (3.1)).

A fine-grain hypergraph model H = (V ,N) is proposed [28] for fine-grain task

partitioning. H contains a vertex vijk for each tensor nonzero X (i,j,k), and nets

nHi , nLj and nFk for respectively each nonempty horizontal, lateral and frontal slice

of the tensor. Each vertex vijk is connected by three nets nHi , nLj and nFk .

All vertices of H are assigned a unit weight under the assumption that every

nonzero of X incurs the same amount of computation during the MTTKRP

operations. All nets of H are assigned a cost of R since factor-matrix rows of size

R words are communicated between processors. Then, the partitioning objective

of minimizing the cutsize encodes minimizing the total volume of communication

due to expand-type communications on input matrix rows as well as reduce-type

communications on output matrix rows.

3.3 Deficiencies of the Fine-Grain Model

3.3.1 Failure to encode processors’ computational loads

The COO-based implementation of the MTTKRP operation according to (3.1)

incurs 3Rm flops for tensor X with m nonzero elements. Here, 2Rm flops are

performed for the initial products and Rm flops are performed for the summation

operations. In other words, each tensor nonzero incurs 3R flops. So although

vertices are assigned unit weight in the conventional FG model, we assume the

vertices are assigned a weight of

w(vijk) = 3R. (3.3)

19

Figure 3.2: A bipartition of slice X (:, :, k) to processors p1 and p2, having the
same nonzero count but different flop counts.

In this way, the part weights computed by using (3.3) in (2.5) will correctly

encapsulate processor’s computational loads .

On the other hand, the CSF format enables reducing the amount of total

computation from 3Rm flops to 2R(m + F) flops, where F denotes the number

of fibers, using the formulation in (3.2). This is because, in (3.2), each nonzero

X (i, j, k) incurs 2R flops due to C(k, :), whereas each fiber X (i, j, :) incurs 2R flops

due to B(j, :). That is, the amount of computation associated with each nonzero

may differ depending on the fiber fragmentation introduced by the partitioning

algorithm. So, the part weights computed according to (3.3) fail to correctly

encapsulate the computational loads of processors.

The top part of Fig. 3.2 shows a sample 8×6 frontal slice X (:, :, k) with 24

nonzeros. In the figure, stars represent nonzeros while shaded rectangles repre-

sent fibers along the longest mode which is the second mode. The bottom part

shows a bipartition of the nonzeros of the slice between two processors p1 and

20

p2. The subslices assigned to p1 and p2 are respectively denoted by X (:, :, k)p1

and X (:, :, k)p2 . This bipartition shows an even nonzero partition since each sub-

slice has 12 nonzeros. However, the nonzeros of the subslices X (:, :, k)p1 and

X (:, :, k)p2 respectively belong to 6 and 4 subfibers. Thus, X (:, :, k)p1 will incur

2R(12 + 6) = 36R flops associated with the MTTKRP operation on p1, whereas

X (:, :, k)p2 will incur 32R flops on p2. So, despite the even nonzero distribution,

the partition incurs a significant amount of computational load imbalance.

3.3.2 Increase in total computation

As mentioned in Section 3.3.1, the number of flops performed using the fiber-

centric MTTKRP formulation in (3.2) is equal to 2R(m+F) in serial and shared-

memory settings. However, in distributed-memory settings, since the fibers are

local to the processors, the number of flops increases as a result of fragmenting

fibers among processors.

Assuming single precision floating-point values, the COO-based MTTKRP in-

curs 16m+ 12Rm memory byte accesses [54], whereas the CSF-based MTTKRP

with S slices incurs 8(S + F + m) + 12R(m + F) accesses. Note that fiber

fragmentation increases the number of flops as well as the number of memory

accesses at the same rate, thus it does not affect the arithmetic intensity (flops

per byte) of the CSF-based MTTKRP. Therefore, any further discussion on in-

creasing/decreasing flop counts also applies to the associated number of memory

accesses.

In an ideal situation, each fiber is assigned to a single processor as a whole

without any fragmentation thus resulting in no increase in the number of flops,

which can be set as the lower bound for distributed-memory settings. However,

any fiber whose nonzeros are fragmented among λ processors will incur 2R(λ−1)

additional flops. In the worst-case, if every nonzero of each fiber is assigned to a

different processor, then each fiber will have a single nonzero, resulting in a loose

upper bound of 3Rm total flops following the if -statement in Algorithm 2.

21

The bipartition shown in the bottom part of Fig. 3.2 incurs the fragmentation

of 4 out of 6 fibers of X (:, :, k). So, this bipartition incurs an increase in the

total number of fibers from 6 to 10 thus increasing the total number of flops

from 2R(24 + 6) = 60R to 36R + 32R = 68R during the MTTKRP operations

associated with X (:, :, k).

Since the fine-grain HP-based method described in Section 3.2.2 is not aware

of the role of tensor fibers while partitioning the HP model, it may incur a sig-

nificant amount of fiber fragmentation leading to significant increase in the total

computational load.

3.4 Improving Fine-Grain HP Model

3.4.1 A novel vertex weighting scheme

As mentioned earlier, balancing on the flop counts of processors cannot be en-

forced during partitioning the fine-grain HP model. This is because of the vertex

weighting scheme that only encodes balancing nonzero counts of processors while

failing to encode the fiber counts.

Here, we propose a novel vertex weighting scheme for estimating correct flop

counts of processors during partitioning the fine-grain model. For this purpose,

we propose an Inverse-Fiber-Size (IFS) heuristic for estimating the fiber counts

of processors. In the IFS scheme, the 2R flop contribution of a fiber is distributed

uniformly, as vertex weights, among the vertices representing the tensor nonzeros

constituting that fiber. That is, a fiber X (i, j, :) of size nnz(X (i, j, :)) contributes

2R/nnz(X (i, j, :)), as a weight, to each vertex representing its constituent nonze-

ros.

In a given nonzero partition, if the nonzeros of a given fiber are all assigned

to the same part, the IFS scheme correctly encodes the contribution of a fiber

count (2R) to the respective part. If, however, the nonzeros of a given fiber are

22

fragmented between two parts, then the IFS scheme will incur fractional fiber

count contributions to these two parts with a sum of 2R.

Since the two efficient schemes described in Section 3.2.1 (CSF-S and CSF-D)

for computing the MTTKRP have different algorithms and different fiber types,

we describe how the IFS scheme is applied to each of them separately. Without

loss of generality, we assume that tube fibers (X (i, j, :)) and row fibers (X (i, :, k))

are the tensor’s fibers along the longest and second longest modes, respectively.

3.4.1.1 IFS scheme for CSF-S

In this scheme, the tensor is stored only once as fibers of the longest mode.

While computing the MTTKRP for N−1 modes as described in Algorithm 2, the

number of fibers times 2R correctly encapsulates the flop count of the Hadamard

product and the addition operation involving B(jf, :) (line 12). On the other

hand, while computing the MTTKRP for the longest mode using Algorithm 3,

the number of fibers times 2R correctly encapsulates the flop count of only the

Hadamard product operations (line 9). Therefore, we use the IFS scheme for

updating the weights of the vertices as follows: for each vijk ∈ V

w(vijk) = 2R +
2R

nnz(X (i, j, :))
. (3.4)

Here, “2R” refers to the number of flops associated with the respective nonzero,

whereas 2R/nnz(X (i, j, :)) refers to the number of flops associated with the fiber

that contains the respective nonzero.

3.4.1.2 IFS scheme for CSF-D

In this scheme, the tensor is stored twice in fiber-centric fashion. As discussed in

Section 3.2.1, the first storage utilizes the fibers of the longest mode, while the

second storage utilizes the fibers of the second longest mode. For both fiber types,

the number of fibers times 2R correctly encapsulate flop count of the Hadamard

product and addition operations (Algorithm 2 line 12). The distinction is, the

23

number of fibers along the longest mode correctly encapsulates the number of

flops during each of the N − 1 MTTKRP operations performed along all but the

longest mode, whereas number of fibers along the second longest mode correctly

encapsulates the number of flops during the MTTKRP operation along the longest

mode.

A two-constraint formulation is needed for balancing the computational loads

of processors in the computational scheme that utilizes CSF-D. This is because, in

the CPD-ALS algorithm, MTTKRP operations are performed in different phases

interleaved with synchronizing communication operations, and the MTTKRP

operations are performed with two different types of fibers.

We use the IFS scheme to compute the two weights of the vertices for the

two-constraint formulation as follows: for each vijk ∈ V

w1(vijk) = 2R +
2R

nnz(X (i, j, :))
(3.5a)

w2(vijk) = 2R +
2R

nnz(X (i, :, k))
. (3.5b)

At each iteration, W 1(Vp) (computed using (2.5)) encodes the computational load

of processor p during N − 1 MTTKRP operations, whereas W 2(Vp) encodes the

computational load of processor p during only one MTTKRP operation. So, the

success of this two-constraint scheme depends on giving more importance to the

first over second constraint. This can only be achieved by relaxing the maximum

allowed imbalance ratio (ε) of the second constraint. Unfortunately, the state-

of-the-art HP tools do not support different ε values for different constraints.

For this reason, we propose the following alternative single-constraint weighting

scheme that can emulate the above mentioned two-constraint scheme:

w(vijk) = (N − 1)w1(vijk) + w2(vijk) (3.6a)

= 2RN +
2R(N − 1)

nnz(X (i, j, :))
+

2R

nnz(X (i, :, k))
(3.6b)

for each vijk ∈ V . In (3.6a), the relative importance of w1(vijk) over w2(vijk) is

modeled by multiplying w1(vijk) by N−1 as the CSF storage along the longest

24

mode is used in N−1 MTTKRP operations at each CPD-ALS iteration. Note

that in (3.6a) and (3.6b) the value of N should be set to 3 in case of a 3-mode

tensor, but we prefer to use N for a more general presentation.

Algorithm 4 RB-based FG HP with IFS scheme

Require: Sparse tensor X
1: H ← Fine-grain hypergraph of X
2: . F is the set of nonzero fibers along the longest mode.
3: F ← {fij = X (i, j, :) : nnz(X (i, j, :)) 6= 0}
4: if X is stored as CSF-S then
5: RB-STEP-S(H, F)
6: else . X is stored as CSF-D
7: . F2 is the set of nonzero fibers along 2nd longest mode.
8: F2← {fik = X (i, :, k) : nnz(X (i, :, k)) 6= 0}
9: RB-STEP-D(H, F , F2)

10: function RB-STEP-S(H, F)
11: Π2 = (VL,VR)← BIPARTITION(H)
12: Form HL = (VL,NL) and HR = (VR,NR)
13: (FL,FR)=SPLIT-FIBERS(Π2, F)
14: UPDATE-WEIGHTS-S(Π2,FL,FR)
15: RB-STEP-S(HL, FL)
16: RB-STEP-S(HR, FR)

17: function RB-STEP-D(H, F , F2)
18: Π2 = (VL,VR)← BIPARTITION(H)
19: Form HL = (VL,NL) and HR = (VR,NR)
20: (FL,FR)=SPLIT-FIBERS(F ,Π2)
21: (F2L,F2R)=SPLIT-FIBERS(F2,Π2)
22: UPDATE-WEIGHTS-D(Π2, FL, FR, F2L, F2R)
23: RB-STEP-D(HL, FL, F2L)
24: RB-STEP-D(HR, FR, F2R)

3.4.2 Improving IFS through utilizing RB

The accuracy of the IFS heuristic depends on keeping track of the correct fibers

sizes, which could change significantly as a result of fiber fragmentation during

partitioning. We propose to utilize the RB scheme to increase the accuracy of the

IFS heuristic in estimating the fiber counts of parts. After each bipartitioning

step, the sizes of the fragmented fibers are updated for recomputing the vertex

weights according to the IFS heuristic.

25

Algorithm 5 SPLIT-FIBERS

Require: (Π2, F)
1: FL,FR ← ∅
2: for all X (i, j, :) = fij ∈ F do
3: fLij = XL(i, j, :) = X (i, j, :) ∩ {X (i,j,k) : vijk ∈ VL}
4: fRij = XR(i, j, :) = X (i, j, :) ∩ {X (i,j,k) : vijk ∈ VR}
5: if nnz(fLij) > 0 then

6: FL ← FL ∪ {fLij}
7: if nnz(fRij) > 0 then

8: FR ← FR ∪ {fRij }
return (FL,FR)

Algorithm 6 UPDATE-WEIGHTS-S

Require: Π2 , FL, FR
1: for all vijk ∈ VL do

2: w(vijk)← 2R+
2R

nnz(XL(i, j, :))

3: for all vijk ∈ VR do

4: w(vijk)← 2R+
2R

nnz(XR(i, j, :))

Algorithm 4 shows the proposed RB-based IFS scheme. In the algorithm, H
refers to the current hypergraph to be bipartitioned, whereas F and F2 refer

to the current set of nonzero fibers along the first and second longest modes,

respectively. The sets of (fragmented) fibers are maintained during the RB scheme

for recomputing the vertex weights according to the correct fiber sizes. Note that

both F and F2 are used for the CSF-D scheme while only F is required for

the CSF-S scheme. The algorithm checks whether CSF-S or CSF-D is used and

respectively invokes RB-STEP-S or RB-STEP-D accordingly.

In lines 11 and 18 of Algorithm 4, the hypergraph partitioning tool is invoked

to obtain a bipartition Π2 on the vertices of H. In lines 12 and 19, the left

hypergraph HL and right hypergraph HR are constructed according to the net-

splitting strategy mentioned in Section 2.4. In line 13, SPLIT-FIBERS function

is invoked to form the fiber sets FL and FR of the left and right parts, for the

CSF-S scheme. In lines 20 and 21, SPLIT-FIBERS is invoked to compute FL
and FR as well as F2L and F2R of the left and right parts, respectively, for the

26

Algorithm 7 UPDATE-WEIGHTS-D

Require: Π2, FL, FR, F2L, F2R
1: for all vijk ∈ VL do

2: w(vijk) = 2RN +
2R(N − 1)

nnz(XL(i, j, :))
+

2R

nnz(XL(i, :, k))

3: for all vijk ∈ VR do

4: w(vijk) = 2RN +
2R(N − 1)

nnz(XR(i, j, :))
+

2R

nnz(XR(i, :, k))

CSF-D scheme.

The SPLIT-FIBERS function (Algorithm 5) implements the fiber fragmenta-

tion strategy as follows. The for -loop in lines 2-8 computes the intersection of

each fiber of the current fiber set F with the nonzeros corresponding to the ver-

tices of the left and right parts. Then, it assigns an unfragmented fiber to either

FL or FR, whereas it adds the subfibers of a fragmented fiber to both FL and

FR.

Then, in lines 14 and 22 of Algorithm 4, the vertex weighting scheme is in-

voked in order to recompute the weights of vertices according to the IFS scheme

with correct (fragmented) fiber sizes. Algorithm 6 (UPDATE-WEIGHTS-S)

is used to update the weights for CSF-S according to (3.4), whereas Algorithm 7

(UPDATE-WEIGHTS-D) is used to update the weights for CSF-D according

to (3.6).

3.4.3 Fiber-net augmentation for reducing total flops

In conventional graph/hypergraph partitioning formulations used for irregular

scientific applications in distributed settings, the total amount of computational

work is constant. So, in these formulations the partitioning constraint of balanc-

ing the part weights correctly corresponds to reducing the computational load

of the maximally loaded processor (bottleneck processor). This correspondence

will refer to minimizing the computational load of the bottleneck processor as the

27

maximum allowed imbalance ratio (ε) is reduced. This is in fact the case for find-

ing a fine-grain partitioning formulation for parallel tensor decomposition which

utilizes the COO format for local MTTKRP computations (formulation (3.1)).

However, the total amount of computational work is not constant in the fine-grain

partitioning formulation that utilizes the CSF format for local MTTKRP compu-

tations (formulation (3.2)). Hence, the partitioning constraint of balancing the

part weights loosely relates to reducing the computational load of the bottleneck

processor.

The partitioning constraint of balancing part weights correctly refers to re-

ducing the computational load of the bottleneck processor if the partitioning

formulation targets at reducing the increase in the total computational load due

to fiber fragmentation while minimizing the total communication volume. For

this purpose, the standard fine-grain hypergraph model, which contains slice nets

that encode communication volume, is augmented with fiber nets. Each fiber net

connects all vertices corresponding to the nonzeros constituting the fiber.

For the CSF-D scheme, a net nfij is created for each nonzero fiber X (i, j, :)

along the longest mode. Similarly, a net nfik is created for each nonzero fiber

X (i, :, k) along the second longest mode. The sets of vertices connected by nfij

and nfik are respectively defined as:

Pins(nfij) = {vijk : X (i,j,k) 6= 0 ∀k ∈ {1, . . . , K}} (3.7a)

Pins(nfik) = {vijk : X (i,j,k) 6= 0 ∀j ∈ {1, . . . , J}}. (3.7b)

For the CSF-S scheme, constructing the nets for the longest-mode fibers suf-

fices, and the set of vertices connected by each fiber net is the same as in (3.7a).

The fiber-net augmentation can be easily integrated into the RB-based frame-

work given in Algorithm 4. After constructing the hypergraph model, the sets of

fibers F (line 3) and F2 (line 8) provide the sufficient nonzero-to-fiber relations

that can be used to construct the fiber nets. No other modifications are needed

in the RB-STEP routines.

28

Consider a partition Π of an augmented hypergraph for the CSF-S scheme.

In Π, a cut slice net ns with connectivity λ(ns) will incur a communication of

R(λ(ns)−1) words during each MTTKRP operation as in the standard fine-grain

hypergraph model. In Π, internal fiber nets do not incur any increase in the total

number of flops. However, a cut fiber net nf with connectivity λ(nf) encodes

an increase of 2R(λ(nf) − 1) flops during each MTTKRP operation. A similar

discussion holds for the CSF-D scheme.

For the CSF-S scheme, the cost of fiber nets along the longest mode is set to

2R, whereas the cost of slice nets is set to αR. For the CSF-D scheme, the cost

of fiber nets along the longest and second longest modes are set to 2R(N−1) and

2R respectively, whereas the cost of slice nets are set to αRN . Here, α refers to

the scaling factor between the cost of increasing the communication volume by

R words and the cost of increasing the total flop count by 2R.

In the augmented fine-grain hypergraph model, the partitioning objective of

minimizing the cut size will simultaneously encode minimizing both the commu-

nication volume and the increase in total flop count. The partitioning constraint

of maintaining balance on part weighs (according to the proposed vertex weight-

ing schemes described in Section 3.4.1) will encode minimizing the flop count

of the bottleneck processor with decreasing ε because of the proposed fiber-net

augmentation.

The augmentation of fiber nets is also expected to contribute to improving

the accuracy of the IFS scheme. Reducing the number of cut fiber nets relates

to maximizing the number of internal nets, where internal nets correspond to

unfragmented fibers. So, increasing the number of unfragmented fibers enables

the IFS scheme to correctly encode the contribution of larger number of fibers to

the part weights. So, the objective of reducing fiber fragmentation decreases the

number of erroneous vertex weight contributions incurred by fragmented fibers.

This decrease is expected to improve the accuracy of the IFS scheme thus leading

to better load balancing.

29

3.5 Experiments

3.5.1 Setting

There are several successful hypergraph partitioning tools [52, 55, 56]. We use

PaToH [52] (version 3.2) in speed mode and the value of ε is set to 0.10. Since

PaToH contains randomized algorithms, we partition each tensor three times for

each partitioning method, and we report the average of the three instances.

The topologies of the hypergraph models are orthogonal to the value of R. On

the other hand, the vertex weighting schemes as well as the net costs presented

in this chapter involve R, which acts as a scaling factor, for the sake of clarity

of presentation. Thus, removing this scaling factor affects neither the cutsize nor

the balancing qualities, so in our partitioning implementation the R value is set

to one.

For the parallel experiments, we use the parallel CPD-ALS code developed

and used in the work by Acer et al. [30]. The code is implemented in C, uses

MPI for interprocess communication and compiled with gcc version 8.3.0 using O3

optimization flag. The MTTKRP implementation in the code is based on the flop-

efficient formulation in (3.2), which is identical to CSF-D. We have modified the

code to include CSF-S. The runtimes of CPD-ALS are reported as per-iteration

times by taking the average of total runtime of 50 iterations.

Our parallel experiments are conducted on Bull Sequana X1000 system. A

node in this system operates on dual Intel Xeon Skylake 8168 with total of 48

cores, 96 GB of memory and 2.70 GHz clock frequency. The nodes are connected

with the high speed network EDR-Infiniband (Connect-X4).

30

Table 3.1: Properties of Test Tensors

size of dimensions

Tensor I J K L nnz Density

Enron 6.0K 5.6K 244.2K 1.1K 54.2M 5.5·10−9

Flickr 319.6K 28.1M 1.6M 730 112.9M 1.1·10−14

Movies-amazon 87.8K 4.4K 226.5K — 15.0M 1.7·10−7

Nell-1 2.9M 2.1M 25.5M — 143.6M 9.1·10−13

Nell-2 12.1K 9.2K 28.8K — 76.8M 2.4·10−5

Yelp 686.5K 85.5K 773.2K — 185.5M 4.1·10−9

3.5.2 Dataset

Our dataset is composed of six real-world sparse tensors commonly used as a

benchmark for parallel sparse tensor research. Table 3.1 shows the properties

of the tensors. Enron [57] consists of words of email exchanges in the form of

sender-receiver-word-date quadruplets. It has been used with tensor decompo-

sition methods for social network analysis and link prediction [58]. Flickr is

a binary tensor representing user-image-tag-date quadruplets, which was first

crawled by Görlitz et al. [59] from flickr.com.

