Elastic, electronic, and optical properties of NaSnX (X=Sb, Bi, As): first principle calculations

Series

Abstract

In the present work, the structural, mechanical, electronic and optical properties of NaSnX (X=Sb, B, As) compounds have been investigated by means of first principles calculations. The generalized gradient approximation has been used for modeling the exchangecorrelation effects. It has been observed that the calculated lattice parameters are in good agreement with the experimental and theoretical lattice parameters. Bulk modulus, shear modulus, Young's modulus Poisson's ratio, sound velocities and the Debye temperatures using the calculated elastic constants for NaSnSb, NaSnBi and NaSnAs compounds have been obtained. The electronic band structure and the projected density of states corresponding to the electronic band structure have calculated.and interpreted. The obtained electronic band structure for NaSnSb and NaSnBi compounds are metallic in nature, and the NaSnAs compound is also a narrow semiconductor. Based on the obtained electronic structures, we further calculated the frequency-dependent dielectric function, the energy-loss function, optical conductivity, and reflection along the x- and z- axes.

Source Title

IOP Conference Series: Materials Science and Engineering

Publisher

IOP

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English