Show simple item record

dc.contributor.authorGöken, Ç.en_US
dc.contributor.authorGezici, Sinanen_US
dc.date.accessioned2019-02-21T16:06:01Zen_US
dc.date.available2019-02-21T16:06:01Zen_US
dc.date.issued2018en_US
dc.identifier.issn1053-587Xen_US
dc.identifier.urihttp://hdl.handle.net/11693/50287en_US
dc.description.abstractIn this paper, optimal deterministic encoding of a scalar parameter is investigated in the presence of an eavesdropper. The aim is to minimize the expectation of the conditional Cramér-Rao bound at the intended receiver while keeping the mean-squared error (MSE) at the eavesdropper above a certain threshold. First, optimal encoding functions are derived in the absence of secrecy constraints for any given prior distribution on the parameter. Next, an optimization problem is formulated under a secrecy constraint and various solution approaches are proposed. Also, theoretical results on the form of the optimal encoding function are provided under the assumption that the eavesdropper employs a linear minimum mean-squared error (MMSE) estimator. Numerical examples are presented to illustrate the theoretical results and to investigate the performance of the proposed solution approaches.en_US
dc.language.isoEnglishen_US
dc.source.titleIEEE Transactions on Signal Processingen_US
dc.relation.isversionofhttps://doi.org/10.1109/TSP.2018.2833802en_US
dc.subjectCramer-Rao bound (CRB)en_US
dc.subjectOptimizationen_US
dc.subjectParameter estimationen_US
dc.subjectSecrecyen_US
dc.titleECRB-based optimal parameter encoding under secrecy constraintsen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage3556en_US
dc.citation.epage3570en_US
dc.citation.volumeNumber66en_US
dc.citation.issueNumber13en_US
dc.identifier.doi10.1109/TSP.2018.2833802en_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.contributor.bilkentauthorGezici, Sinan
dc.identifier.eissn1941-0476en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record