Bhargava et al. [60] factorize Flickr using CPD-ALS for forming multi-

dimensional collaborative recommendations. Movies-amazon represents user-

movie-word triplets extracted from the user reviews of movies in Amazon [61].

Movies-amazon is one of the datasets used for evaluating recommender systems

research, including CPD-based systems. Nell-1 and Nell-2 [62] represent entity-

relation-entity tuples of the Never Ending Language Learner knowledge base.

Kang et al. [63] used both tensors for concept discovery and contextual synonym

detection using CPD-ALS. Yelp contains user-business-word triplets obtained

from business reviews in Yelp academic dataset 1. Yelp is generally used in the

context of tensor decomposition for community detection and recommender sys-

tems.

1https://www.yelp.com/dataset/challenge

31

3.5.3 Performance comparison

We compare the performance of the proposed improvement schemes against the

baseline FG method in terms of computational and communication cost metrics

as well as parallel MTTKRP and CPD-ALS times on the 6 tensors given in

Table 3.1. We use P = 512 and α = 10 in all tables unless specified otherwise.

The computational cost metrics consist of maximum and average number of

flops performed by a processor. The communication cost metrics consist of max-

imum and average send volume handled by a processor. The latency-based com-

munication cost metrics regarding maximum and average number of messages

sent by a processor are not reported as all methods display almost the same per-

formance on these metrics. Here, average flop count and average volume values

refer to the total flop count and total volume values, respectively, divided by the

number of processors. We prefer to report average values instead of total values

because the former give a better view on the deviation of maximum from aver-

age. When a normalized value is presented, it means the value of the respective

method divided by that of other method (usually the baseline). Since we aim at

minimizing all performance metrics considered in this chapter, a normalized value

of < 1 means an improvement over the baseline, and deterioration otherwise.

3.5.3.1 Results of CSF-S experiments

Table 3.2 displays the performance improvement rates attained by the optimiza-

tion schemes in Section 3.4 in an incremental way. Note that ”Avg.” row at the

bottom of the table and all other tables refers to the geometric mean. As seen

in the table, on average, utilizing IFS for vertex weighting (Algorithm 4) in FG+

improves the maximum and average flop counts by 8.0% and 4.0%, respectively,

compared to FG. Fiber-net augmentation used in FG++ significantly decreases

maximum and average flop counts respectively by 16.3% and 14.6% compared to

FG+. As seen in the table, utilizing the two optimization schemes in FG++ leads

to a significant decrease in the maximum and average flop counts respectively by

32

23.2% and 17.8% compared to the baseline FG method.

As seen in Table 3.2, in terms of communication volume metrics, FG+ at-

tains slightly better performance compared to FG. That is, FG+ reduces the

maximum and average communication volumes by 6.2% and 7.0% compared to

FG, on average. Comparing FG++ against FG+ shows that although they dis-

play comparable performance in terms of average communication volume, FG++

achieves considerably better performance in terms of maximum communication

volume by an amount of 9.6%. As seen in the table, FG++ achieves a consider-

able decrease in the maximum and average communication volume respectively

by 15.5% and 7.3% compared to the baseline FG method. These findings show

that the use of fiber nets do not lead to performance degradation in communica-

tion volume metrics. This can be attributed to the fact that fiber nets are subnets

of the slice nets. Relatively better performance obtained by FG++ against FG in

terms of maximum volume compared to average volume can be attributed to the

expectation that better computational load balancing achieved by FG++ leads

to a better communication volume balancing. Here and hereafter, the proposed

FG++ will be referred to as impFG.

33

T
ab

le
3.

2:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

in
te

rm
s

of
co

m
p
u
ta

ti
on

al
an

d
co

m
m

u
n
ic

at
io

n
co

st
m

et
ri

cs
on

P
=

51
2

p
ro

ce
ss

or
s

fo
r

C
S
F

-S
.

A
ct

u
al

va
lu

es
(i

n
te

rm
s

of
R

)
N

or
m

al
iz

ed
w

it
h

re
sp

ec
t

to
F

G

F
G

F
G

+
IF

S
(F

G
+

)
F

G
+

IF
S
+

F
N

A
(

F
G

+
+
≡

im
p
F

G
)

fl
op

s
co

m
m

.
vo

l.
fl
op

s
co

m
m

.
vo

l.
fl
op

s
co

m
m

.
vo

l.

T
en

so
r

m
ax

av
g

m
ax

av
g

m
ax

av
g

m
ax

av
g

m
ax

av
g

m
ax

av
g

E
n
r
o
n

71
8,

12
3

64
8,

89
0

43
,7

23
22
,4

36
0.

99
0.

91
1.

00
0.

93
0.

72
0.

70
0.

86
0.

81
F
l
i
c
k
r

1,
47

7,
23

0
1,

15
7,

13
2

10
5,

87
1

52
,9

12
0.

80
0.

99
0.

86
0.

96
0.

75
0.

93
0.

75
0.

85
M
o
v
i
e
s
-
a
m
a
z
o
n

12
6,

15
3

10
7,

98
7

40
,2

90
22
,1

37
0.

93
0.

96
1.

03
0.

89
0.

87
0.

92
1.

00
0.

94
N
e
l
l
-
1

1,
49

1,
70

0
1,

42
1,

46
0

40
9,

82
0

27
9,

58
1

0.
98

0.
98

0.
98

0.
98

0.
82

0.
84

0.
92

1.
04

N
e
l
l
-
2

76
9,

25
5

73
4,

17
5

82
,0

56
40
,1

71
1.

00
0.

98
0.

90
0.

92
0.

74
0.

73
0.

79
1.

15
Y
e
l
p

1,
68

9,
96

1
1,

32
0,

84
0

38
4,

32
8

11
3,

94
1

0.
85

0.
94

0.
86

0.
93

0.
71

0.
85

0.
79

0.
82

A
v
g
.

7
9
8
,6

6
0

6
9
4
,0

4
1

1
1
5
,7

9
3

5
6
,8

1
4

0
.9

2
0
.9

6
0
.9

4
0
.9

3
0
.7

7
0
.8

2
0
.8

5
0
.9

3

IF
S
:

In
ve

rs
e-

F
ib

er
-S

iz
e

fo
r

ve
rt

ex
w

ei
gh

ti
n
g

w
it

h
R

B
(S

ec
s.

3.
4.

1
&

3.
4.

2)
;

F
N

A
:

F
ib

er
N

et
A

u
gm

en
ta

ti
on

(S
ec

.
3.

4.
3)

w
it

h
α

=
10

.

34

Table 3.3 shows how the above-mentioned performance improvements lead to

improving the actual parallel runtimes. In the table, the values under FG are

actual runtimes, while those under impFG are normalized with respect to those

of FG. Under MTTKRP tab, the “comp” column refers to the computational

part of the MTTKRP operation, whereas “tot” refers to the total runtime of the

MTTKRP operation including communication. Comparing “max flops” column

of impFG in Table 3.2 with the “comp” column of impFG in Table 3.3 show that

there exist close correlation between the amount of improvement in maximum flop

count and the amount of improvement in parallel MTTKRP computation time.

That is, the 23% improvement attained by impFG in maximum flop count reflects

as approximately 22% improvement in parallel MTTKRP computation time. In

fact, this close relation also applies to individual tensors except for Nell-2. For

example, 28%, 25%, 13%, 18% and 29% reduction in max flop counts obtained by

impFG for the tensors Enron, Flickr, Amazon, Nell-1 and Yelp respectively

reflect as approximately 36%, 23%, 11%, 15% and 32% improvement in parallel

MTTKRP computation times. This confirms the validity of the maximum flop

count metric in determining the parallel computation time.

Table 3.3 also shows relative runtime performance variation of impFG over

FG with increasing R. We use the same partitioned tensor, for each tensor, to

obtain the parallel running times with different R values. Keep in mind that with

increasing R value, the improvement ratios of impFG over FG remain the same

in terms of computational and communication cost metrics (as in Table 3.2). As

seen in the normalized columns of Table 3.3, the relative performance of impFG

over FG slightly increases with increasing R in terms of both parallel MTTKRP

and CPD-ALS runtimes. This is expected because, with increasing R, while

latency-based communication costs remain the same, communication volume and

computational costs increase.

Table 3.4 shows the effect of augmenting fiber nets on the total communication

volume along the longest mode as well as the other N−1 modes. In the table,

the values under FG are actual communication volume values (in words), while

those under impFG are normalized with respect to those of FG. Comparing the

relative performance of impFG over FG, the fiber-net augmentation along the

35

Table 3.3: Performance comparison in terms of parallel runtimes on P = 512
processors for CSF-S.

FG (times in ms) impFG (normalized)

Tensor R
MTTKRP CP-

ALS
MTTKRP CP-

ALScomp tot comp tot

Enron

32 55.9 152.4 156.8 0.68 0.83 0.83
64 124.0 245.0 260.9 0.64 0.77 0.77

128 302.2 477.5 527.6 0.58 0.69 0.72

Flickr

32 128.5 246.6 330.1 0.77 0.84 0.93
64 246.3 435.3 628.8 0.77 0.80 0.92

128 485.0 824.9 1, 312.1 0.76 0.80 0.95

Movies-a

32 12.5 92.2 100.0 0.91 0.93 0.93
64 28.2 135.5 153.4 0.89 0.93 0.93

128 60.4 218.7 276.3 0.89 0.93 0.92

Nell-1

32 295.3 718.7 888.4 0.86 0.81 0.85
64 570.1 1, 422.2 1, 772.8 0.85 0.82 0.87

128 1, 249.0 3, 106.2 3, 975.8 0.84 0.85 0.89

Nell-2

32 67.7 165.7 176.4 0.99 1.02 1.03
64 159.7 295.4 325.2 0.95 0.99 0.99

128 419.8 643.6 733.1 0.89 0.93 0.94

Yelp

32 202.8 386.2 457.6 0.63 0.75 0.74
64 379.3 716.5 891.3 0.66 0.73 0.72

128 725.8 1, 365.8 1, 861.1 0.72 0.76 0.74

Avg.
32 84.5 232.9 268.1 0.79 0.86 0.88
64 176.0 404.0 484.5 0.78 0.84 0.86

128 387.2 785.7 1,006.2 0.77 0.82 0.85

36

Table 3.4: Performance comparison in terms of total volume during MTTKRP
along the longest mode and other N−1 modes on P = 512 processors for CSF-S.

FG (total volume, in terms of R) impFG (normalized)

Tensor
Longest
mode

N−1
modes

Longest
mode

N−1
modes

Enron 4,476,252 7,006,890 1.06 0.65
Flickr 968,022 26,119,510 1.11 0.84
Movies-a 4,926,116 6,405,454 1.09 0.83
Nell-1 55,605,248 87,536,435 1.24 0.91
Nell-2 10,726,748 9,837,220 1.37 0.91
Yelp 18,634,076 39,700,541 1.10 0.68

Avg. 7,868,030 18,499,059 1.16 0.80

Table 3.5: Computational and communication cost metrics (in terms of R) of the
impFG method with different α values on P = 512 for CSF-S.

α
flops comm. vol.

max avg max avg

Avg. of all tensors

5 600, 591 564, 647 99, 463 54, 371
10 613, 372 572, 075 97, 739 52, 903
50 623, 855 578, 992 94, 929 51, 453

100 626, 631 580, 123 95, 516 51, 085

longest mode incurs an increase in communication volume during the MTTKRP

operation along that mode, whereas it achieves a decrease in communication

volume during MTTKRP operations along all other N−1 modes. As seen in the

table, on average, impFG incurs 16% increase in total volume during MTTKRP

along the longest mode, whereas it achieves 20% decrease in that along all other

N−1 modes.

The above-mentioned experimental finding can be attributed to the fact that

the nets representing the fibers along the longest mode are subnets of the nets that

represent slices of the other N−1 modes. That is, trying to keep fiber nets along

the longest mode internal can be expected to increase the possibility of keeping

the nets representing slices along other N−1 modes internal as well. Recall that

the communication volume during MTTKRP operations along different modes

37

differ depending on the number and connectivities of the cut nets representing

slices along those modes. As seen in the last column of Table 3.3, impFG achieves

an average decrease of 7% compared to FG in total volume during all MTTKRP

operations. However, for some tensors such as Nell-1 and Nell-2, fiber-net

augmentation respectively incurs overall communication volume increase of 4%

and 15%. This is because for FG on Nell-1 and Nell-2, the total volume

along the longest mode is larger than or very close to that of all other N −
1 modes. In other tensors, such as Flickr, the communication volume along all

N−1 modes is significantly larger than that of the longest mode. Therefore, the

overall improvement achieved by fiber-net augmentation depends on two factors;

the relative communication volume during the longest and N−1 modes, and the

increase/decrease incurred/achieved along the longest and other N−1 modes.

Table 3.5 shows the effect of different α values on the performance of fiber-net

augmentation in impFG. We ran the impFG method with α = 5, 10, 50 and

100. We report the average flop count and communication volume statistics in

Table 3.5 as actual values. As seen in the table, increasing the α value (giving

more importance to decreasing total communication volume over decreasing fiber

fragmentation) results in increasing the total flops while the communication vol-

ume is decreased. As a trade-off between total flops and communication volume,

we choose α = 10 for the rest of tables and figures in this section.

3.5.3.2 Results of CSF-D experiments

The performance comparisons in the previous section regarding the incremental

performance improvement attained by the optimization schemes in Section 3.4,

the effect of different R values as well as the effect of α value apply to the CSF-

D scheme as well. In order to present a wider spectrum of results, here we

study the effect of applying the CSF-S-based and the CSF-D-based optimization

schemes on the computational and total volume cost metrics for the CSF-D-based

MTTKRP. We perform this in order to justify proposing a separate optimization

techniques for CSF-D. Here and hereafter, the superscripts ‘S’ and ‘D’ will be

used to distinguish the CSF-S-based and CSF-D-based optimization schemes on

38

Table 3.6: Performance comparison in terms of computational and total volume
metrics on P = 512 processors for CSF-D.

FG + IFSS +FNAS (impFGS) FG+IFSD+FNAD (impFGD)

Longest mode N−1 modes All modes Longest mode N−1 modes All modes

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.Tensor max avg max avg max avg max avg max avg max avg

Enron 1.06 1.00 1.06 0.72 0.70 0.65 0.82 0.79 0.81 1.01 0.97 1.07 0.74 0.71 0.65 0.82 0.79 0.81
Flickr 1.23 1.00 1.11 0.75 0.93 0.84 0.86 0.95 0.85 1.10 1.00 0.46 0.81 0.94 0.85 0.88 0.95 0.84
Movies-amazon 1.04 1.00 1.09 0.87 0.92 0.83 0.94 0.95 0.94 0.87 0.72 0.94 0.85 0.92 0.76 0.86 0.83 0.84
Nell-1 1.18 1.00 1.24 0.82 0.84 0.91 0.95 0.89 1.04 1.05 0.95 1.21 0.84 0.86 0.92 0.91 0.89 1.04
Nell-2 1.01 1.02 1.37 0.74 0.73 0.91 0.84 0.83 1.15 0.81 0.69 0.96 0.74 0.71 0.66 0.77 0.70 0.81
Yelp 1.01 1.00 1.10 0.71 0.85 0.68 0.83 0.92 0.82 0.81 0.71 0.97 0.73 0.87 0.74 0.76 0.80 0.81

Avg. 1.09 1.00 1.16 0.77 0.82 0.80 0.87 0.89 0.93 0.93 0.83 0.90 0.78 0.83 0.76 0.83 0.82 0.86

IFSS, FNAS and impFGS denote the improvement schemes denoted at the bottom of Table 3.2

the FG method. All the experiments in this section utilize the CSF-D-based

MTTKRP regardless of the type of optimization scheme applied.

Table 3.6 compares impFGD against impFGS in terms of computational and

total communication volume statistics normalized with respect to those of FG.

In the table, these statistics are detailed along the longest mode, remaining

N − 1 modes, and all modes. As seen in the table, on average, utilizing the

IFS scheme and fiber-net augmentation for the longest mode only (CSF-S-based

improvements) in the impFGS method improves the maximum and average flop

counts by 13.0% and 11.0%, respectively, compared to the FG method in all

modes. Utilizing the IFS scheme and fiber-net augmentation for both longest

and second longest modes (CSF-D-based improvements) in the impFGD method

improves the maximum and average flop counts by 4.6% and 7.8%, respectively,

compared to the impFGS method in all modes. Although the maximum and

average flop counts along N −1 modes are almost the same for both impFGS

and impFGD, the relative improvements in all modes come from improving the

maximum and average flop counts along the longest mode by 14.6% and 17.0%,

respectively. As also seen in the table, the impFGD method respectively achieves

17.0% and 18.0% improvements in maximum and average flop counts compared

to the baseline FG method.

Comparison in terms of total volume metric shows a similar behavior as the

comparison in terms of computational cost metrics discussed above. That is,

39

utilizing the CSF-S-based improvements for the CSF-D-based MTTKRP in the

impFGS method incurs an increase of 16.0%, on average, in total volume along

the longest mode compared to FG. On the other hand, impFGD achieves an

improvement of 10.0% in total volume during the MTTKRP along the longest

mode as a result of augmenting the fiber nets along the second longest mode. The

effect of this improvement can be seen in the table as 7.5% improvement in terms

of total volume of impFGD compared to impFGS along all modes. As seen in the

table, impFGD achieves 14% improvement in terms of total volume compared to

FG along all modes.

Table 3.7: Performance comparison in terms of parallel runtimes on P = 512
processors for CSF-D with R = 64.

FG (in ms) impFGD (normalized)

MTTKRP CP-
ALS

MTTKRP CP-
ALSTensor comp tot comp tot

Enron 131.2 252.7 266.2 0.73 0.81 0.82
Flickr 252.0 443.6 631.5 0.81 0.84 0.93
Movies-amazon 29.5 136.1 154.2 0.90 0.88 0.89
Nell-1 521.6 1, 393.8 1, 746.0 0.92 0.83 0.90
Nell-2 155.7 296.2 325.6 0.71 0.78 0.78
Yelp 502.7 851.8 1, 027.2 0.69 0.73 0.71

Avg. 184.78 418.40 497.36 0.79 0.81 0.83

Table 3.7 shows how the performance improvement achieved by the proposed

impFGD method in computational and total volume metrics lead to improve-

ments in actual parallel runtimes. In the table, the values under FG are actual

runtimes, while those under impFGD are normalized with respect to those of FG.

Comparing “max flop” column of impFGD in Table 3.6 (along all modes) with the

“MTTKRP comp” column of impFGD in Table 3.7 shows the close correlation

between the amount of improvement in maximum flop count and the amount of

improvement in parallel MTTKRP computation time. That is, the 17.0% im-

provement attained by impFGD in maximum flop count reflects as approximately

21.0% improvement in parallel MTTKRP computation time, on average. As also

seen in the table, the CPD-ALS runtime improves, on average, by 17.0% as a

result of applying the optimization schemes for CSF-D.

40

Figures 3.3a and 3.3b respectively display the strong scaling curves of impFG

vs FG and impFGD vs FG. Note that in 3.3a the CSF-S scheme is utilized for

computing the MTTKRP, whereas in 3.3b the CSF-D is utilized instead. The

curves display parallel runtimes of the CPD-ALS algorithm on P = 128 up to

P = 1024 processors with R = 64. As seen in the figure, impFG increases the

scalability of FG for both CSF-S and CSF-D schemes on all tensors. The relative

scalability between impFG and FG for CSF-S and CSF-D schemes shows similar

trend for all tensors, except for Nell-2 which favors the CSF-D scheme. That

is, for Nell-2, although impFG and FG show very close scaling performance for

CSF-S scheme, impFGD displays significantly better performance than FG for

CSF-D. A grasp of the actual runtime values can be taken from comparing the

values of the CPD-ALS column in Table 3.3 for R = 64 with the same column

values in Table 3.7.

41

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

E
nr

on
F

lic
kr

M
ov

ie
s−

A
m

az
on

N
el

l−
1

N
el

l−
2

Ye
lp

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

20
0

25
0

30
0

35
0

40
0

45
0

50
0

nu
m

be
r

of
 p

ro
ce

ss
or

s

CP−ALS runtime (in ms)

●
F

G
im

pF
G

(a
)

C
S

F
-S

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

E
nr

on
F

lic
kr

M
ov

ie
s−

A
m

az
on

N
el

l−
1

N
el

l−
2

Ye
lp

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

12
8

25
6

51
2

10
24

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

nu
m

be
r

of
 p

ro
ce

ss
or

s

CP−ALS runtime (in ms)

(b
)

C
S

F
-D

F
ig

u
re

3.
3:

S
tr

on
g

sc
al

in
g

cu
rv

es
fo

r
p
ar

al
le

l
C

P
D

-A
L

S
ob

ta
in

ed
b
y

F
G

an
d

im
p
F

G
u
si

n
g

(a
)

C
S
F

-S
an

d
(b

)
C

S
F

-D

42

3.6 Related Work

In the literature, there are various CPD-ALS implementations adopting differ-

ent parallelism paradigms [32, 36, 53, 63–66]. On distributed-memory systems,

DMS [53] is the most commonly-used implementation. DMS adopts a multi-

dimensional cartesian partitioning approach, however it does not support different

partitioning techniques coming in more irregular forms.

