Show simple item record

dc.contributor.advisorSertöz, Ali Sinanen_US
dc.contributor.authorYörük, Oğuzhanen_US
dc.date.accessioned2019-02-27T08:15:12Z
dc.date.available2019-02-27T08:15:12Z
dc.date.copyright2019-02
dc.date.issued2019-02
dc.date.submitted2019-02-25
dc.identifier.urihttp://hdl.handle.net/11693/50635
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (M.S.): Bilkent University, Department of Mathematics, İhsan Doğramacı Bilkent University, 2019.en_US
dc.descriptionIncludes bibliographical references (leaves 40-41).en_US
dc.description.abstractThe relationship between K3 Surfaces and Enriques Surfaces is known to mathematicians for the last 30 years. We examined this relationship from a lattice theoretical point of view by looking at transcendental lattice of a K3 surface in the case of Picard number 18 and 19. We established a better way of attacking this problem with the help of a computer assistance.en_US
dc.description.statementofresponsibilityby Oğuzhan Yörüken_US
dc.format.extentix, 89 leaves ; 30 cm.en_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectK3 surfacesen_US
dc.subjectPicard numberen_US
dc.subjectEnriques surfacesen_US
dc.subjectLatticeen_US
dc.titleWhich algebraic K3 surfaces doubly cover an enriques surface: a computational approachen_US
dc.title.alternativeHangi cebirsel K3 yüzeyleri enriques yüzeyini örter: hesaplamalı yaklaşımen_US
dc.typeThesisen_US
dc.departmentDepartment of Mathematicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US
dc.identifier.itemidB159830


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record