To devise intelligent tensor partitioning models, sparse matrix partitioning

community adapted well-known sparse matrix partitioning models for tensors.

These models came in different granularities: coarse-grain [28], multi-dimensional

cartesian model [30], fine-grain [28] and medium-grain [31]. The multidimen-

sional cartesian model is derived from the hypergraph model proposed earlier for

2D checkerboard partitioning of sparse matrices [67, 68]. The fine-grain model

can be considered as an extension of the fine-grain hypergraph model for 2D

nonzero-based sparse matrix partitioning [67, 69, 70] to multi-dimensional tensor

partitioning. The recent general medium-grain model [31] can be considered as

an extension of the medium-grain model for 2D sparse matrix partitioning [71]

to tensors. Among these, fine-grain model achieves the minimum communication

volume as well as the best computational balance on the tensor nonzeros assigned

to processors.

Sparse tensor storage formats include COO (coordinate) [28], CSF (compressed

sparse fiber) [33], and HiCOO (hierarchical coordinate) [34]. COO corresponds

to a list of tensor nonzeros, where each nonzero represented by a list of indices

and the value. Besides its simplicity, COO stores repeated indices (within a fiber

or a slice) redundantly and the MTTKRP on COO performs redundant flops (see

section 3.3.1). CSF and HiCOO are motivated by reducing the storage used by

COO, due to the limited memory in shared-memory architectures. While the

(sequential) MTTKRP algorithm on HiCOO has the same flop count as that on

COO, the algorithm on CSF achieves a much better flop count compared to those

on COO-based formats. This improvement in the flop count makes CSF the most

favorable alternative for the local MTTRKP computation on distributed-memory

43

systems.

3.7 Conclusion

We proposed two improvement schemes to the existing fine-grain hypergraph

model in order to address the deficiencies introduced by utilizing the CSF-oriented

MTTKRP for distributed-memory CPD-ALS computation. The improvement

schemes target at achieving true computational load balancing among proces-

sors, thus leading to faster parallel runtime. The improvement schemes do not

deteriorate the communication overhead. In fact, the total volume overhead de-

creases as a result of better load balancing, while the latency overhead stays the

same as that of the FG method. On average, applying the proposed improve-

ment schemes to the FG method improves the parallel MTTKRP computation

time and the overall CPD-ALS time respectively by 22.0% and 14.0% on 512

processors, and with similar percentages on 128, 256 and 1024. As future work,

we plan to extend the proposed true balancing method for other nonzero-based

tensor partitioning models.

44

Chapter 4

Latency Hiding in Distributed

Sparse Tensor Decomposition

4.1 Overview

In this chapter, we propose hiding the latency overhead of sparse expand and

reduce operations of CPD-ALS by embedding them into ALL-REDUCE. Although

CPD-ALS has an ALL-REDUCE for each sparse expand and reduce communication,

it is not possible to embed each sparse expand/reduce due to the dependencies

between the sparse operations and ALL-REDUCE. We propose a novel computa-

tion/communication rearrangement scheme of the CPD-ALS that removes the

dependencies and enables embedding each of the sparse expand/reduce opera-

tions into an ALL-REDUCE.

We use the hypercube-based ALL-REDUCE which utilizes the E-cube routing for

embedding and we denote the embedding scheme by EMB hereafter. The utilized

hypercube topology is virtual and transparent to the actual network topology of

the target system. In the naive implementation of EMB, each individual P2P

message of a sparse expand/reduce operation is considered separately. This may

lead to multiple copies of the same expanded/reduced factor-matrix row be in the

45

same message between two processors during the embedded-ALL-REDUCE. There-

fore, we propose an expand-and-reduce-aware embedding in which each message

contains only one copy of a factor-matrix row in each step of ALL-REDUCE. We

also extend the existing communication duality between sparse reduce and expand

operations into EMB by proposing to use increasing dimension E-cube routing

during the expand-embedded-ALL-REDUCE, while using decreasing dimension E-

cube routing during reduce-embedded-ALL-REDUCE, or vice versa.

The proposed EMB totally avoids the latency overhead associated with the

sparse expand and reduce operations and reduces both maximum and average

number of messages handled by a processor to 2 log2K for each MTTKRP for

a K-processor system independent of the sparsity pattern of the tensor. The

only trade-off between the proposed EMB and conventional P2P schemes is the

increase in the communication volume incurred by embedding the P2P commu-

nications into the ALL-REDUCE communications.

In order to model the communication requirement of EMB, we define a concur-

rent communication cost metric which counts how many times each shared factor-

matrix row is concurrently communicated along hypercube dimensions during the

E-cube routing. Then we propose a novel recursive bipartitioning (RB) framework

that enables simultaneous hypergraph partitioning (HP) and subhypergraph-to-

subhypercube mapping to achieve task-to-processor assignment which encodes

minimizing the concurrent communication volume metric. In this HP model, we

propose and use sibling subnet removal and net-anchoring schemes at each level

of RB. We also propose a novel bin-packing adaptation for the factor-matrix

row to processor assignment in order to minimize the maximum volume handled

by a processor during both expand-embedded and reduce-embedded ALL-REDUCE

operations. The proposed extension of duality to EMB enables the proposed

bin-packing to encode the minimization of maximum volume for only one sparse

embedding which holds for the other.

Experimental results with thirteen tensors on up to 4096 processors show the

validity of the proposed models and methods. These results show that EMB

scales well up to 4096 processors, whereas state-of-the-art P2P scales down after

46

1024 processors.

The rest of the chapter is organized as follows: Sec. 4.2 contains the communi-

cation details of the nonzero-based parallel CPD-ALS algorithm. The proposed

rearrangement scheme that enables embedding is discussed in Sec. 4.3. Sec. 4.4

presents the proposed embedding scheme. The proposed RB-based HP model

for task-to-processor assignment is described in Sec. 4.5. Sec. 4.6 displays and

discusses the experimental results. The related work is given in Sec. 4.7. Finally,

Sec. 4.8 concludes the chapter.

4.2 Preliminaries: Parallel CPD-ALS

We adopt nonzero-based parallelization of CPD-ALS. In this parallelization, ten-

sor nonzeros are distributed among processors and processors locally compute

(partial) results for factor matrices using those nonzeros according to the owner-

computes rule. For processor pk, the factor matrix rows are classified into three

categories according to the tensor nonzeros distribution as follows: Factor-matrix

row ri is said to be local if the nonzeros that contribute to its computation reside

in pk. ri is said to be local-shared if the nonzeros that contribute to its compu-

tation reside in a set of sharing processors Ŝi ⊆ P, |Ŝi| > 1 ∧ pk ∈ Ŝi, and the

processor responsible for holding the final value of ri is pk. In such case, pk is

called the owner of ri and denoted by owner(ri). We use Si = Ŝi \ owner(ri) to

identify the set of sharing processors without the owner. A local factor matrix

that contains local and local-shared rows is denoted by Ak. ri is said to be non-

local if pk has one or more nonzeros that contribute to its computation but pk

is not its owner. A local factor matrix that contains Ak in addition to nonlocal

rows is distinguished by the hat notation as Âk.

We use 3-mode tensors here and in Sec. 4.3 for a convenient presentation. The

discussions easily extend to higher dimensional tensors (i.e., N>3). Algorithm 8

describes the parallel CPD-ALS for 3-mode tensors. The communication require-

ment in this algorithm is detailed for updating A per processor pk as follows.

47

After the local MTTKRP (line 3), partial results of local-shared factor matrix

rows are received while partial results of nonlocal rows are sent to their owner

processors. The received partial results are reduced using an associative oper-

ation to form the up-to-date local-shared rows. This communication operation

is referred to as sparse reduce. Using the up-to-date local and local-shared fac-

tor matrix values, the product in line 5 can be computed locally. Then, column

normalization requires computing λ that depends on all factor matrix columns

through ALL-REDUCE in line 6. The normalized local-shared row ri is needed by

the processors in Si for the computation of the factor matrix along the next tensor

mode. Therefore, the local-shared rows are sent (expanded) to and the nonlocal

rows are received from their respective owner processors (line 7). This operation

is referred to as sparse expand. Finally, the partial A>A product can be com-

puted locally using local and local-shared rows and an ALL-REDUCE operation is

used for computing the final product (line 8).

Algorithm 8 Parallel CPD-ALS (X) for 3-mode Tensors

1: Randomly initialize factor matrices A, B, and C
2: while not converged do

3: Â′k←X
(1)
k (B̂k � Ĉk) . MTTKRP

4: Sparse REDUCE on shared A-matrix rows
5: Ak←A′k(C

>C∗B>B)−1

6: ALL-REDUCE to normalize cols of A into λ
7: Sparse EXPAND on shared A-matrix rows
8: ALL-REDUCE to compute A>A

9: B̂′k←X
(2)
k (Âk � Ĉk) . MTTKRP

10: Sparse REDUCE on shared B̂-matrix rows
11: Bk←B′k(C

>C∗A>A)−1

12: ALL-REDUCE to normalize cols of B into λ
13: Sparse EXPAND on shared B-matrix rows
14: ALL-REDUCE to compute B>B

15: Ĉ′k←X
(3)
k (Âk � B̂k) . MTTKRP

16: Sparse REDUCE on shared Ĉ-matrix rows
17: Ck←C′k(B

>B∗A>A)−1

18: ALL-REDUCE to normalize cols of C into λ
19: Sparse EXPAND on shared C-matrix rows
20: ALL-REDUCE to compute C>C

return Jλ;A,B,CK

48

4.3 Rearrangement of Parallel CPD-ALS to En-

able Embedding

In the parallel CPD-ALS shown in Algorithm 8, there are two sparse reduce and

expand operations per tensor mode to satisfy the computational requirement of

the MTTKRP operation. The dual sparse reduce and expand operations (re-

spectively in lines 4 and 7) are performed to complete the computation of local

and local-shared A-matrix rows. Similarly, the dual sparse reduce and expand

in lines 10, 13 and lines 16, 19 do so respectively for B- and C-matrix rows.

Furthermore, there are two ALL-REDUCE operations attached with the computa-

tion of factor matrices along each mode. Despite having an ALL-REDUCE for each

sparse expand/reduce, it is not possible to embed each sparse expand/reduce

in the current form of Algorithm 8. This is due to the dependencies of the two

ALL-REDUCE operations in lines 6 and 8 to the sparse reduce in line 4. That is, the

sparse reduce cannot be embedded into the ALL-REDUCE in line 6 because the Ak

rows, which are computed in line 5, are required for the computation of λ. Fur-

thermore, the sparse expand in line 7 cannot be embedded into the ALL-REDUCE

in line 6 because distributed column normalization need to be performed before

the expand. On the other hand, the sparse expand can be embedded into the

ALL-REDUCE in line 8. Although embedding the sparse expand alone is important,

it is insufficient for hiding latency since the sparse reduce, performed as P2P, will

still be a bottleneck due to the high number of messages.

We propose to rearrange the computation and communication steps in Algo-

rithm 8 to enable the embedding of all sparse expand/reduce operations without

any dependency issues. We highlight two important observations that facilitate

the rearrangements for successful embedding.

First observation: It is possible to expand non-normalized Ak-matrix rows

just after the operation in line 5, and then normalize Âk-matrix rows. In other

words, instead of expanding normalized local-shared Ak rows, which requires the

λ vector to be ready in advance, the non-normalized local-shared Ak rows are

expanded while computing global λ using ALL-REDUCE. The extra cost here is that

49

each processor will take the responsibility of normalizing nonlocal rows in addition

to local and local-shared rows. With this observation the dependency between

the ALL-REDUCE (line 6) and the sparse expand (line 7) can be removed, allowing

the latter operation to be embedded into the former. The same argument applies

to the normalization of B- and C-matrix columns in lines 12 and 18, respectively.

Second observation: The A>A product (line 8 of Algorithm 8) is not re-

quired until the operation in line 11. The associated ALL-REDUCE neither has

dependency on the sparse expand in line 7 nor on the sparse reduce in line 10,

thus it can be used to embed the sparse reduce of the next mode. Similar discus-

sion holds for the ALL-REDUCE associated with B>B. The C>C product (line 20)

is not required until the operation in line 5 of the next iteration. The associated

ALL-REDUCE neither has dependency on the sparse expand in line 19 nor on the

sparse reduce in line 4 of the next iteration, and therefore it can be placed any-

where between line 19 of the current iteration to before the operation in line 5 of

the next iteration. This inter-mode and inter-iteration rearrangement is similar

to the software pipelining used in compiler design and operating systems.

Algorithm 9 shows the rearranged version of Algorithm 8. Lines 7, 8, 10, 11 of

Algorithm 9 realize the column normalization of matrix A, performed in line 6 of

Algorithm 8, utilizing the first observation. In a similar way, lines 16, 17, 19, 20

and 25, 26, 28, 29 realize the column normalization of B and C, respectively. The

ALL-REDUCE operation for computing A>A is shifted forward to be a neighbor

to the sparse reduce of the second mode (lines 13, 14). The same applies to

B>B and the sparse reduce of the third mode (lines 22, 23). On the other hand,

C>C is shifted to be a neighbor to the sparse reduce of the first mode in the

next CPD-ALS iteration. The highlighted boxes show the sparse operations to

be embedded in the preceding/following ALL-REDUCE. Since there are two sparse

reduce and expand operations per tensor mode, the rearranged algorithm shows

six boxes to indicate that all sparse operations are to be embedded for 3-mode

tensors.

50

Algorithm 9 Rearranged Parallel CPD-ALS (X) for 3-mode Tensors

1: Randomly initialize factor matrices A, B, and C
2: while not converged do

3: Â′k←X
(1)
k (B̂k � Ĉk) . MTTKRP

4: Sparse REDUCE on shared A-matrix rows
5: ALL-REDUCE to compute C>C

6: Ak←A′k(C
>C∗B>B)−1

7: λ′c ← 〈Ak(:, c),Ak(:, c)〉, ∀c ∈ [1..R]

8: ALL-REDUCE to compute λ′

9: Sparse EXPAND on shared A-matrix rows

10: λr ←
√
λ′c, ∀c ∈ [1..R]

11: Âk(:, c)← Âk(:, c)/λc, ∀c ∈ [1..R]

12: B̂′k←X
(2)
k (Âk � Ĉk) . MTTKRP

13: Sparse REDUCE on shared B-matrix rows
14: ALL-REDUCE to compute A>A

15: Bk←B′k(C
>C∗A>A)−1

16: λ′c ← 〈Bk(:, c), B̂k(:, c)〉, ∀c ∈ [1..R]

17: ALL-REDUCE to compute λ′

18: Sparse EXPAND on shared B-matrix rows

19: λc ←
√
λ′c, ∀c ∈ [1..R]

20: B̂k(:, c)← B̂k(:, c)/λc, ∀c ∈ [1..R]

21: Ĉ′k←X
(3)
k (Âk � B̂k) . MTTKRP

22: Sparse REDUCE on shared C-matrix rows
23: ALL-REDUCE to compute B>B

24: Ck←C′k(B
>B∗A>A)−1

25: λ′c ← 〈Ĉk(:, c), Ĉk(:, c)〉, ∀c ∈ [1..R]

26: ALL-REDUCE to compute λ′

27: Sparse EXPAND on shared C-matrix rows

28: λc ←
√
λ′c, ∀c ∈ [1..R]

29: Ĉk(:, c)← Ĉk(:, c)/λc, ∀c ∈ [1..R]
return Jλ;A,B,CK

51

4.4 Embedding Sparse Expand and Reduce

In order to realize the sparse expand and reduce operations using P2P messages,

processor px should maintain two processor sets: workers set (WS) and masters

set (MS) respectively defined as

WS(px) =
⋃

i� ri is local-shared

Si,

MS(px) = {owner(ri) | ri is nonlocal}.

That is, WS(px) contains the processors that contribute to the computation of

any row that px owns, whereas MS(px) contains the processors that px is partially

contributing to the computation of a row they own. Then, a sparse expand

(reduce) on row ri is achieved as messages from (to) px to (from) every processor

in WS(px)(MS(px)).

4.4.1 Naive P2P Embedding

The hypercube-based ALL-REDUCE can be performed in log2K steps for a sys-

tem with K = 2D processors. The K processors are virtually organized as a

D-dimensional hypercube topology H. In H, each processor is represented by a

D-bit binary number. We interchangeably use px to refer both index of a proces-

sor and its D-bit binary representation. Two processors are said to be neighbors

along dimension i if their binary representation differ only in least significant bit i.

In a D-dimensional hypercube, a d-dimensional subcube (0≤d<D) is represented

by d don’t care bits (X) and D−d fixed 0/1 bits thus having 2d processors. Tearing

along dimension i is defined as halving H into two disjoint (D−1)-dimensional

subcubes such that the processors in the two sets are identified by the ith bit.

For example, a tearing along dimension i=1 on processor set PXXXX organized as

a 4-dimensional hypercube can be shown by processor sets PXX0X and PXX1X. The

hypercube-based ALL-REDUCE is well known and comes with several names such

as E-cube routing, bidirectional exchange and exchange-add [72–74]. We adopt

this ALL-REDUCE scheme and we use R(H) to refer to it hereafter. A step si of

52

R(H) represents the exchange of messages between neighboring processors along

dimension i.

The naive embedding of P2P into ALL-REDUCE utilizing R(H) is described as

follows: A message m(px, pz) originating from px is sent from px to the neighbor

at dimension i where i is the position of the least significant 1 bit in the XOR

product px⊕ pz. If the neighbor py at dimension i is the destination processor

(py = pz), then m(px, pz) is received and need not to be in any exchange in any

upcoming step. Otherwise, py stores m(px, pz) in a forward buffer and sends it to

its neighbor at dimension j > i, where j is the position of the least significant 1

bit in py⊕pz. A message is guaranteed to arrive to its destination in at most D

steps.

4.4.2 Expand-and-Reduce-Aware Embedding

Consider expanding a local-shared factor matrix row ri from p0 to p3 and p5. In

the naive EMB implementation, this expand consists of two different messages

m(p0, p3) and m(p0, p5). Using R(H), these messages will respectively take the

routes p0→ p1→ p3 and p0→ p1→ p5. This means that ri is sent (forwarded)

twice in the message from p0 to p1. In general, a message between processor px

and its neighbor py in any step can contain up to D−1 duplicates of the same

row ri. This is because the naive EMB described in Sec. 4.4.1 is unaware of

the nature of the sparse expand and reduce. We can reduce the increase in the

communication volume in EMB by exploiting the nature of the sparse expand

and reduce operations via avoiding transmitting the same row more than once in

a message between hypercube neighbors.

We propose an intelligent expand-and-reduce-aware EMB that avoids trans-

mitting more than one copy of any row between hypercube neighbors as follows:

During an embedded sparse expand, multiple copies of row ri at step s of R(H)

are sent only once. During an embedded sparse reduce, multiple copies of row ri

at step s of R(H) are reduced locally, and then sent as one copy. So, the reduce

on ri in the intelligent EMB is done during the routing steps of R(H), whereas in

53

naive EMB it is done at the receiving end by owner(ri) when all reduce messages

are received.

4.4.3 Communication Duality in Embedding

In CPD-ALS, each shared factor-matrix row ri is reduced from processors in Si

to owner(ri) and then the updated ri (through local operations) is expanded

from the same owner(ri) to the same set of processors Si. That is, the same set

of processors contribute to and need row ri. We call such reduce and expand

operations as dual communications.

In the P2P implementation, dual communications incur dual communication

patterns. That is, if processor px sends ri to py in the reduce communication,

px will receive ri from py in the expand communication. This means that the

maximum expand send volume is equal to the maximum reduce receive volume.

The same holds for maximum expand receive and maximum reduce send volumes.

We extend the duality definition of the P2P implementation to the EMB im-

plementation as follows: The embeddings Γe and Γr of dual P2P expand/reduce

are said to be dual if for each send message at step si of Γe, there exists a step sj

of Γr which involves a receive message with the same constituent rows, and vice

versa. This duality ensures that the maximum send/receive volumes at step si

of Γe are equal to the maximum receive/send volumes at step sj of Γr, and both

Γe and Γr incur the same amount of communication, including the forwarding

overhead due to message routing.

According to the definition of duality in EMB, if both embeddings Γr and Γe

utilize the R(H) routing then they are not dual. Here we propose an EMB imple-

mentation that satisfies the duality definition and attains the nice properties of

the dual reduce-and-expand communications. As the E-cube routing algorithm

R(H) defined earlier proceeds in increasing dimension order, we then define an

inverse routing algorithm R−1(H) that proceeds in decreasing dimension order.

54

That is, in step si of R(H) neighboring processors exchange messages along di-

mension i, whereas in step si of R−1(H) processors exchange messages along

dimension D−i−1, for i = 0, . . . , D− 1. The following theorem shows duality in

the proposed EMB implementation.

Theorem 1. Utilizing R(H) for embedding P2P sparse expand and R−1(H) for

embedding a dual P2P sparse reduce (or vice versa) incurs dual embedded expand

and reduce.

Proof. In R(H), each message m(px, pz) of the P2P expand of row ri from px =

owner(ri) to pz ∈ Si routes through a certain path ρ= px→· · ·→ py→· · ·→ pz.

By the definition of R(H) and R−1(H), a message m(pz, px) of the dual P2P

reduce of row ri follows the same path with reverse order ρ−1 = pz→· · ·→ py→
· · ·→ px. This means that for each expanded row in the message from py to its

neighbor pt in step s of R(H), there is a dual reduced row in the message from pt

to py in step D−s−1 of R−1(H). Therefore, the constituent rows of the message

from py to its neighbor pt in step s of R(H) are the same as those in the message

from pt to py in step D−s−1 of R−1(H).

Duality in the EMB implementation, as well as in the P2P implementation,

of expand and reduce is pivotal in reducing the problem size for intelligent parti-

tioning models that encode decreasing communication cost metrics. Furthermore,

the duality in EMB enables halving the storage overhead required for routing the

data. That is, without the duality property there will be an explicit need for

separate forward buffers during embedded expand and reduce operations.

4.5 Task-to-Processor Mapping

The objective of the proposed task partitioning and mapping is to minimize the

communication volume overhead incurred by the embedding of the P2P com-

munications into ALL-REDUCE. For this purpose, we define a communication cost

metric which is set as the sum of the concurrent communication volume incurred

55

000P 001P

011P010P

101P

111P110P

100P

(a) Step 0: concur-
rent volume=1 total
volume=1

000P 001P

011P010P

101P

111P110P

100P

(b) Step 1: concur-
rent volume=1 total
volume=2

000P 001P

0110P010P

101P

111P110P

100P

(c) Step 2: concur-
rent volume=1 total
volume=2

000P 001P

011P010P

101P

111P110P

100P

(d) Expand done

Figure 4.1: A sample expand operation for a row ri from the owner(ri) = p1 to
Si = {p2, p6, p7} in the embedded communication with E-cube routing.

by each shared factor-matrix row in EMB. In this concurrent communication cost

metric, possibly multiple communications incurred by the same shared matrix row

along the same dimension are counted as one. We preferred this communication

cost metric in order to capture some form of volume concurrency involved in

the expand and reduce operations associated with the shared factor-matrix rows

during the ALL-REDUCE operations.

Figure 4.1 shows a sample expand incurred by a shared factor-matrix row ri

from owner(ri) = p2 to Si = {p2, p6, p7} for E-cube routing on a 3-dimensional

hypercube. The gray processors denote the intermediate processors which do not

need ri but involve in expanding ri in EMB. In the figure, two communication

operations along dimension two contributes only one to the concurrent commu-

nication volume. Then concurrent communication volume is three.

56

4.5.1 Hypergraph Model

Our proposed method utilizes a hypergraph model for nonzero-based partition-

ing. In this hypergraph model (will be denoted by H), vertices represent atomic

tasks, whereas nets represent factor-matrix rows. Here atomic tasks may refer

to individual tensor nonzeros as well as disjoint nonzero clusters. The former

case corresponds to the fine-grain [37, 45] tensor partitioning (see Section 3.2.2),

whereas the latter case corresponds to the medium-grain [44] tensor partition-

ing. Each vertex is associated with a weight equal to the number of nonzeros it

represents and each net is associated with a cost of R.

In H, consider a net nAi representing factor matrix row A(i, :) along mode 1.

Then, pins of this net represent the set of atomic tasks that contribute to the

computation of A(i, :) during the MTTKRP operation along mode 1. During

the MTTKRP operations along the two modes, the pins of this net represent the

set of atomic tasks that need A(i, :) for their associated computations along that

mode. Thus, nAi can be considered as encoding reduce type of communication

along mode 1, whereas encoding expand type of communication along the two

other modes. A similar discussion holds for nets nBj and nCk along modes 2 and

3, respectively.

A K-way partition on H with the objective of minimizing the “connectivity-1”

metric given in (2.7) encodes minimizing the sum of the total communication

volume along all MTTKRP operations. This does not encapsulate the communi-

cation of EMB but it does encapsulate the communication of P2P as follows: In

a given partition Π(H), if net nAi is internal to part Vk then row A(i, :) is local to

part/processor Vk/pk since all atomic tasks that contribute to and use that factor-

matrix row are assigned to that part/processor. If net nAi is cut, then row A(i, :)

becomes a shared row so that A(i, :) is local-shared for processor owner(A(i, :)),

whereas it is nonlocal for the processors in Si = Λ(nAi)\owner(A(i, :)). If nAi is

cut, its connectivity set Λ(nAi) = Ŝi denotes the set of processors that produce

partial results for rHi during the MTTKRP operation along mode 1. Ŝi also de-

notes set of processors that need A(i, :) during MTTKRP operations along the

57

two other modes. Thus, cut net nAi will incur reduce communication from the set

of processors in Si to the processor owner(A(i, :), whereas it will incur expand

communication from the processor owner(A(i, :)) to processors in Si. A similar

discussion holds for nets nBj and nCk along modes 2 and 3, respectively.

In the following subsection, we describe how H is utilized in an RB-based

method that achieves many-to-one task mapping with the objective of reducing

the concurrent communication volume incurred by the shared rows in EMB.

4.5.2 Recursive-Bipartitioning Scheme

In the proposed method, the RB levels are denoted as d=0, · · · , log2K−1, where

d=0 denotes the root (bipartitioning of the original hypergraph) and d=log2K−1

denotes the last internal level containing K/2 subhypergraphs. 2d hypergraphs in

the dth level are denoted byHd
1, . . . ,Hd

2d
from left to right for 0≤d< log2K. Note

that the RB tree is constructed utilizing the breadth-first bipartitioning order.

The RB steps are encoded as subtensor/subhypergraph-to-subcube mappings

as follows: The root of the RB tree corresponds to hypergraphH0
0 representing the

given tensor, which is initially mapped to whole hypercube PX···X. At level d=0,

bipartitioningH0
0 into subhypergraphsH1

0 andH1
1 is encoded as mapping the sub-

tensors represented by H1
0 and H1

1 respectively to the subcubes PX···X0 and PX···X1

of hypercube PX···X. At level d=1, bipartitioning H1
0 into H2

0 and H2
1 is encoded as

mapping the subtensors represented by H2
0 and H2

1 respectively to the subcubes

PX···X00 and PX···X10 of hypercube PX···X0; and bipartitioning H1
1 into H2

2 and H2
3 is

encoded as mapping the subtensors represented by H2
2 and H2

3 respectively to the

subcubes PX···X01 and PX···X11 of hypercube PX···X1. These two bipartitioning and

mapping operations together corresponds to tearing hypercube along dimension

d= 1. That is, PX···X00 ∪ PX···X01 =PX···X0X and PX···X10 ∪ PX···X11 =PX···X1X. This pro-

cess is repeated at each level of the RB tree. Figure 4.2a shows simultaneous

bipartitioning/mapping for a 3-dimensional hypercube. The RB-levels 0, 1 and

2 in the figure, respectively correspond to the tearing of the hypercube shown in

Figure 4.1 along dimensions 0, 1 and 2.

58

In order to encode the objective of concurrent communication volume mini-

mization mentioned earlier, we utilize a modified and enhanced version of the

net splitting strategy, that is mentioned in Section 2.4 and used to encode

the “connectivity-1” metric, in the above-mentioned recursive bipartitioning and

mapping framework. The proposed enhancement is performed among the sub-

nets of the same net within a same level, whereas conventional cut net splitting

is continued to be applied across levels.

Consider the case where the subhypergraphs at a particular RB-level d contains

multiple subnets (split nets) n′i, n
′′
i , · · · , n′···′i of the same net ni. Also consider the

bipartitioning of the first level-d hypergraph Hd
x that contains the subnet n′i of

that net ni. It is clear that there are three cases of net n′i in the bipartition

Π2(Hd
x) = {V0,V1}: n′i is cut, n′i is internal to left part V0 or right part V1.

1. n′i is cut in Π(Hd
x): This means that shared-factor matrix row ri is commu-

nicated along dimension d of the hypercube thus already encapsulating the

concurrent communication volume metric along dimension d. Then we can

safely remove its sibling nets n′′i , · · · , n′···′i from the respective subhypergraph

partitionings Π(Hd
y>x) to be performed later at this level. Although these sib-

ling nets are not considered in the respective subhypergraph partitionings, the

bipartitioning results of these subhypergraphs will be utilized to apply con-

ventional cut net splitting on these sibling nets for including them into the

subhypergraphs to be bipartitioned at the further RB levels ` > d.

2. n′i is internal to left part V0 in Π(Hd
x): This means that shared factor-matrix

row ri will incur concurrent communication volume only if at least one of its

sibling nets n′′i , · · · , n′···′i connect the right part V1 in a bipartition Π(Hd
y>x)

to be obtained at the current level. This corresponds to the case where that

sibling net is either cut or internal to right part V1 in that bipartition Π(Hd
y>x).

Unfortunately current HP methods only adopt the cut net metric in two-way

partitionings thus they cannot encode the increase in the cutsize for nets that

are either cut or internal to a part. For this purpose, we introduce the net-

anchoring scheme which is realized as follows: we introduce two vertices vF0

and vF1 which are fixed to left and right parts V0 and V1, respectively. Then a

59

net is said to be anchored to the left part if it connects vF0 , whereas it is said

to be anchored to the right part if it connects vF1 .

We utilize net-anchoring to encode the concurrent communication volume for

such nets as follows: In each subhypergraph Hd
y>x that contains a sibling net n′′i

of n′i, we anchor n′′i to the left part V0. In this way, we enforce n′′i to connect left

part in all bipartitions of those hypergraphs to be obtained at the current level.

Thus, if n′′i connects part V1 in any bipartition Π2(Hd
y>x) then it will become

cut and increasing the cutsize so that it will encode concurrent communication

volume to be incurred correctly. After the first bipartition Π2(Hd
y>x) in which

n′′i is cut at level d, all other further sibling nets n′′′i , · · · , n′′′···′i will be removed

from the respective subhypergraph Hd
z>y partitionings at level d in accordance

with the Case 1.

3. n′i is internal to right part V1 in Π(Hd
x): This case is handled in a dual manner

with Case 2. That is, after the first bipartition Π2(Hd
y>x) in which n′i is internal

to V1 at level d, in each subhypergraph Hd
y>x that contains a sibling net n′′i of

n′i, we anchor n′′i to the right part V1.

Figure 4.2 illustrates the conventional cut net splitting technique (Figure 4.2a)

as well as the proposed enhancements (Figure 4.2b and Figure 4.2c) for net ni

on 8-way partitioning with 3 RB levels. In all subfigures, at the root level bipar-

titioning, ni is cut and thus split into its subnets n′i and n′′i . In Figure 4.2a, at

level-1, n′i remains internal to V1 in Π(H1
0), whereas it is cut in Π(H1

1). At level-2,

n′i is cut in Π(H2
1), whereas subnets n′′′i and n′′′′i of n′′i remain internal to the left

and right part in Π(H2
2) and Π(H2

2), respectively. Since ni is cut three times,

its λ(ni)−1 value is three with the connectivity set Λ(ni) = Ŝi = {p1, p2, p6, p7}.
Expanding this row is shown in Figure 4.1 for owner(ri) = p1.

Figure 4.2b shows Cases 2 and 3. At level-1 of the figure, since n′i is internal

to V1 in H1
0, n′′i is anchored to the right part V1 in H1

1. Similarly, at level-2, n′i

is internal to V0 thus n′′′i and n′′′′i are anchored to the left part V0 in H2
2 and H2

3,

respectively. Figure 4.2c shows Case 1. At level-2 of the figure, n′i is cut thus its

sibling nets n′′′i and n′′′′i , which are split from n′′i , are removed from H2
2 and H2

3.

60

b
ip
ar
ti
ti
on

in
g
or
d
er

00
H

01
H

11
H

12
H

02
H

22
H

32
H

i
n

i′
n

i′′
n

0
1
0

P
1
1
0

P
0
0
0

P
1
0
0

P
0
1
1

P
1
1
1

P
0
0
1

P
1
0
1

P

X
0
1

P
X
1
1

P
X
0
0

P
X
1
0

P

X
X
0

P
X
X
1

P

i′
n

i′′′
′

n
i′′′

n

(a
)

C
on

ve
n
ti

on
al

cu
t

n
et

sp
li

tt
in

g

b
ip
ar
ti
ti
on

in
g
or
d
er

00
H

01
H

11
H

12
H

02
H

22
H

32
H

i
n

i′
n

i′′
n

0
1
0

P
1
1
0

P
0
0
0

P
1
0
0

P
0
1
1

P
1
1
1

P
0
0
1

P
1
0
1

P

X
0
1

P
X
1
1

P
X
0
0

P
X
1
0

P

X
X
0

P
X
X
1

P

i′′′
′

n
i′′′

n

i′
n

0F
v

0F
v

1F
v

(b
)

C
as

es
2

an
d

3:
p

ro
p

os
ed

n
et

an
ch

or
-

in
g

b
ip
ar
ti
ti
on

in
g
or
d
er

00
H

01
H

11
H

12
H

02
H

22
H

32
H

i
n

i′
n

i′′
n

0
1
0

P
1
1
0

P
0
0
0

P
1
0
0

P
0
1
1

P
1
1
1

P
0
0
1

P
1
0
1

P

X
0
1

P
X
1
1

P
X
0
0

P
X
1
0

P

X
X
0

P
X
X
1

P

1F
v

i′
n

(c
)

C
as

e
1:

p
ro

p
o
se

d
n

et
re

m
ov

a
l

F
ig

u
re

4.
2:

(a
)

C
on

ve
n
ti

on
al

cu
t

n
et

sp
li
tt

in
g,

(b
)

an
d

(c
)

p
ro

p
os

ed
en

h
an

ce
m

en
ts

fo
r

n
et
n
i

on
ei

gh
t-

w
ay

p
ar

ti
ti

on
in

g
w

it
h

th
re

e
le

ve
ls

of
R

B
st

ep
s.

61

Algorithm 10 shows the steps of the proposed RB framework which realize the

proposed enhancements. In the algorithm, state(n) maintains if a net n becomes

cut or internal to the left part (L-internal) or right part (R-internal) at the

current level of the RB tree. parent(n) denotes the parent net from which net n

is obtained through splitting(s). That is, net n is effectively a subnet of parent(n).

The outermost for loop in lines 4–32, performs the RB steps in breadth-first

traversal order, whereas the inner for loop in lines 7–32 performs the bipartition-

ings at each level. The state information of the nets are initialized to NIL at the

beginning of each level (lines 5–6). Lines 8 and 9 introduce the fixed vertices into

Hd
k for enabling the realization of the net-anchoring. The inner for loop in line

10–16 applies proposed net-removal and net-anchoring techniques before bipar-

titioning the current hypergraph Hd
k according to current states of the subnets

involved in Hd
k. The inner for loop in lines 18-25 computes the state information

for each net after bipartitioning. Lines 26–30 construct the left and right sub-

hypergraphs Hd+1
2k and Hd+1

2k+1 (to be bipartitioned at the next level d+1) from

the current Hd
k using current bipartition Π2(Hd

k) obtained in line 17 by utilizing

the conventional cut net splitting. The for loop in lines 31–32 inherits the parent

field of the cut nets to its split nets.

4.5.3 Factor-Matrix Row Assignment to Processors

The row-to-processor assignment problem corresponds to determining owner(ri)

for each factor-matrix row ri. For CPD utilizing P2P, the well known best-fit

increasing heuristic used for solving the K-feasible bin-packing problem [75] is

adopted [39, 44]. This method aims at balancing processors’ volume loads without

increasing the total communication volume. Here, we also adopt B-feasible bin-

packing problem [75] for solving this assignment problem in EMB.

The main difference between the row-to-processor assignment problem encoun-

tered in P2P and EMB is that P2P involves a single communication step, whereas

EMB involves loosely coupled D= log2K communication steps. So, in P2P, as-

signment of a row to a processor increases the volume load of only that processor,

62

Algorithm 10 RB-based task-to-processor assignment

Require: H = (V,N), K
1: H0

0 = H
2: for each net n ∈ N 0

0 do
3: parent(n) = n . initialize parent of the net as itself

4: for d = 0 to log2K − 1 do
5: for each net n ∈ N 0

0 do
6: state(n) = NIL . initial value for each net

7: for k = 0 to 2d − 1 do
8: Vdk = Vdk ∪ {vF0 , vF1 }
9: fix vF0 to V0, fix vF1 to V1

10: for each net n ∈ N d
k do

11: if state(parent(n)) is CUT then
12: N d

k = N d
k \ {n}

13: . remove n since it is already cut before at this level

14: if state(parent(n)) is L-internal then
15: Pins(n)=Pins(n) ∪ {vF0 } . anchor n to left part

16: if state(parent(n)) is R-internal then
17: Pins(n)=Pins(n) ∪ {vF1 } . anchor n to right part

18: Π2 = BIPARTITION(Hdk = (Vdk ,N d
k)) . Π2 ={V0,V1}

19: for each net n ∈ N d
k do

20: if n is a cut net then
21: state(parent(n)) = CUT

22: if state(parent(n)) is not CUT then
23: if n is internal to left part then
24: state(parent(n)) = L-internal

25: if n is internal to right part then
26: state(parent(n)) = R-internal

27: Form H0 = (V0,N0) induced by V0

28: N0 = {n′ : n ∈ N , pins(n) ∩ V0 6= 0 ∃ pins(n′) = pins(n) ∩ V0} .
conventional cut net splitting

29: Form H1 = (V1,N1) induced by V1

30: N1 = {n′′ : n ∈ N , pins(n) ∩ V1 6= 0 ∃ pins(n′′) = pins(n) ∩ V1} .
conventional cut net splitting

31: Hd+1
2k = H0, Hd+1

2k+1 = H1

32: for each cut net n ∈ N d
k split as n′ and n′′ do

33: parent(n′) = parent(n′′) = parent(n)

63

whereas in EMB it increases the volume loads of at most D processors in differ-

ent communication steps. That is, if the distance between the owner and receiver

processors is equal to the dimension D of the hypercube, there are D − 2 inter-

mediate processors which are only forwarding the factor-matrix row. So, each

processor has a volume load at D different communication steps. This difference

increases the number of bins from K in P2P to DK in EMB.

In EMB, the cost of a row-to-processor assignment instance is defined as the

sum of the volume load of the maximally loaded processor in each dimension. So,

for the best-fit criterion we define the sum of squares function as

d=D∑
d=1

(
k=K∑
k=1

B2
dk)

2. (4.1)

In the proposed algorithm, for each mode, factor-matrix rows are considered in

decreasing order of their |Ŝi| values for assignment. The best-fit criterion for the

assignment is to select the processor that incurs the minimum increase in (4.1).

After each assignment, we increase the loads of the bins which are involved in

the communication in terms of both send and receive volumes. In this way, (4.1)

captures processors’ send plus receive volume loads during expand communication

which is equal to the sum of processors’ send volume loads during expand and

reduce communications thanks to the duality described in Sec. 4.4.3.

For P2P, each row is assigned to one of the processors which contributes/needs

that factor matrix row. This ensures total communication volume does not in-

crease with the assignment. On the other hand, for EMB, we can relax this con-

straint. That is, consider the processors that participate in the communication

of a shared row but do not possibly contribute/need that row. Such processors

can also be considered as candidate owners. Since these processors are already

communicating that row such assignments might not increase the volume load.

Obviously this relaxation is expected to further decrease the function in (4.1)

because of larger degree of freedom for each assignment. We should mention here

that this relaxation in row-to-processor assignments does not affect the concur-

rent communication cost metric defined for individual shared factor-matrix rows

and minimized by the scheme in Sec. 4.5.2.

64

4.6 Experiments

4.6.1 Setting

We performed experiments using three methods: P2P-mg, EMB-rand and

EMB-hp. The term left to the hyphen denotes the parallel scheme used (P2P or

EMB), whereas the right term denotes the nonzero partitioning method used. The

mg in P2P-mg refers to partitioning the input tensor according to the state-of-the-

art medium-grain HP model [44]. The rand in EMB-rand refers to partitioning

the input tensor randomly in such a way that numbers of nonzeros assigned to

processors differ by at most one. The hp in EMB-hp refers to partitioning and

mapping the tensor nonzeros by using the method proposed in Sec. 4.5. For

partitioning the hypergraph models in P2P-mg and EMB-hp, we use the tool

PaToH [52, 76] with default parameters.

Parallel setup: The experiments are taken with up to 4096 processors on

an Apollo 9000 HPC system. Each node in this system consists of two AMD

EPYC 7742 processors, each with 64 cores, and 256 GB of memory. The nodes

are connected with a Mellanox HDR Infiniband network. We use 16 cores per

node in all our experiments.

Dataset: Our dataset consists of thirteen real-world sparse tensors with vary-

ing sizes. Table 4.1 shows the tensors and their properties. Delicious, Enron,

Flickr and NELL-1 are obtained from the FROSTT sparse tensors repository [77].

1998DARPA contains tuples that represent timestamps of connections made be-

tween source IP and destination IP. Freebase-music contains music-related (sub-

ject entity, object entity, relation) tuples from Freebase online database.Gowalla

contains check-in data as (user, POI, check-in) tuples from the location-based so-

cial network Gowalla [78]. Movies-amazon contains user-movie-word tuples from

the user reviews of movies in Amazon [79]. Netflix and Yelp are rating datasets

that respectively contain (usr, business, rating) and (user, movie, rating) tuples.

The dataset also contains the largest three tensors from FROSTT,

65

Amazon-reviews, Patents and Reddit-2015, each having more than 1B nonze-

ros. Since common HP tools such as PaToH and hMeTis [80] do not support 64-bit

integers, these very large tensors are only used to evaluate the EMB framework

(Sections 4.3 & 4.4) by comparing EMB-rand versus P2P-rand, whereas the rest

of the tensors are used to evaluate all contributions.

Table 4.1: Properties of the Test Tensors

tensor
mode sizes

nnz density

I1 I2 I3 I4

1998DARPA 23.8M 22.5K 22.5K 28.4M 2.37E-09

Delicious 533K 17.3M 2.47M 1.44K 140M 4.27E-15

Enron 6.07K 5.70K 244K 1.18K 54.2M 5.46E-09

Flickr 320K 28.2M 1.61M 731 113M 1.07E-14

Freebase-music 23.3M 0.17K 23.3M 100M 1.10E-09

Gowalla 1.3M 0.60K 107K 6.26M 7.65E-08

Movies-amazon 227K 4.40K 87.8K 15.0M 1.72E-07

NELL-1 25.5M 2.14M 2.90M 144M 9.05E-13

Netflix 480K 2.18K 17.8K 100M 5.40E-06

Yelp 773K 85.5K 687K 186M 4.09E-09

Very Large Tensors

Amazon-reviews 4.82M 1.77M 1.80M 1.74B 1.13E-10

Patents 239K 46 239K 3.60B 1.37E-03

Reddit-2015 8.21M 176K 8.12M 4.69B 3.97E-10

4.6.2 Performance Results

Latency hiding: Table 4.2 displays the amount of latency hidden by EMB

in terms of number of messages whose latency overheads are totally avoided. In

the table, P2P columns show the number of messages only for the sparse expand

and reduce operations during a CPD-ALS iteration. That is, latency overhead

of ALL-REDUCE is not included in the P2P columns. The table also displays the

latency overhead of ALL-REDUCE during a CPD-ALS iteration which is the only

latency overhead in EMB. In the table, “max” and “avg” respectively refer to

66

the maximum and average number of messages handled by processors during a

CPD-ALS iteration. The maximum and average number of messages under the

P2P columns are the sums of maximum and average number of messages required

to perform the sparse expand and reduce operations in P2P for each tensor mode.

The number of messages under the EMB column are the sum of messages during

the two ALL-REDUCE operations for each tensor mode. Note that maximum and

average values in EMB are equal due to the regularity of communication.

Table 4.2: Max/Avg number of messages in a CPD-ALS iteration on K = 4096

tensor
P2P EMB

max avg max(=avg)

1998DARPA 6,578 145 72

Delicious 25,413 13,332 96

Enron 19,755 2,149 96

Flickr 15,382 4,709 96

Freebase-music 14,739 868 72

Gowalla 6,245 907 72

Movies-amazon 9,590 1,786 72

NELL-1 22,543 15,434 72

Netflix 14,824 3,391 72

Yelp 20,375 6,112 72

average 14,076 2,480 78

Table 4.2 shows that sparse expand/reduce incur significantly large number of

messages in P2P, thus rendering the parallel CPD-ALS as latency bound with

increasing K. This is because the number of messages in P2P usually increases

linearly with increasing K. On the other hand, the number of messages in EMB

is significantly smaller and increase logarithmically with increasing K. The 72

and 96 values under EMB refer to the number of messages handled by a processor

in 3-mode (3×2×log2K) and 4-mode (4×2×log2K) tensors, respectively.

As seen in Table 4.2, there is a significant imbalance between maximum and

average number of messages in P2P. This disturbs the scaling performance since

67

Table 4.3: Improvement of Expand/Reduce-aware EMB against Naive EMB

method K = 128 256 512 1024 2048 4096

EMB-rand 0.78 0.79 0.78 0.76 0.72 0.73

EMB-hp 0.90 0.86 0.84 0.81 0.82 0.76

Values are EMB runtimes normalized w.r.t. those by naive EMB.

usually the maximum metric defines the runtime since there are global synchro-

nizations (due to ALL-REDUCE) before/after the sparse P2P communication steps.

On the other hand, this problem does not arise in EMB since the regular commu-

nication pattern of EMB naturally attains equal number of maximum and average

messages. This is a clear advantage in favor of EMB since there is no need to

consider reducing/balancing the number of messages when designing intelligent

partitioning models allowing them to focus on reducing/balancing volume.

The expand-and-reduce-aware embedding: Table 4.3 shows the benefit

of using expand-and-reduce-aware EMB (Sec. 4.4.2) over naive EMB (Sec. 4.4.1)

on both EMB-rand and EMB-hp. The values given in the table are CPD-ALS

iteration times of the ten tensors taken with expand-and-reduce-aware EMB nor-

malized with respect to those taken with naive EMB. The runtimes of all tensors

are then averaged per K value for each method. As seen in the table, utiliz-

ing expand-and-reduce-aware EMB for sparse expand and reduce decreases the

parallel CPD-ALS runtime, on average, by up to 21%− 28% when EMB-rand is

used and by 10% − 24% when EMB-hp is used. Furthermore, the relative per-

cent improvement of expand-and-reduce-aware EMB over naive EMB for both

EMB-rand and EMB-hp generally increases with increasing K.

HP-based mapping: Table 4.4 shows the performance improvement attained

by the HP-based mapping algorithm discussed in Sec. 4.5 against EMB-rand on

K = 4096. The performance comparison is given in terms of maximum and

concurrent volume metrics as well as parallel runtimes for R = {8, 32}. For each

tensor, the first line displays actual values for EMB-hp, whereas the second line

displays normalized values with respect to those of EMB-rand.

68

Table 4.4: Performance of EMB-hp against EMB-rand on K = 4096

tensor
volume ×R runtime (ms)

max concurrent R = 8 R = 32

1998DARPA
9,155 94,639 28.609 35.794

0.359 0.004 0.929 0.702

Delicious
178,695 15,014,082 79.236 201.793

0.477 0.124 0.512 0.311

Enron
23,964 443,498 4.984 16.829

0.525 0.145 0.321 0.219

Flickr
51,391 5,472,870 12.802 77.683

0.139 0.025 0.091 0.142

Freebase-music
19,421 5,440,976 64.492 424.432

0.053 0.016 0.444 0.507

Gowalla
7,152 1,056,561 1.966 7.306

0.314 0.126 0.254 0.219

Movies-amazon
22,730 1,152,274 4.473 15.737

0.766 0.504 0.526 0.343

NELL-1
230,823 27,511,288 50.343 262.416

0.651 0.176 0.369 0.479

Netflix
60,170 3,092,374 11.275 45.305

0.440 0.519 0.151 0.137

Yelp
180,303 6,374,191 35.990 172.814

0.591 0.525 0.261 0.265

average
41,708 2,566,274 16.688 62.751

0.349 0.098 0.322 0.292

For each tensor, the first line displays actual values for EMB-hp, whereas the
second line displays the normalized values w.r.t. those of EMB-rand.

69

As seen in Table 4.4, EMB-hp achieves significant decrease in concurrent com-

munication volume metric (90% on average) compared to EMB-rand. EMB-hp

achieves also significant decrease in maximum communication volume handled

by a processor (65% on average) compared to EMB-rand. These improvements

in concurrent and maximum communication volume metrics lead to an approx-

imately 68% and 71% improvement in CPD-ALS iteration time respectively for

R = 8 and 32. Note that improvement in the maximum communication volume

closely correlates with the improvement in the parallel runtime on average.

Factor-matrix row assignment: Table 4.5 shows the performance improve-

ment of the proposed bin-backing based factor-matrix row assignment method

(Sec. 4.5.3) against random assignment on K = {128, · · · , 4096}. The perfor-

mance comparison is given in terms of the maximum communication volume

handled by processors obtained by bin-packing-based-assignment algorithm nor-

malized with respect to those by random assignment. As seen in the table, the

bin-backing algorithm attains considerable performance improvement (15% on

average) against random assignment.

Table 4.5: Performance of Proposed Row-to-Processor Assignment

tensor
maximum volume

K = 128 256 512 1024 2048 4096

1998DARPA 1.07 1.08 1.04 0.90 1.00 0.99

Delicious 0.82 0.86 0.84 0.85 0.86 0.86

Enron 0.91 0.93 0.90 0.86 0.89 0.86

Flickr 0.87 0.87 0.89 0.86 0.86 0.84

Freebase-music 0.69 0.63 0.70 0.63 0.60 0.56

Gowalla 0.81 0.79 0.83 0.82 0.84 0.81

Movies-amazon 0.85 0.88 0.84 0.81 0.87 0.83

NELL-1 0.80 0.84 0.83 0.87 0.88 0.88

Netflix 0.82 0.82 0.85 0.88 0.91 0.93

Yelp 0.85 0.84 0.84 0.84 0.89 0.84

average 0.84 0.85 0.85 0.83 0.85 0.83

Values are normalized w.r.t. those of random assignment.

70

Strong scaling: Figures 4.3 and 4.4 show2 the strong scaling curves of the

three methods on K={128, · · · , 4096} processors with two different R values. As

seen in Figures 4.3 and 4.4, P2P-mg does not scale after K=1024 for the tensors

Delicious, Flickr and NELL-1, whereas it does not scale after K=512 for rest

of the tensors. Both EMB schemes scale much better than P2P for each tensor

and for both R values.

As seen in Figures 4.3 and 4.4, EMB-hp runs much faster than EMB-rand in

all instances thus showing the validity of the task-to-processor mapping method

proposed in Sec. 4.5. Furthermore, EMB-hp runs much faster than the state-of-

the-art P2P-mg for all tensors and all R values on K>1024.

Figure 4.5 shows the strong scaling curves for the three very large tensors.

As seen in the figure, for each large tensor, P2P-rand fails to scale after 1024

processors, whereas EMB-rand continues to scale up to 4096 processors.

71

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

G
ow

al
la

M
ov

ie
s−

A
m

az
on

N
E

LL
−

1
N

et
fli

x
Ye

lp

19
98

D
A

R
PA

D
el

ic
io

us
E

nr
on

F
lic

kr
F

re
eb

as
e−

m
us

ic

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

10
0

30
0

10
00

30
00 3010

0

30
0

10
00

30
00

1010
0

10
00 1010

0

10
00

1010
0

10
00 10

0

30
0

10
00

10
0

30
0

10
00 103010

0

30
0

103010
0

30
0 3103010
0

30
0

nu
m

be
r

of
 p

ro
ce

ss
or

s

CPD−ALS iteration time (ms)

●
P

2P
−

m
g

E
M

B
−

ra
nd

E
M

B
−

hg

F
ig

u
re

4.
3:

C
om

p
ar

in
g

S
tr

on
g

S
ca

li
n
g

cu
rv

es
of

P
2P

-m
g,

E
M

B
-r

an
d

an
d

E
M

B
-h

p
w

it
h

d
ec

om
p

os
it

io
n

ra
n
k
R

=
8.

72

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

G
ow

al
la

M
ov

ie
s−

A
m

az
on

N
E

LL
−

1
N

et
fli

x
Ye

lp

19
98

D
A

R
PA

D
el

ic
io

us
E

nr
on

F
lic

kr
F

re
eb

as
e−

m
us

ic

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

12
8

25
6

51
2

10
24

20
48

40
96

10
00

30
00

10
00

0

30
0

10
00

30
00

10
0

30
0

10
00

30
00 10

0

30
0

10
00

3010
0

30
0

10
00 30

0

10
00

30
00

30
0

10
00

30
00 3010

0

30
0

10
00

3010
0

30
0

10
00 103010

0

30
0

nu
m

be
r

of
 p

ro
ce

ss
or

s

CPD−ALS iteration time (ms)

●
P

2P
−

m
g

E
M

B
−

ra
nd

E
M

B
−

hg

F
ig

u
re

4.
4:

C
om

p
ar

in
g

S
tr

on
g

S
ca

li
n
g

cu
rv

es
of

P
2P

-m
g,

E
M

B
-r

an
d

an
d

E
M

B
-h

p
w

it
h

d
ec

om
p

os
it

io
n

ra
n
k
R

=
32

.

73

Amazon−reviews Patents Reddit−2015

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

5000

7000

10000

1000

3000

10000

3000

5000

10000

number of processors

C
P

D
−

A
LS

 it
er

at
io

n
tim

e
(m

s)

P2P−rand EMB−rand

(a) R = 8

Amazon−reviews Patents Reddit−2015

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

6000

7000

10000

3000

5000

10000

5000

7000

10000

number of processors

C
P

D
−

A
LS

 it
er

at
io

n
tim

e
(m

s)

(b) R = 32

Figure 4.5: Strong Scaling curves of EMB-rand versus P2P-rand on very large
tensors with decomposition ranks R = 8 and R = 32.

4.7 Related Work

In the literature, there exists many shared- and distributed-memory parallel CPD-

ALS algorithms [34, 36–45, 81–83]. Here we briefly mention about distributed-

memory parallel CPD-ALS algorithms.

Several works on scaling distributed-memory parallel CPD-ALS target at en-

hancing the MTTKRP operation and/or reducing the bandwidth overhead of

the P2P sparse reduce and expand operations through intelligent combinato-

rial models or through multidimensional division methods. For instance, among

74

combinatorial models for enhancing MTTKRP, [40, 43] and [45] are proposed.

Among combinatorial models for reducing communication overhead, HP is uti-

lized [37, 39, 44, 45]. However, these HP models focus on reducing the bandwidth

component of the communication. Multidimensional Cartesian partitioning is

utilized with a nice property of bringing upper bounds on both bandwidth and

latency components costs [38, 39]. The HP model in [39] targets at reducing the

bandwidth requirement of Cartesian partitioning. [41] also considers partition-

ing factor matrices column-wise at the expense of tensor replication, whereas all

other methods as well as our method involve row-wise partitioning of the factor

matrices. There also exists toolkits for shared- and distributed-memory parallel

systems [32, 36, 38, 42, 83].

Latency reduction and hiding is well-known in parallel iterative solvers, such

as Conjugate Gradient and GMRES, through communication/computation over-

lapping [84, 85], pipelining [86], and embedding [87]. The embedding scheme

proposed in [87] exploits the fact that each SpMV is followed by an inner prod-

uct which involves the input and output vectors. They propose to embed sparse

expand operations on the output vector entries to the following inner product real-

ized with ALL-REDUCE by utilizing row-parallel SpMV. Our work differs from [87]

in the following aspects: The rearrangements which enable the embedding are

different because of the nature of the applications (CG vs. CPD-ALS); [87]

embeds only sparse expand whereas we embed both sparse expand and reduce;

[87] uses naive embedding so that each message in the ALL-REDUCE may contain

multiple copies of same output-vector entries, whereas we avoid this with the pro-

posed expand-and-reduce-aware embedding; [87] uses conventional HP followed

by a KL-based one-to-one mapping, whereas we propose a simultaneous partition-

ing/mapping algorithm. To our knowledge, our work is the first to use latency

hiding in parallel tensor decomposition.

75

4.8 Conclusion

We proposed a framework for hiding the latency of P2P sparse expand and reduce

operations during parallel CPD-ALS through embedding them into dense collec-

tive ALL-REDUCE operations which already exist in the CPD-ALS. The frame-

work consists of a computation/communication rearrangement of the CPD-ALS

which enables the embedding as well as an intelligent embedding scheme that

helps reducing the increase in communication due to embedding. The recursive-

bipartitioning-based hypergraph partitioning method proposed for subtensor-to-

processor mapping as well as the bin-backing-based method proposed for factor-

matrix row to processor mapping are found to be quite effective in reducing the

bandwidth overhead in the embedded-ALL-REDUCE. We have obtained very good

scaling results on up to 4096 processors for ten real-word tensors, whereas a state-

of-the-art P2P implementation does not scale after 1024 processors due to large

the latency overhead especially for small decomposition ranks. The proposed

latency-hiding framework paves the way for scalable sparse tensor decomposition

on exa-scale systems.

76

Chapter 5

Communication-Efficient

Stratified Stochastic Gradient

Descent for Distributed Matrix

Completion

5.1 Overview

This chapter presents a framework for communication-efficient distributed SSGD.

The framework enables SSGD-based matrix factorization to run on very large-

scale parallel systems through significantly reducing the bandwidth overhead and

controlling the latency overhead through putting upper limits on the number of

exchanged messages.

The rest of the chapter is organized as follows: Section 5.2 gives the essen-

tials of using and parallelizing SGD for matrix completion. In Section 5.3, the

communication requirement in parallel SSGD is studied in detail. In Section 5.4,

the proposed framework for scaling P2P SSGD, including the hold-and-combine

scheme, is presented. In Section 5.5, the proposed hypergraph partitioning (HP)

77

Figure 5.1: Stale updates in simple row- or column-wise partitions (up) versus
stale-free DSGD (bottom). In the row-wise partition of R, the rows of W are
partitioned conformably and thus each W-matrix row is accessed by one proces-
sor. However, this is not the case for H-matrix rows. For instance, ratings ril and
rjl are respectively distributed to p1 and p2 and both used to update hl possibly
at the same time thus either p1 or p2 will update on a stale hl. Similar discussion
holds for column-wise partition in a dual manner regarding rjl, rjn and wj.

method is presented. Section 5.6 contains the experiments conducted on an HPC

system along with the results and discussions. Related works are discussed in

Section 5.7 and the chapter is concluded in Section 5.8.

5.2 Preliminaries: Parallel SGD

SGD is sequential in nature, thus parallelizing it requires communicating up-to-

date W- and H-matrix rows. There are two main approaches to parallel SGD:

asynchronous and stratified. Asynchronous methods allow the updates given

78

in (2.3) and (2.4) to use and to be performed on stale versions of wi and/or hj.

Asynchronous methods are usually non-serializable. Simple parallelizations of the

SGD-based matrix completion, such as row-wise or column-wise partitioning of

the rating matrix, are examples of asynchronous SGD (see Figure 5.1).

In order to mitigate the staleness problem, Gemulla et al. [27] proposed the

stratified SGD (SSGD). In SSGD, the rating matrix is divided into K2 2D blocks

using K-way mutually exclusive and exhaustive partitions on the rows ΠR =

{R1, . . . , RK} and columns ΠC = {C1, . . . , CK} of R. The rows of dense matrices

W and H are partitioned conformably with ΠR and ΠC , respectively. We denote

the row blocks of W and H that respectively conform with Rα and Cβ as Wα

and Hβ. We denote a block of R with rows in Rα and columns in Cβ as Rαβ.

A set of K 2D non-overlapping sub-matrix blocks are called a stratum (denoted

by S hereafter). Two 2D sub-matrix blocks are said to be non-overlapping if they

do not share any row or column. A set of K stratums S = {S1, . . . ,SK} that

exhausts all of the K2 sub-matrix blocks is called correct strata. Figure 5.2 shows

the strata S = 〈S1 = {R1,1,R2,2, . . . ,R8,8},S2 = {R1,2,R2,3, . . . ,R8,1}, . . . ,S8 =

{R1,8,R2,1, . . . ,R8,7}〉. The distinguishing property of SSGD is that no ratings

in different blocks of a stratum can update the same row of the factor matrices W

and H. Therefore, if the ratings constituting a stratum Si are used to update the

relevant H-matrix rows in a mini SGD epoch (called sub-epoch) then each of the

K 2D sub-matrix blocks can be handled by a separate processor; thus eliminating

the staleness problem.

There are several ways to generate a correct strata that covers the whole

dataset and schedule the strata to sub-epochs. For simplicity, we consider a simple

form of scheduling as follows: at sub-epoch 1, processor px, for x = 1, 2, . . . , K,

processes the ratings in Rxx to update the rows in Wx and Hx; at sub-epoch k,

processor px processes the ratings in Rxβ to update the rows in Wx and Hβ, where

β = (1+(x+k−2) mod K). We refer to this scheduling as “ring scheduling” or

“ring strata” hereafter. A general form of the ring scheduling consists of a seed,

where 1 ≤ seed≤ K. At sub-epoch k, the processor pseed processes the ratings

in Rseed,k to update the rows in Wseed and Hk. At sub-epoch k, processor px

79

processes the ratings in Rxβ to update the rows in Wx and Hβ, where

β =1 +(k+(seed+ x− 1 mod K)−2 mod K). (5.1)

In [27], the parallel algorithm that utilizes SSGD is converted to a Distributed

Stochastic Gradient Descent (DSGD) algorithm for large-scale matrix completion.

In DSGD, each stratum is executed in parallel in one sub-epoch, where the W-

and H-matrix rows are updated with the ratings in the stratum according to (2.3)

and (2.4). Then, inter-processor communications are performed to synchronize all

updated rows of factor matrices. If a row-parallel execution is chosen, that is the

R matrix is partitioned row-wise such that each row block is executed by a single

processor, then communication is restricted to the H-matrix rows. Row-parallel

execution is usually preferred because the number of items is generally much less

than the number of users which means the amount of data to be communicated

(H) is small compared to W. In row-parallel execution, we abuse the stratum

notation S to also be viewed as a mapping function S : [K]→ [K] (where [K] is

used to denote the set {1, . . . , K} hereafter) from a processor pk to the index β

of a column block Cβ. For instance, S2(p4) = 5 means that during sub-epoch 2,

processor p4 will exclusively update the rows of the H5 sub-matrix. We also use

S−1
β (px) to retrieve the sub-epoch at which px updates Hβ.

5.3 Communication in Distributed SSGD

Given strata S where each stratum is to be processed in a sub-epoch in row-

parallel execution. For an H-matrix row block Hβ, we define the sequence

Υβ = 〈pi1 , pi2 , . . . , piK 〉

of processors that compute the gradient using ratings in the column block Cβ

according to S. That is, pi1 updates the rows of Hβ in the first sub-epoch, pi2 in

the second sub-epoch and so forth. Furthermore, we define a distance metric dxyβ

between two processors px and py updating Hβ as

dxyβ = S−1
β (px)− S−1

β (py). (5.2)

80

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

Figure 5.2: The numbers identify the sub-matrix blocks that constitute a stratum
in a ring strata with seed= 1. Stratum S2 is highlighted. Side arrows show the
processor update order of hi and hj.

This distance quantifies the number of sub-epochs elapsed after px updates rows

in Hβ and before py does so.

5.3.1 Communication in DSGD

In the original DSGD algorithm [27], after processor px updates row block Hβ in

sub-epoch k, it sends the rows in Hβ to the the processor that will update Hβ

in sub-epoch k + 1. Therefore, at each sub-epoch, each processor sends a whole

row block of H to exactly one processor. For instance, assuming the DSGD is

executed according to the ring strata given in Figure 5.2, after sub-epoch 1 is

completed p1 sends H1 to p8, p8 sends H8 to p7 and so forth.

In Figure 5.2, the update sequence for row block H1 is Υ1 =

〈p1, p8, p7, p6, p5, p4, p3, p2〉. The communication of hi ∈ H1 through the subse-

quence/subchain p1 → p8 → p7 → p6 does not incur any extra volume since each

of these processors update hi. However, p5 does not update hi hence p5 needs to

81

receive the up-to-date hi from p6 and forward it to p4 in the next sub-epoch. In

this case, hi incurs F words of forwarding overhead. In the case of hj ∈ H1, the

first processor to update it after p1 is p4. Therefore, four forwarding communica-

tions, each of size F , are incurred due to hj in p1 → p8 → p7 → p6 → p5. In the

worst case, an H-matrix row can be forwarded K−1 times incurring F (K−1)

extra words of communication volume. This indicates that the volume due to

forwarding has a loose upper bound of O(MF (K−1)) words. Let λ(hj) denote

the number of processors that update hj ∈ Hβ, then the amount of forwarding

overhead of hj is K − λ(hj).

The communication scheme of the DSGD method has the nice property of

very low latency overhead since it restricts the number of messages sent by any

processor at any sub-epoch to one. However, this scheme suffers from increasing

the bandwidth overhead (communication volume) due to forwarding the H-matrix

rows. For each epoch, the communication volume sent by each processor is equal

to F×M×K as each processor sends approximately M/K dense H-matrix rows

each of size F during each of the K sub-epochs. Especially for highly sparse

rating matrices, it is clear that the volume of communication performed is much

more than the required, and the increased bandwidth overhead due to forwarding

can be prohibitive as K increases.

5.3.2 Essential Communication for distributed SSGD

The communication of H-matrix rows required for correctly executing SSGD in

a distributed fashion is described according to the following definition:

Definition 1 (d-gap rows). Consider two nonadjacent processors in Υβ: pix and

piy such that x < y. During DSGD, a row hj ∈ Hβ is called a zero-gap row in

terms of pix and piy if it is updated by both pix and pix+1. hj is called one-gap

row if it is updated by both pix and pix+2 but not pix+1. hj is called d-gap row if

it is updated by both pix and piy but not any of the d=dxyβ processors in-between

(that is, in 〈pix+1 , . . . , piy−1〉). The set of all such d-gap rows between pix and piy

82

in Hβ is given by

H
ixiy
β = {hj | (∃rij)[rij ∈ Rxβ ∩ Ryβ ∧ rij /∈ R(x+1)β ∪ · · · ∪ R(y−1)β]}. (5.3)

Communicating H
ixiy
β from pix to piy after pix processes the ratings in 2D block

Rixβ and before piy starts processing the ratings in Riyβ guarantees a correct

distributed row-parallel SSGD execution.

The DSGD scheme discussed in Sec. 5.3.1 guarantees the correctness of the

SSGD since up-to-date hj ∈ H
ixiy
β will eventually reach piy from pix , assuming

x < y in Υβ, via forwarding through 〈pix+1 , . . . , piy−1〉.

5.4 A Framework for Scaling SSGD

5.4.1 Communicating d-gap rows through P2P messages

We propose to avoid the forwarding overhead by sending an updated H-matrix

row to the processor that updates it next directly through P2P communications.

At the beginning of sub-epoch k, processor px sends P2P messages to a set of

processors SendSetk(px) and receives from RecvSetk(px). These two sets can be

respectively constructed as

SendSetk(px) = {py | Hxy
Sk−1(px) 6= ∅}, (5.4)

RecvSetk(px) = {py | Hyx
Sk(px) 6= ∅}. (5.5)

For example, in Figure 5.2, at the beginning of the second sub-epoch p1 sends hi

to p8 and hj to p4.

Algorithm 11 presents the P2P-based parallel SSGD algorithm for processor

px. At line 3, processor p1 picks strata S and broadcasts to all other processors.

At line 4, px determines the communication requirement according to (5.3) and

constructs the send/receive information of the P2P messages according to (5.4)

83

Algorithm 11 Point-to-Point parallel SSGD on processor px
Require: Rating matrix R, Processor count K

1: Initialize local factor matrices W and H randomly
2: repeat
3: Receive strata S from p1 through Bcast.
4: Construct P2P communication according to S
5: for k = 1 to K do . For each sub-epoch
6: βprev ← Sk−1(px)
7: βcurr ← Sk(px);
8: for each py ∈ SendSetk(px) do
9: Send Hxy

βprev
to py

10: for each pz ∈ RecvSetk(px) do
11: Receive Hzx

βcurr
from pz

12: for each rij ∈ Rxβcurr do
13: wi = wi − ε[(rij − r̂ij)hj + γwi]
14: hj = hj − ε[(rij − r̂ij)wi + γhj]

15: until convergence or max. number of epochs reached

and (5.5). Then, the up-to-date rows required in the current sub-epoch are com-

municated at lines 8-13 through P2P messages. The SGD updates are performed

at lines 14 and 15 respectively according to (2.3) and (2.4).

5.4.2 Efficiently constructing d-gap row sets

Computing d-gap H-matrix rows using (5.3) has recurring computations for dif-

ferent instances. For example, computing H
ixiy
β and H

ixiy+1
β would require com-

puting the same R(x+1)β ∪ · · · ∪R(y−1)β term twice. For an efficient computation,

we devise an algorithm that utilizes a dynamic programming formulation lever-

aging efficient bulk bit-wise operations.

Consider a binary string Bix
β ∈ {0, 1}nβ of length nβ = |Hβ|, such that the bth

entry of Bix
β is set to ‘1’ if pix updates the bth row in Hβ, and set to ‘0’ otherwise.

Then, the indices of the rows to be communicated between pix and piy are the

indices of the 1-bits in

Ψ
ix,iy
β = Bix

β ∧B
iy
β ⊕ (Bix

β ∧B
iy
β ∧ (B

ix+1

β ∨ · · · ∨Biy−1

β)), (5.6)

84

where ⊕, ∧ and ∨ respectively denote logical exclusive OR (XOR), logical AND

and logical OR operations. The term (B
ix+1

β ∨· · ·∨Biy−1

β) in (5.6) can be computed

incrementally thanks to the associativity property of the ∨ operation.

Algorithm 12 Find d-gap H-matrix rows on processor px
Require: Rating matrix R, Processor count K, Strata S

1: for each Hβ ∈ H do
2: Compute Υpx

β

3: mask ← B
Υpxβ [2]

β

4: for k = 2 to K do
5: py ← Υpx

β [k]

6: Ψ
px,py
β ← Bx

β ∧B
y
β ⊕ (Bx

β ∧B
y
β ∧mask)

7: Hxy
β ← {hi ∈ Hβ | Ψpx,py

β [i] = 1}
8: mask ← mask ∨By

β

Given Hβ and Υβ, we define Υpx
β as the sequence of processors updating Hβ

starting from px. Υpx
β can be obtained from Υβ by left-rotating the sequence until

px is at the first index. Algorithm 12 presents the efficient dynamic-programming-

based computation of the d-gap H-matrix rows between px and the other K−1

processors. For each Hβ, the order of processors updating Hβ starting from px

according to strata S is maintained in Υpx
β (line 3). Then, px constructs the d-gap

rows one by one according to this order leveraging the bottom-up construction

of the term (B
ix+1

β ∨ · · · ∨Biy−1

β), lines 4-9.

5.4.3 Hold & Combine strategy for reducing latency

Using P2P messages to communicate the updated rows without forwarding is

indispensable for reducing the bandwidth overhead of the communication. How-

ever, it has a high potential of increasing the latency overhead via increasing

the number of messages performed per epoch compared to DSGD. In DSGD, a

processor sends K messages per epoch (one message to one processor at each sub-

epoch), whereas using the P2P requires sending at most K×(K−1) messages per

epoch (up to K−1 messages from each of the K processors at each sub-epoch).

We propose the hold and combine (H&C) strategy to reduce the upper-bound on

the number of messages sent per epoch to O(K lgK).

85

Figure 5.3: An example TSMS for p3. The rows are the processors that p3

communicates with sorted according to their distance from p3. The columns
represent both the sub-epochs and the H-matrix blocks to be updated at each
sub-epoch. An entry (py, Hβ) gives the sub-epoch at which py updates Hβ after
p3 does (note that this sub-epoch might be in the next epoch). The circles show
the messages that can be combined.

Definition 2. Fixed-distance strata is any strata that satisfies

dxyα = dxyβ for any pair of H-matrix row α and β. (5.7)

That is, the fixed-distance strata have the property of constant distance between

any two processors regardless of the H-matrix row block they are updating. We

refer to the distance between two processors px and py in a fixed-distance strata

as dxy. Any ring strata scheduled with (5.1) is a fixed-distance strata.

During an SGD epoch, the communication of Hxy
β should be performed after

px updates Hβ in sub-epoch k and before py starts updating Hβ. This means

that Hxy
β can be sent at the beginning of any sub-epoch between k + 1 and

k + dxyβ . Now consider the communication of Hxy
β at sub-epoch k in a fixed-

distance strata. Observe that when sub-epoch k + dxy is reached, all the rows in

Hxy
Sk+1(px),H

xy
Sk+2(px), . . . ,H

xy
Sk+dxy−1(px) are already updated by px and ready to be

sent to py. So, these rows can be held by px and sent all at once in one message

to py in sub-epoch k + dxy along with Hxy
β .

86

Utilizing fixed-distance strata, we propose to hold P2P messages and combine

them as follows: If dxy ≥ K/2, then the messages between px and py in an epoch

can be combined into two or more P2P messages. This is because if dxy = K−1

then one message is needed for K−1 H-matrix row blocks and another message

needed for the last block. Otherwise if dxy < K/2, then the messages between

px and py can be combined in dK/dxye P2P messages. Therefore, the number of

messages sent per processor per epoch can be computed by

K
2∑
i=1

2 +

K−1
2∑
i=1

K

i
.

The second summation is a harmonic series which can be approximated by ln(K−
1)/2 + 1, thus

K
2∑
i=1

2 +

K−1
2∑
i=1

K

i
≈ K +K ln(K − 1)/2 ≤ K lgK (5.8)

is the upper bound on the number of messages sent per processor per epoch.

To facilitate the presentation of the H&C strategy, we assume that each pro-

cessor constructs a tabular-shaped message schedule (TSMS). In the TSMS of

px, rows are the K−1 processors that px communicates with during an epoch,

and columns represent sub-epochs as well as the corresponding H-matrix row

blocks updated by px. Each table entry TSMS(py, Hβ) represents the sub-epoch

S−1
β (py).

Figure 5.3 shows a TSMS for p3 using strata with seed = 5. In the figure,

the circled TSMS entries denote the messages (H-matrix row blocks) that can

be combined. For instance, the communication requirement between p3 and p7

during an SGD epoch can be done with two messages. The first message, required

at the beginning of sub-epoch 5, consists of H3,7
7 ∪ H3,7

8 ∪ H3,7
1 ∪ H3,7

2 . The

second message, required at the beginning of sub-epoch 1 of the next SGD epoch,

consists of H3,7
3 ∪H3,7

4 ∪H3,7
5 ∪H3,7

6 . Observe that the sub-epoch at which the

combined message should be sent is decided by the first H-matrix block of the

combined message. For instance, the first message to p7 must arrive before p7

starts updating rows in H7 which is sub-epoch 5.

87

Algorithm 13 Message combining strategy on processor px

Require: SendSetk(px), Hxy ∀k, y ∈ [K] ∧ y 6= x, S
1: for k = 1 to K do
2: for each py ∈ SendSetk(px) do
3: mid ← d k

dxy e . get the message ID
//get the H-matrix block that px updates at SE k

4: β ← Sk(px)
//add the d-gap rows Hxy

β to Msg mid

5: Mxy
mid ←Mxy

mid ∪Hxy
β

// When does px update the first block of mid ?

6: t← (mid − 1) ∗ dxy + 1
// get the H-matrix block that px updates at SE t

7: η ← St(px)
// get the sub-epoch s at which py updates Hη

8: s← S−1
η (py)

9: cSendSets(px)← cSendSets(px) ∪ py

Algorithm 13 shows the procedure to construct combined messages from P2P

messages at px. Given the SendSetk(px) ∀k ∈ {1, . . . , K} and the d-gap rows

between px and {py | y 6= x}, the combined messages are constructed as follows:

There are dK/dxye possible messages to py each of which is identified by mid.

For each py ∈ SendSetk(px) the rows in Hxy
β are assigned to a combined message

Mxy
mid (lines 3 and 4). Then, py is added to the new send set of the sub-epoch at

which message mid is sent (lines 5-8).

Algorithm 11 can be modified to accommodate the H&C strategy as follows:

After constructing the P2P communication (line 4), Algorithm 13 is used to com-

bine the messages. Then, lines 8-13 can be replaced with the sending/receiving

of combined messages; for each py in cSendSetk(px) a combined message is iden-

tified using mid = dk/dxye and sent to py, and similarly so for receiving from each

pz in cRecvSetk(px).

It is important to make sure that the K lgK messages sent per epoch are

uniformly distributed over K sub-epochs. Otherwise, some sub-epochs will con-

stitute a performance bottleneck due to high number of messages. We show that

utilizing Algorithm 13 for combining the messages has the nice property of lim-

iting the expected number of messages sent by each processor at each sub-epoch

88

to O(lgK).

Theorem 2. Using the H&C strategy, the expected number of messages sent by

each processor at each sub-epoch is O(lgK).

Proof. Consider a set zxy that consists of all sub-epochs wherein a message is

sent from px to py. For each sub-epoch k, the function

σ(k, px, py) =

1 k ∈ zxy

0 otherwise

defines if there is a message to be sent from px to py in k.

We can prove that O(lgK) messages are sent at each sub-epoch as follows.

The number of messages per sub-epoch is equal to the number of occurrences of

that sub-epoch in
⋃
y∈[K]∧y 6=xzxy. For each processor py with distance dxy, the

probability that k is one of the sub-epochs in which a message is sent to py is equal

to 1/dxy. In other words, given K sub-epochs, the probability that sub-epoch k

will be used to send one of the dK/dxye messages is 1/dxy. Then, the expected

number of messages from px to py at sub-epoch k is

E[σ(k, px, py)] = Pr(σ(k, px, py) = 1)× 1 + Pr(σ(k, px, py) = 0)× 0 =
1

dxy
. (5.9)

Using linearity of expectation, the expected total number of messages sent by px

at sub-epoch k is

E[
∑
py 6=px

σ(k, px, py)] =
K∑
i=1

1

i
≈ lnK + 1 ≤ lgK + 1. (5.10)

5.5 HP Model for Reducing Bandwidth Cost

There exists two hypergraph models for 1D partitioning of sparse matrices

for SpMV-like kernels; namely the column-net model for rowwise partitioning

89

and the row-net model for columnwise partitioning [52]. In these models, the

“connectivity−1” metric [52] is utilized for partitioning objective of reducing

the communication volume in SpMV-like kernels, whereas the partitioning con-

straint is maintaining computational balance among processors. As mentioned

earlier, rating matrices usually have larger number of rows than columns, hence

we mainly focus on rowwise partitioning of rating matrix R. The hypergraph

model discussed here is topologically similar to the column-net model, however

the cutsize metric utilized in the partitioning objective is different.

In the hypergraph model HR = (V ,N), there exists a vertex vi ∈ V for each

row ri of R and a net (hyperedge) nj ∈ N for each column cj of R. Each net nj

connects the vertices corresponding to the R-matrix rows that contain nonzeros

in column cj. That is, Pins(nj) = {vi ∈ V | rij 6= 0}. Each vertex vi is associated

with a weight equals to the number of nonzeros in row ri. Each net is associated

with a cost F .

A K-way partition Π(HR) = {V1,V2, . . . ,VK} is decoded as a K-way rowwise

partition of R, where the rows corresponding to the vertices in part Vα constitute

the row block Rα, for α=1, 2, . . . , K. Without loss of generality, row block Rα is

assigned to processor pα for α=1, 2, . . . , K. The W-matrix rows are partitioned

conformably with the R-matrix row partition. That is, W-matrix rows in Wα

correspond to the R-matrix rows in Rα.

In partition Π(HR), the weight of each part is equal to the sum of the weights

of the vertices in that part. Hence, the partitioning constraint of maintaining

balance on the part weights encodes maintaining balance on the nonzero counts

of the R-matrix row blocks. This in turn corresponds to maintaining balance on

the computational loads of the processors.

In this model, Λ(nj) also represents the set of R-matrix row blocks that has

at least one nonzero in column cj of R. Hence, the connectivity set of net nj

denotes the set of processors that update the H-matrix row hj. Consider the H-

matrix row hj corresponding to a cut net nj in the P2P communication scheme.

Also consider hj update sequence defined using the connectivity set and strata.

90

For each epoch, each processor except the last processor in the sequence should

send its updated hj value once to the next processor in the sequence. The last

processor sends its updated hj value to the first processor for the next iteration.

Hence, each cut net nj incurs a communication volume of Fλ(nj). On the other

hand, uncut nets incurs no communication. Therefore, cutsize which encapsulates

the total communication volume during an SGD epoch can be computed as∑
nj3λ(nj)>1

Fλ(nj). (5.11)

Among the various cutsize metrics in the literature, cutsize (5.11) is called as the

sum of external degrees (SOED) [80].

There exists several successful hypergraph partitioning tools that utilize mul-

tilevel recursive bipartitioning (RB) algorithms. Among these partitioning tools,

to our knowledge, only hMETIS [80] supports the SOED metric via direct multi-

way partitioning [88]. In fact Karypis and Kumar [88] clearly indicates that RB

framework does not allow directly optimizing the SOED metric. Here, we pro-

pose an RB-based algorithm that encodes the minimization of the SOED metric

correctly.

In order to encode the SOED metric (5.11), we propose the following strategy

during the RB paradigm. We assign a cost of 2F to each net of the initial

hypergraph. Then, after each RB step, internal nets inherit their cost, whereas

splitted nets are assigned a cost of F . That is, a net holds its cost of 2F until it

becomes cut for the first time, then a cost of F is assigned to each of split subnets

and they inherit their cost of F through the further RB steps until the end of the

partitioning. Hence, when a net becomes cut for the first time it incurs 2F to the

cutsize, then whenever its subnets become cut they incur F to the cutsize. In this

way, the sum of all cut net costs encountered during the overall RB algorithm

becomes equal to the SOED metric (5.11).

5.6 Experimental Evaluations

91

5.6.1 Experimental Framework

We evaluate the contributions proposed in this chapter through comparing three

methods implementing parallel SSGD using six real-world rating matrices. The

first method, DSGD, is the algorithm proposed in the original work of Gemulla

et al. [27]. DSGD performs block-wise communication of H-matrix row blocks in

each sub-epoch. The second method, P2P, uses P2P messages as in Algorithm 11.

The third, H&C, uses combined P2P messages (Algorithm 13) for communication.

In all three methods, column-to-stratum assignments are done randomly in

such a way that the number of columns per stratum differs by at most one. Row-

to-processor assignments are obtained either randomly in a way similar to that of

column-to-stratum assignments, or using the HP method discussed in Section 2.4.

Whenever the former is used, the method will be prefixed by RAND, whereas if

the latter is used the method will be prefixed by HP. The HP method is imple-

mented according to the RB framework described in Section 2.4 to encapsulate

the SOED metric. In order to obtain two-way partitions on the (sub)hypergraphs

at each RB level, we use the HP tool PaToH [52] with default parameters in SPEED

mode.

We implemented the parallel SSGD code that includes DSGD, P2P and H&C

in C and used MPI for inter-process communications. We perform our experi-

ments on an HPC system with AMD EPYC 7742 processors and a high-speed

HDR InfiniBand network with 200Gb/s bandwidth.

We compare the three methods in terms of communication cost metrics

as well as SGD iteration time. The communication cost metrics consist of

bandwidth-oriented metrics: sum-max vol and tot vol , and latency-oriented met-

rics: sum-max msgs and tot msgs . sum-max msgs is calculated as follows: at each

sub-epoch, the number of messages sent by the bottleneck processor (the proces-

sor that sends highest number of messages) is obtained. Then, the summation is

taken over all K sub-epochs. That is,

sum-max msgs =
K∑
k=1

max
x∈[K]

(|SendSetk(px)|).

92

In a similar way, sum-max vol is computed as

sum-max vol =
K∑
k=1

max
x∈[K]

(SendV olk(px)).

tot msgs and tot vol are respectively computed as

tot msgs =
K∑
k=1

∑
x∈[K]

(|SendSetk(px)|),

tot vol =
K∑
k=1

∑
x∈[K]

(SendV olk(px)).

Here, SendV olk(px) = |HSk−1(px)| if DSGD is used, and SendV olk(px) =∑
py
|Hxy
Sk−1(px)| if P2P or H&C are used. Whenever the values for the volume

of communication are presented, these values are normalized with respect to F .

This uncoupling of F from the volume values helps evaluate the proposed methods

and model with any F value.

Table 5.1: Properties of matrices in the dataset

Matrix #rows #cols #nnz density

Amz Items 21.177M 9.874M 82.677M 3.95E-07

Amz Books 8.026M 2.330M 22.50M 1.20E-06

Amz Clothing & Jewelry 3.117M 1.136M 5.75M 1.62E-06

Goodreads Reviews 0.465M 2.080M 15.740M 1.63E-05

Google Reviews 5.055M 3.117M 11.454M 7.27E-07

Twitch 15.524M 6.162M 474.677M 4.96E-06

Table 5.1 shows the real-world matrices used to evaluate the proposed methods

and their properties. Amz Items contains product reviews from Amazon between

May 1996 - July 2014 [89] with aggressive duplicate removal. The other two

amazon datasets, Books and Clothing, are category-based subsets of the original

comprehensive reviews. Goodread Reviews contains user ratings of books from

the Goodreads website [90]. Google Reviews contains user ratings/reviews of

local businesses from the Google Maps website [91, 92]. Twitch contains ratings

relative to how much time a user spent on a stream in the Twitch streaming

93

website [93]. The original data does not contain any explicit ratings. We modi-

fied the dataset to represent (user, stream, rating) such that the rating value is

proportional to the amount of time the user spent in the specific stream.

5.6.2 Evaluations with Communication Cost Metrics

Figs. 5.4a, 5.4b and 5.4c compare DSGD, P2P and H&C in terms of communi-

cation cost metrics tot vol , sum-max vol and tot msgs on K = 1024 processors.

In the figures, the red bars denote RAND-based methods whereas light blue bars

denote HP-based methods. HP does not affect DSGD’s communication which is

why HP is not applicable for DSGD and hence DSGD has only red bars. Com-

parison in terms of sum-max msgs will be discussed in Figure 5.5.

5.6.2.1 Bandwidth-oriented Communication Cost Metrics

As seen in Figure 5.4a, both P2P and H&C incur the essential amount of commu-

nication volume as defined in (5.6), without any forwarding overhead. Compared

to DSGD, both RAND- and HP-based P2P and H&C methods incur significantly

reduced amount of communication volume per epoch (more than 10x). Compared

to RAND, the HP-based P2P and H&C methods incur significantly reduced vol-

ume (between 1.4x and 5x).

Figure 5.4b shows that in all matrix instances P2P and H&C have a signif-

icantly reduced sum-max vol compared to DSGD (more than 10x). H&C has

slightly higher sum-max vol compared to P2P. This is because combining the

messages disturbs the random volume balancing of P2P. As expected, HP-based

P2P incurs less sum-max vol compared to RAND-based P2P. HP-based H&C

shows a decrease in sum-max vol on two matrices (Amz Books and Amz Clothing

& Jewelry), and an increase in other four matrices. This is because the HP

method, when used for H&C, does not encapsulate reducing the sum-max vol

metric.

94

2,
38

5,
98

7,
58

4

19

,6
27

,7
50

19

,6
27

,7
50

 9

,1
27

,8
79

 9

,1
27

,8
79 1,

16
3,

26
8,

09
6

 4

,9
80

,9
07

 4

,9
80

,9
07

 1

,7
00

,8
78

 1

,7
00

,8
78 1,

52
1,

25
7,

47
2

69

,3
75

,6
26

69

,3
75

,6
26

41

,2
05

,7
75

41

,2
05

,7
75

2,
13

0,
11

4,
56

0

12

,5
18

,2
41

12

,5
18

,2
41

 9

,4
48

,7
87

 9

,4
48

,7
87 3,

19
1,

64
8,

25
6

10

,0
30

,6
13

10

,0
30

,6
13

 2

,4
56

,9
18

 2

,4
56

,9
18 2,

01
4,

57
8,

68
8

 2
10

,2
33

,5
20

 2
10

,2
33

,5
20

77

,2
60

,1
01

77

,2
60

,1
01

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0e+00

1e+09

2e+09

3e+09

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.0e+00

5.0e+08

1.0e+09

1.5e+09

0.0e+00

3.0e+08

6.0e+08

9.0e+08

1.2e+09

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09

ve
ct

or
s

of
 s

iz
e

F
RAND HP

(a) tot vol in an SGD epoch

2,
33

0,
62

4

62

,1
58

63

,6
78

43

,2
28

59

,0
97

1,
13

6,
64

0

13

,4
55

13

,4
72

 8

,4
61

 8

,8
23

9,
87

4,
43

2

 1
11

,9
74

 1
15

,0
57

76

,6
88

 1
38

,9
95

2,
08

0,
76

8

29

,9
88

36

,0
01

22

,3
20

54

,7
07

3,
11

7,
05

6

21

,7
40

22

,3
34

11

,4
78

26

,5
06

6,
16

2,
43

2

 2
53

,2
00

 2
52

,5
38

 2
47

,7
07

 5
43

,3
54

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0e+00

2e+06

4e+06

6e+06

0e+00

1e+06

2e+06

3e+06

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

3e+05

6e+05

9e+05

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

ve
ct

or
s

of
 s

iz
e

F

(b) sum-max vol in an SGD epoch

 1
,0

48
,5

76

12
,5

00
,1

92

 6
,6

39
,1

28

 7
,5

03
,2

62

 4
,2

49
,6

37

 1
,0

48
,5

76

 3
,4

14
,5

27

 2
,9

58
,1

26

 1
,6

66
,5

41

 1
,3

81
,2

67

 1
,0

48
,5

76

38
,1

52
,5

17

 8
,1

50
,8

15

25
,6

55
,0

11

 6
,7

96
,9

89

 1
,0

48
,5

76

10
,5

70
,2

67

 5
,9

96
,2

11

 7
,5

00
,2

29

 4
,5

68
,2

92

 1
,0

48
,5

76

 9
,8

28
,6

34

 5
,0

49
,4

09

 2
,2

78
,9

31

 1
,5

54
,4

29

 1
,0

48
,5

76

56
,8

40
,3

37

 7
,9

76
,7

9025
,8

08
,5

82

 5
,7

12
,9

11

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0e+00

2e+07

4e+07

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

1e+07

2e+07

3e+07

4e+07

0e+00

1e+06

2e+06

3e+06

0.0e+00

4.0e+06

8.0e+06

1.2e+07

m
es

sa
ge

s

(c) tot msgs in an SGD epoch

 9
53

.4
9

 2
17

.0
2

 1
05

.8
4

 1
63

.7
8

 1
47

.3
0

 5
17

.3
5

39

.6
0

31

.0
0

39

.0
5

32

.7
8

3,
99

3.
15

 4
57

.5
8

 2
22

.6
6

 3
89

.1
1

 3
02

.9
8

 7
91

.7
8

 1
02

.1
3

68

.1
3

83

.6
3

75

.4
9

1,
20

4.
94

 1
47

.4
7

69

.9
0

44

.8
0

39

.5
7

2,
55

6.
19

1,
28

0.
16

1,
03

0.
23

1,
80

8.
06

1,
66

2.
55

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0

1000

2000

0

250

500

750

1000

1250

0

200

400

600

800

0

1000

2000

3000

4000

0

100

200

300

400

500

0

250

500

750

1000

tim
e

(m
s)

(d) SGD iteration time when F = 16

 3
,6

56
.5

6

24

4.
11

14

2.
59

17

4.
48

15

7.
63

 1
,7

70
.4

7

 4

2.
90

 3

5.
31

 3

8.
84

 3

5.
48

15
,1

37
.0

3

61

7.
06

31

2.
88

43

4.
17

35

1.
69

 3
,0

40
.3

1

13

6.
49

 9

6.
09

10

4.
23

 8

4.
17

 4
,7

88
.1

4

18

0.
63

10

3.
52

 4

6.
77

 4

2.
17

 9
,6

08
.6

6

 1
,4

93
.6

3

 1
,2

20
.7

2

 2
,0

42
.7

7

 1
,9

27
.2

8

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0

2500

5000

7500

10000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

0

5000

10000

15000

0

500

1000

1500

0

1000

2000

3000

Method

tim
e

(m
s)

(e) SGD iteration time when F = 64

Figure 5.4: Comparing RAND- and HP-based P2P and H&C methods against
RAND-based DSGD using communication cost metrics (a to c) and SGD iteration
time (d and e) using all dataset matrices on K = 1024 processors.

95

5.6.2.2 Latency-oriented Communication Cost Metrics

Figure 5.4c shows that the H&C method significantly reduces tot msgs on all

dataset matrices. DSGD always incur a constant number of messages for each

K value, thus tot msgs is always equal to K2 = (1024)2 = 1048576. tot msgs

of P2P can go up to K2 × (K−1). On the other hand, H&C keeps tot msgs

limited to O(K2 lgK). Depending on the sparsity pattern of the matrix, tot msgs

of P2P can be very high (e.g., Amz Books, Amz Items and Twitch) or relatively

close to the lower bound (e.g., Amz Clothing & Jewelry). The H&C method

successfully controls the fluctuation in the number of P2P messages thanks to

the lgK factor. The significant reduction in tot vol of HP-based P2P and H&C

methods compared to those of RAND-based is expected to reflect on the total

number of messages, which is the case as shown in the figure.

Figure 5.5 showcases the H&C method’s regularization of messages sent per

epoch over K sub-epochs. In order to experimentally verify the O(lgK) bound

given in Theorem 2, we introduce the max-max msgs metric as the maximum

number of messages sent per sub-epoch among all sub-epochs. That is,

max-max msgs = max{max
x∈[K]

(|SendSetk(px)|) | k ∈ [K]}.

As seen in Figure 5.5a, using H&C, max-max msgs is empirically found to be≈ 3×
lgK, which is very close to the expected lgK bound on the number of messages per

sub-epoch given in (5.10). The figure shows that P2P incurs high max-max msgs

on K= 256, and then the number starts to decrease as K increases. We believe

this is attributed to the ability of random partitioning to balance P2P message

counts and volume. In Figure 5.5b, the sum-max msgs metric is shown for all

matrices in the dataset using P2P and H&C on K = 64, . . . , 1024 processors. The

figure shows the success of H&C in keeping the number of messages under the

K lgK theoretical bound. Since the P2P sum-max messages do not decrease as

K increases, this means maximum number of messages per sub-epoch are almost

equal among all sub-epochs, especially when K ≥ 512. On the other hand,

although the H&C’s max-max msgs come very close to those of P2P on some

instances such as Goodreads Reviews and Google Reviews, sum-max msgs stay

96

significantly less than those of P2P. This means that although the maximum

number of messages sent per sub-epoch can reach 3 lgK in very few sub-epochs,

it is still equal to or less than the expected lgK messages.

97

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

A
m

z
B

oo
ks

A
m

z
C

lo
th

in
g

&
 J

ew
el

ry
A

m
z

Ite
m

s
G

oo
dr

ea
ds

 R
ev

ie
w

s
G

oo
gl

e
R

ev
ie

w
s

Tw
itc

h
st

re
am

s

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

24252627

24

24.
525

25.
526

26.
527

24

24.
525

25.
526

26.
5

24252627

24

24.
525

25.
526

24252627

nu
m

be
r

of
 p

ro
ce

ss
or

s

messages

●
P

2P
H

&
C

3l
gK

(a
)
m
a
x-
m
a
x
m
sg
s

in
an

S
G

D
ep

o
ch

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

A
m

z
B

oo
ks

A
m

z
C

lo
th

in
g

&
 J

ew
el

ry
A

m
z

Ite
m

s
G

oo
dr

ea
ds

 R
ev

ie
w

s
G

oo
gl

e
R

ev
ie

w
s

Tw
itc

h
st

re
am

s

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

210212214216

29

210211212213214

29

210211212213214

210212214216

29

210211212213

210212214

nu
m

be
r

of
 p

ro
ce

ss
or

s

messages

●
P

2P
H

&
C

K
lg

K

(b
)
su
m
-m

a
x
m
sg
s

in
an

S
G

D
ep

o
ch

F
ig

u
re

5.
5:

S
h
ow

ca
si

n
g

th
e

u
p
p

er
b

ou
n
d

of
th

e
m

ax
-m

ax
m

es
sa

ge
s

an
d

su
m

-m
ax

m
es

sa
ge

s
se

n
t

p
er

su
b
-e

p
o
ch

u
si

n
g

th
e

H
&

C
m

et
h
o
d

co
m

p
ar

ed
to

P
2P

on
K

=
{6

4,
..
.,

10
24
}

p
ro

ce
ss

or
s.

98

5.6.3 Evaluations with SGD Iteration Time

Figs. 5.4d and 5.4e compare the methods in terms of SGD iteration time on

K = 1024 processors respectively using F = 16 and F = 64 values. The figure

shows that the P2P improvement over DSGD is significant (more than 4x on all

matrices, except for Twitch which is 1.4x) when F = 16. The improvement grows

further as F increases to 64. It becomes more than 15x on all matrices except

Twitch, and on Twitch the improvement becomes at least 4.7x.

Using RAND, the H&C improvement over P2P is also significant. When

F = 16, H&C improves the iteration runtime over P2P by 2x, 1.2x, 2x, 1.5x,

2.15x, and 1.25x respectively on Amz Books, Amz Clothing & Jewelry, Amz

Items, Goodreads Reviews, Google Reviews and Twitch. When F = 64,

the respective values become 1.7x, 1.2x, 2x, 1.4x, 1.74x, and 1.22x. The slight

reduction in improvement is expected since increasing the value of F renders the

application bandwidth-bound. Therefore, the effect of the H&C method with

higher F values, although crucial, slightly diminishes.

Using HP improves the P2P runtime by 1.3x, 1.17x, 1.22x and 3.35x on Amz

Books, Amz Items, Goodreads Reviews and Google Reviews when F = 16.

On Amz Clothing & Jewelry there is no significant improvement and on Twitch

there is deterioration by 1.4x. When F = 64, HP improves the P2P runtime by

1.4x, 1.42x, 1.3x and 3.9x respectively on Amz Books, Amz Items, Goodreads

Reviews and Google Reviews. The increase in the gap between HP and RAND

in terms of P2P runtime when F grows from 16 to 64 is expected since the HP

method aims at reducing the total volume, effect of which is seen more with

higher F values.

Figure 5.6 shows the strong scaling curves of RAND-based DSGD, P2P and

H&C using two different F values on K = {64, 128, 256, 512, 1024} processors.

As seen in the figure, P2P and H&C show superior scaling compared to DSGD.

H&C performs significantly better than P2P, especially with smaller F values.

The difference in performance between P2P and H&C reduces with increasing F

value since the communication in SGD becomes more bandwidth-bound.

99

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

A
m

z
B

oo
ks

A
m

z
C

lo
th

in
g

&
 J

ew
el

ry
A

m
z

Ite
m

s
G

oo
dr

ea
ds

 R
ev

ie
w

s
G

oo
gl

e
R

ev
ie

w
s

Tw
itc

h
st

re
am

s

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

210211212213

26272829

210

26272829

210

2829

210211212

2526272829

272829

210

nu
m

be
r

of
 p

ro
ce

ss
or

s

SGD iteration time (ms)

●
D

S
G

D
P

2P
H

&
C

(a
)
F

=
16

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

A
m

z
B

oo
ks

A
m

z
C

lo
th

in
g

&
 J

ew
el

ry
A

m
z

Ite
m

s
G

oo
dr

ea
ds

 R
ev

ie
w

s
G

oo
gl

e
R

ev
ie

w
s

Tw
itc

h
st

re
am

s

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

64
12

8
25

6
51

2
10

24
64

12
8

25
6

51
2

10
24

211212213214

272829

210211212

272829

210211

29

210211212213214

2526272829

210211

272829

210211212

nu
m

be
r

of
 p

ro
ce

ss
or

s

SGD iteration time (ms)

(b
)
F

=
64

F
ig

u
re

5.
6:

S
tr

on
g

sc
al

in
g

cu
rv

es
of

D
S
G

D
,

P
2P

an
d

H
&

C
on

K
=
{6

4,
12

8,
25

6,
51

2,
10

24
}

p
ro

ce
ss

or
s

u
si

n
g

al
l

d
at

as
et

m
at

ri
ce

s
w

it
h

tw
o
F

va
lu

es
.

100

5.6.4 Evaluations with Loss Values

Since all the methods discussed in this chapter follow the stratified SGD algo-

rithm, their loss values per iteration is expected to be very similar regardless of

the communication strategy used or number of processors. We demonstrate this

using Figure 5.7a. The figure shows the loss value (y-axis) following each SGD

iteration (x-axis) of Amz Books and Goodreads Reviews using the RAND-based

DSGD, P2P, H&C methods on K = {64, 256, 1024} processors. The loss values

are very close as expected thus the curves appear to be on top of each other.

Figure 5.7b shows the amount of time (x-axis) required to reach a certain loss

value (y-axis) of Amz Items and Google Reviews using the RAND-based DSGD,

P2P, H&C methods on 1024 processors. The figure shows that DSGD requires

significantly more time to reach a certain loss value compared to P2P and H&C.

Figure 5.7c shows the scaling behavior of the RAND-based H&C method with

Amz Clothes & Jewelry and Twitch in terms of loss value as the time increases.

5.7 Related Work

There exist several works in the literature that adopt the SSGD for parallel ma-

trix completion. The work of Gemulla et at. [27] proposed the SSGD approach as

well as the parallel DSGD algorithm discussed in Sections 5.2 and 5.3.1. Teflioudi

et al. [46] proposed DSGD++, an improved DSGD framework for better perfor-

mance. They use computation and communication overlaying through dividing

the input matrix into K×2K blocks, and in each of the K sub-epochs DSGD++

performs computation onK blocks while simultaneously communicating the other

K blocks. They report up to 2.3x improvement over DSGD in terms of runtime.

Yun et al. [47] extend the idea of DSGD++ in their framework, NOMAD, and

divide the input matrix into K×M blocks. Each of the K processors dedicates `

threads to update ` H-matrix rows, and M − ` other threads for communication.

Once processor px updates an H-matrix row, or a set of rows, it sends it/them to

101

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ● ● ● ● ●

●

Amz Books Goodreads Reviews

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

3e+07

6e+07

9e+07

1.0e+08

1.5e+08

2.0e+08

SGD Iteration

Lo
ss

● 1024_DSGD
1024_H&C
1024_P2P
256_DSGD
256_H&C
256_P2P
64_DSGD
64_H&C
64_P2P

(a) SGD iteration vs. loss for all methods on different
K values.

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

Amz Items Google Reviews

0 50 100 150 0 10 20 30 40 50

7e+07

8e+07

9e+07

3e+08

4e+08

5e+08

6e+08

7e+08

Time (s)

Lo
ss

● DSGD
P2P
H&C

(b) Time vs. loss for all methods on K=1024 proces-
sors.

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

Amz Clothing & Jewelry Twitch streams

0 1 2 0 50 100
3.2e+08

3.6e+08

4.0e+08

2.5e+07

3.0e+07

3.5e+07

4.0e+07

4.5e+07

Time (s)

Lo
ss

● 64
128
256
512
1024

(c) Time vs. loss for H&C on different K values.

Figure 5.7: Loss versus time and iteration counts for different methods and K
values.

102

another processor py that has idle computation threads. DSGD, DSGD++ and

NOMAD has the same total communication volume during an SGD epoch per

processor which is equals to F×M×K as discussed in Section 5.3.1. The number

of messages sent per processor during an epoch of DSGD or DSGD++ has an

upper bound of O(K), whereas NOMAD may send up to O(M) messages. Guo

et al. [94] proposed a novel framework, BaPa, for improving the nonzero load

balance of DSGD through a novel algorithm for balancing per-processor and per-

epoch ratings. Their BaPa-based DSGD shows a significant runtime improvement

on small number of processors (< 16). However, their results show that both the

original DSGD as well as the BaPa-based DSGD stop scaling after 256 processors.

There are several asynchronous-SGD-based parallel matrix completion algo-

rithms in the literature. ASGD [46] (shown in the upper part of Figure 5.1) is

the simplest example of such algorithm. During ASGD, it is possible that several

processors update the same H-matrix row hj at the same time (i.e., stale up-

dates). This results in each processor having a different copy of hj. These copies

are coordinated by sending them to a processor responsible for hj. This processor

takes their average and then sends the up-to-date version of hj back to the same

set of processors. This type of coordination is done once or more during an SGD

epoch [46, 95]. GASGD [95] extends ASGD by utilizing intelligent partitioning

for balancing computational loads, reducing communication between processors,

and reducing staleness. The authors utilize a bipartite graph model and propose

a partitioning method based on the balanced K-way vertex-cut problem [96] to

achieve the partitioning goals. Luo et al. [97] proposed a different strategy to

facilitate asynchronously computing SGD in parallel which is called alternating

SGD. In alternating SGD, each epoch is divided into two sub-epochs where in

each sub-epochs one factor matrix is fixed and the other is updated. This ap-

proach enables limiting the feature vector updates that use stale data to one of

the two factor matrices during a sub-epoch. Recently, Shi et al. [98] proposed a

distributed algorithm based on alternating SGD with data-aware partitioning.

103

5.8 Conclusion

We proposed a framework for scaling stratified SGD through significantly reduc-

ing the communication overhead. The framework targets at reducing the band-

width overhead by efficiently finding the required communication during an SGD

epoch, using P2P messages to perform it, and an HP-based method to further

reduce the P2P communication volume. The framework targets at reducing the

increase in latency overhead through the novel H&C strategy to limit the number

of messages sent by a processor per epoch to O(K lgK). Our proposed framework

achieves scalable distributed SGD, on up to K = 1024 processors, without any

compromise on convergence rate or any update on stale factors. The proposed

framework achieves up to 15x runtime improvement over the state of the art

DSGD method, on 1024 processors, using six real-world rating matrices.

104

Chapter 6

Conclusions

In this dissertation, we proposed several algorithms and partitioning models

to enable the scalability of CPD-ALS for tensor decomposition as well as dis-

tributed SSGD for matrix factorization. The identified load balancing problems

of MTTKRP detailed in Chapter 3 paved the way for a better understanding

of the dimensions of the load balancing problem for nonzero-based CPD-ALS.

Furthermore, the proposed solutions, applied to a fine-grain HP model, can be

extended to other nonzero-based partitioning models and methods that follow the

CSF-oriented MTTKRP. The proposed embedding framework in Chapter 4 en-

ables the CPD-ALS to scale beyond 1K processors though decreasing the number

of messages via the embedding scheme. The HP-based method proposed for the

embedding algorithm correctly encapsulates a concurrent cost metric that mimics

the communication behavior of the algorithm and leads to faster runtimes due

to decreased volume compared to random partitioning. The algorithms proposed

in Chapter 5 for reducing the bandwidth overhead of SSGD enabled the algo-

rithm to scale on large number of processors compared to state-of-the-art DSGD

method. The H&C algorithm further enables the scalability through putting a

nice O(K logK) upper bound on the number of messages sent per processor. The

experimental results detailed in each chapter on up to 4K processors on HPC sys-

tems proved the validity and importance of the proposed algorithms and models

for the scalability of CPD-ALS and SSGD.

105

Bibliography

[1] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM

Review, vol. 51, no. 3, pp. 455–500, 2009.

[2] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A com-

prehensive review,” IEEE Transactions on knowledge and data engineering,

vol. 25, no. 6, pp. 1336–1353, 2012.

[3] T. D. Nguyen, T. Tran, D. Phung, and S. Venkatesh, “Tensor-variate re-

stricted boltzmann machines,” in Twenty-Ninth AAAI Conference on Arti-

ficial Intelligence, 2015.

[4] E. Acar and B. Yener, “Unsupervised multiway data analysis: A literature

survey,” IEEE transactions on knowledge and data engineering, vol. 21, no. 1,

pp. 6–20, 2008.

[5] S. Hosseinimotlagh and E. E. Papalexakis, “Unsupervised content-based

identification of fake news articles with tensor decomposition ensembles,”

in Proceedings of the Workshop on Misinformation and Misbehavior Mining

on the Web (MIS2), 2018.

[6] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor de-

compositions and their applications in machine learning,” arXiv preprint

arXiv:1711.10781, 2017.

[7] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway

analysis of epilepsy tensors,” Bioinformatics, vol. 23, pp. i10–i18, 07 2007.

106

[8] I. Davidson, S. Gilpin, O. Carmichael, and P. Walker, “Network discovery

via constrained tensor analysis of fMRI data,” in Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ‘13, (New York, NY, USA), pp. 194–202, 2013.

[9] E. Acar and B. Yener, “Unsupervised multiway data analysis: A literature

survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 21,

no. 1, pp. 6–20, 2009.

[10] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,

and C. Faloutsos, “Tensor decomposition for signal processing and machine

learning,” IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–

3582, 2017.

[11] K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spec-

troscopy and multi-way techniques. PARAFAC,” Analytical Methods, vol. 5,

no. 23, pp. 6557–6566, 2013.

[12] K. Maruhashi, F. Guo, and C. Faloutsos, “MultiAspectForensics: Pattern

mining on large-scale heterogeneous networks with tensor analysis,” in 2011

International Conference on Advances in Social Networks Analysis and Min-

ing, pp. 203–210, 2011.

[13] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,

and C. Faloutsos, “Tensor decomposition for signal processing and machine

learning,” IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–

3582, 2017.

[14] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using

matrix and tensor factorizations,” ACM Trans. Knowl. Discov. Data, vol. 5,

Feb. 2011.

[15] H. Zhou, L. Li, and H. Zhu, “Tensor regression with applications in neu-

roimaging data analysis,” Journal of the American Statistical Association,

vol. 108, no. 502, pp. 540–552, 2013. PMID: 24791032.

107

[16] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and A. Nikitakis, “Tensor-

based classification models for hyperspectral data analysis,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 56, no. 12, pp. 6884–6898,

2018.

[17] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-

sky, “Speeding-up convolutional neural networks using fine-tuned cp-

decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[18] Y. Wang, W. G. Guo, and X. Yue, “Tensor decomposition to compress con-

volutional layers in deep learning,” IISE Transactions, p. 1–60, Apr 2021.

[19] D. Song, P. Zhang, and F. Li, “Speeding up deep convolutional neural net-

works based on tucker-cp decomposition,” in Proceedings of the 2020 5th

International Conference on Machine Learning Technologies, ICMLT 2020,

(New York, NY, USA), p. 56–61, Association for Computing Machinery,

2020.

[20] Y. Ji, Q. Wang, X. Li, and J. Liu, “A survey on tensor techniques and

applications in machine learning,” IEEE Access, vol. 7, pp. 162950–162990,

2019.

[21] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[22] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, “Distributed nonneg-

ative matrix factorization for web-scale dyadic data analysis on mapreduce,”

WWW ’10, (New York, NY, USA), p. 681–690, Association for Computing

Machinery, 2010.

[23] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative

matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[24] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of the

22nd annual international ACM SIGIR conference on Research and devel-

opment in information retrieval, pp. 50–57, 1999.

108

[25] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[26] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-

stein, “Distributed GraphLab: a framework for machine learning and data

mining in the cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8,

pp. 716–727, 2012.

[27] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix

factorization with distributed stochastic gradient descent,” in Proceedings

of the 17th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 69–77, 2011.

[28] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in distributed

memory systems,” in SC ’15: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, pp. 1–11,

Nov 2015.

[29] O. Kaya and B. Uçar, “Parallel CANDECOMP/PARAFAC decomposition

of sparse tensors using dimension trees,” SIAM Journal on Scientific Com-

puting, vol. 40, no. 1, pp. C99–C130, 2018.

[30] S. Acer, T. Torun, and C. Aykanat, “Improving medium-grain partitioning

for scalable sparse tensor decomposition,” IEEE Transactions on Parallel

and Distributed Systems, vol. 29, pp. 2814–2825, Dec 2018.

[31] M. O. Karsavuran, S. Acer, and C. Aykanat, “Partitioning models for general

medium-grain parallel sparse tensor decomposition,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 1, pp. 147–159, 2021.

[32] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:

Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE In-

ternational Parallel and Distributed Processing Symposium, pp. 61–70, May

2015.

[33] S. Smith and G. Karypis, “Tensor-matrix products with a compressed sparse

109

tensor,” in Proceedings of the 5th Workshop on Irregular Applications: Ar-

chitectures and Algorithms, IA3 ’15, (New York, NY, USA), pp. 5:1–5:7,

ACM, 2015.

[34] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse ten-

sors,” in SC18: International Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 238–252, 2018.

[35] R. O. Selvitopi, M. M. Ozdal, and C. Aykanat, “A novel method for scaling

iterative solvers: Avoiding latency overhead of parallel sparse-matrix vector

multiplies,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,

no. 3, pp. 632–645, 2015.

[36] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed factorization of

tensors,” in Advances in Neural Information Processing Systems, pp. 1296–

1304, 2014.

[37] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in distributed

memory systems,” in SC ’15: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, pp. 1–11,

Nov 2015.

[38] S. Smith and G. Karypis, “A medium-grained algorithm for sparse tensor

factorization,” in 2016 IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS), pp. 902–911, May 2016.

[39] S. Acer, T. Torun, and C. Aykanat, “Improving medium-grain partitioning

for scalable sparse tensor decomposition,” IEEE Transactions on Parallel

and Distributed Systems, vol. 29, pp. 2814–2825, Dec 2018.

[40] O. Kaya and B. Uçar, “Parallel CANDECOMP/PARAFAC decomposition

of sparse tensors using dimension trees,” SIAM Journal on Scientific Com-

puting, vol. 40, no. 1, pp. C99–C130, 2018.

[41] J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking optimization techniques

for sparse tensor computation,” in 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pp. 568–577, May 2018.

110

[42] M. Baskaran, T. Henretty, and J. Ezick, “Fast and scalable distributed ten-

sor decompositions,” in 2019 IEEE High Performance Extreme Computing

Conference (HPEC), pp. 1–7, 2019.

[43] L. Ma and E. Solomonik, “Efficient parallel cp decomposition with pairwise

perturbation and multi-sweep dimension tree,” in 2021 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pp. 412–421, 2021.

[44] M. O. Karsavuran, S. Acer, and C. Aykanat, “Partitioning models for general

medium-grain parallel sparse tensor decomposition,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 1, pp. 147–159, 2021.

[45] N. Abubaker, S. Acer, and C. Aykanat, “True load balancing for matri-

cized tensor times khatri-rao product,” IEEE Transactions on Parallel and

Distributed Systems, vol. 32, no. 8, pp. 1974–1986, 2021.

[46] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix completion,”

in 2012 IEEE 12th International Conference on Data Mining, pp. 655–664,

2012.

[47] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon, “Nomad:

Non-locking, stochastic multi-machine algorithm for asynchronous and de-

centralized matrix completion,” Proceedings of the VLDB Endowment, vol. 7,

no. 11, 2014.

[48] O. Fortmeier, H. M. BüCker, B. O. Fagginger Auer, and R. H. Bisseling, “A

new metric enabling an exact hypergraph model for the communication vol-

ume in distributed-memory parallel applications,” Parallel Comput., vol. 39,

p. 319–335, aug 2013.

[49] S. Acer, E. Kayaaslan, and C. Aykanat, “A recursive bipartitioning algorithm

for permuting sparse square matrices into block diagonal form with overlap,”

SIAM Journal on Scientific Computing, vol. 35, no. 1, pp. C99–C121, 2013.

[50] O. Selvitopi, S. Acer, and C. Aykanat, “A recursive hypergraph bipartition-

ing framework for reducing bandwidth and latency costs simultaneously,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 2,

pp. 345–358, 2016.

111

[51] S. Acer, O. Selvitopi, and C. Aykanat, “Optimizing nonzero-based sparse

matrix partitioning models via reducing latency,” Journal of Parallel and

Distributed Computing, vol. 122, pp. 145–158, 2018.

[52] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based decom-

position for parallel sparse-matrix vector multiplication,” IEEE Transactions

on Parallel and Distributed Systems, vol. 10, pp. 673–693, July 1999.

[53] S. Smith and G. Karypis, “A medium-grained algorithm for sparse tensor

factorization,” in 2016 IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS), pp. 902–911, IEEE, 2016.

[54] J. Li, Y. Ma, X. Wu, A. Li, and K. Barker, “PASTA: a parallel sparse

tensor algorithm benchmark suite,” CCF Transactions on High Performance

Computing, vol. 1, no. 2, pp. 111–130, 2019.

[55] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph

partitioning: applications in VLSI domain,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp. 69–79, 1999.

[56] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data distribu-

tion method for parallel sparse matrix-vector multiplication,” SIAM review,

vol. 47, no. 1, pp. 67–95, 2005.

[57] J. Shetty and J. Adibi, “The enron email dataset database schema and brief

statistical report,” Information sciences institute technical report, University

of Southern California, vol. 4, 2004.

[58] S. Fernandes, H. Fanaee-T, and J. Gama, “Tensor decomposition for

analysing time-evolving social networks: an overview,” Artificial Intelligence

Review, pp. 1–26, 2020.

[59] O. Görlitz, S. Sizov, and S. Staab, “PINTS: peer-to-peer infrastructure for

tagging systems.,” in IPTPS, p. 19, 2008.

[60] P. Bhargava, T. Phan, J. Zhou, and J. Lee, “Who, what, when, and where:

Multi-dimensional collaborative recommendations using tensor factorization

112

on sparse user-generated data,” in Proceedings of the 24th International Con-

ference on World Wide Web, WWW ’15, (Republic and Canton of Geneva,

CHE), p. 130?140, International World Wide Web Conferences Steering

Committee, 2015.

[61] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: under-

standing rating dimensions with review text,” in Proceedings of the 7th ACM

conference on Recommender systems, pp. 165–172, 2013.

[62] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M.

Mitchell, “Toward an architecture for never-ending language learning.,” in

AAAI, vol. 5, p. 3, 2010.

[63] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor: scaling

tensor analysis up by 100 times-algorithms and discoveries,” in Proceedings

of the 18th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 316–324, ACM, 2012.

[64] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with sparse

and factored tensors,” SIAM Journal on Scientific Computing, vol. 30, no. 1,

pp. 205–231, 2007.

[65] E. T. Phipps and T. G. Kolda, “Software for sparse tensor decomposition on

emerging computing architectures,” SIAM Journal on Scientific Computing,

vol. 41, no. 3, pp. C269–C290, 2019.

[66] J. Li, Y. Ma, and R. Vuduc, “ParTI! : A parallel tensor infrastructure for

multicore CPUs and GPUs,” Oct 2018.

[67] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar, “On two-dimensional sparse

matrix partitioning: Models, methods, and a recipe,” SIAM Journal on

Scientific Computing, vol. 32, no. 2, pp. 656–683, 2010.

[68] U. Catalyurek and C. Aykanat, “A hypergraph-partitioning approach for

coarse-grain decomposition,” in Proceedings of the 2001 ACM/IEEE confer-

ence on Supercomputing, pp. 28–28, 2001.

113

[69] Ü. V. Çatalyürek and C. Aykanat, “A fine-grain hypergraph model for 2D

decomposition of sparse matrices.,” in IPDPS, vol. 1, p. 118, 2001.

[70] B. Uçar and C. Aykanat, “Minimizing communication cost in fine-grain par-

titioning of sparse matrices,” in International Symposium on Computer and

Information Sciences, pp. 926–933, Springer, 2003.

[71] D. M. Pelt and R. H. Bisseling, “A medium-grain method for fast 2D bipar-

titioning of sparse matrices,” in 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, pp. 529–539, IEEE, 2014.

[72] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn, “Collective

communication: theory, practice, and experience,” Concurrency and Com-

putation: Practice and Experience, vol. 19, no. 13, pp. 1749–1783, 2007.

[73] Z. Chi, H. Yan, and T. Pham, Fuzzy algorithms: with applications to image

processing and pattern recognition, vol. 10. World Scientific, 1996.

[74] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, “Iterative algorithms

for solution of large sparse systems of linear equations on hypercubes,” IEEE

Transactions on computers, vol. 37, no. 12, pp. 1554–1568, 1988.

[75] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms. Rockville,

MD, USA: Computer Science Press, 1978.

[76] Ü. V. Çatalyürek and C. Aykanat, PaToH (Partitioning Tool for Hyper-

graphs), pp. 1479–1487. Boston, MA: Springer US, 2011.

[77] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis,

“FROSTT: The formidable repository of open sparse tensors and tools,”

2017.

[78] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user move-

ment in location-based social networks,” in Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pp. 1082–1090, 2011.

114

[79] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: under-

standing rating dimensions with review text,” in Proceedings of the 7th ACM

conference on Recommender systems, pp. 165–172, 2013.

[80] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph

partitioning: applications in VLSI domain,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 7, pp. 69–79, March 1999.

[81] J. Li, B. Uçar, Ü. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc, “Effi-

cient and effective sparse tensor reordering,” in Proceedings of the ACM In-

ternational Conference on Supercomputing, ICS ’19, (New York, NY, USA),

pp. 227–237, ACM, 2019.

[82] S. Smith and G. Karypis, “Tensor-matrix products with a compressed sparse

tensor,” in Proceedings of the 5th Workshop on Irregular Applications: Ar-

chitectures and Algorithms, IA3 ’15, (New York, NY, USA), pp. 5:1–5:7,

ACM, 2015.

[83] K. D. Devine and G. Ballard, “GentenMPI: Distributed memory sparse ten-

sor decomposition.,” August 2020.

[84] E. De Sturler and H. A. van der Vorst, “Reducing the effect of global commu-

nication in GMRES(m) and CG on parallel distributed memory computers,”

Applied Numerical Mathematics, vol. 18, no. 4, pp. 441–459, 1995.

[85] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm, “Optimizing a

conjugate gradient solver with non-blocking collective operations,” Parallel

Computing, vol. 33, no. 9, pp. 624–633, 2007.

[86] P. Ghysels and W. Vanroose, “Hiding global synchronization latency in the

preconditioned conjugate gradient algorithm,” Parallel Computing, vol. 40,

no. 7, pp. 224–238, 2014.

[87] R. O. Selvitopi, M. M. Ozdal, and C. Aykanat, “A novel method for scaling

iterative solvers: Avoiding latency overhead of parallel sparse-matrix vector

multiplies,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,

no. 3, pp. 632–645, 2015.

115

[88] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”

VLSI design, vol. 11, no. 3, pp. 285–300, 2000.

[89] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution of

fashion trends with one-class collaborative filtering,” in proceedings of the

25th international conference on world wide web, pp. 507–517, 2016.

[90] M. Wan and J. McAuley, “Item recommendation on monotonic behavior

chains,” in Proceedings of the 12th ACM conference on recommender systems,

pp. 86–94, 2018.

[91] R. He, W.-C. Kang, and J. McAuley, “Translation-based recommendation,”

in Proceedings of the eleventh ACM conference on recommender systems,

pp. 161–169, 2017.

[92] R. Pasricha and J. McAuley, “Translation-based factorization machines for

sequential recommendation,” in Proceedings of the 12th ACM Conference on

Recommender Systems, pp. 63–71, 2018.

[93] J. Rappaz, J. McAuley, and K. Aberer, “Recommendation on live-streaming

platforms: Dynamic availability and repeat consumption,” in Fifteenth ACM

Conference on Recommender Systems, pp. 390–399, 2021.

[94] R. Guo, F. Zhang, L. Wang, W. Zhang, X. Lei, R. Ranjan, and A. Y.

Zomaya, “Bapa: A novel approach of improving load balance in parallel ma-

trix factorization for recommender systems,” IEEE Transactions on Com-

puters, vol. 70, no. 5, pp. 789–802, 2021.

[95] F. Petroni and L. Querzoni, “GASGD: Stochastic gradient descent for dis-

tributed asynchronous matrix completion via graph partitioning.,” in Pro-

ceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14,

(New York, NY, USA), p. 241–248, Association for Computing Machinery,

2014.

[96] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:

Distributed graph-parallel computation on natural graphs,” in Proceedings

of the 10th USENIX Conference on Operating Systems Design and Imple-

mentation, OSDI’12, (USA), p. 17–30, USENIX Association, 2012.

116

[97] X. Luo, H. Liu, G. Gou, Y. Xia, and Q. Zhu, “A parallel matrix factorization

based recommender by alternating stochastic gradient decent,” Engineering

Applications of Artificial Intelligence, vol. 25, no. 7, pp. 1403–1412, 2012.

Advanced issues in Artificial Intelligence and Pattern Recognition for Intel-

ligent Surveillance System in Smart Home Environment.

[98] X. Shi, Q. He, X. Luo, Y. Bai, and M. Shang, “Large-scale and scalable

latent factor analysis via distributed alternative stochastic gradient descent

for recommender systems,” IEEE Transactions on Big Data, pp. 1–1, 2020.

117

