Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer

Date
2018
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Oncogene
Print ISSN
0950-9232
Electronic ISSN
1476-5594
Publisher
Nature Publishing Group
Volume
37
Issue
17
Pages
2251 - 2269
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Trastuzumab-refractory, HER2 (human epidermal growth factor receptor 2)-positive breast cancer is commonly treated with trastuzumab emtansine (T-DM1), an antibody-drug conjugate of trastuzumab and the microtubule-targeting agent, DM1. However, drug response reduces greatly over time due to acquisition of resistance whose molecular mechanisms are mostly unknown. Here, we uncovered a novel mechanism of resistance against T-DM1 by combining whole transcriptome sequencing (RNA-Seq), proteomics and a targeted small interfering RNA (siRNA) sensitization screen for molecular level analysis of acquired and de novo T-DM1-resistant models of HER2-overexpressing breast cancer. We identified Polo-like kinase 1 (PLK1), a mitotic kinase, as a resistance mediator whose genomic as well as pharmacological inhibition restored drug sensitivity. Both acquired and de novo resistant models exhibited synergistic growth inhibition upon combination of T-DM1 with a selective PLK1 inhibitor, volasertib, at a wide concentration range of the two drugs. Mechanistically, T-DM1 sensitization upon PLK1 inhibition with volasertib was initiated by a spindle assembly checkpoint (SAC)-dependent mitotic arrest, leading to caspase activation, followed by DNA damage through CDK1-dependent phosphorylation and inactivation of Bcl-2/xL. Furthermore, we showed that Ser70 phosphorylation of Bcl-2 directly regulates apoptosis by disrupting the binding to and sequestration of the pro-apoptotic protein Bim. Importantly, T-DM1 resistance signature or PLK1 expression correlated with cell cycle progression and DNA repair, and predicted a lower sensitivity to taxane/trastuzumab combination in HER2-positive breast cancer patients. Finally, volasertib in combination with T-DM1 greatly synergized in models of T-DM1 resistance in terms of growth inhibition both in three dimensional (3D) cell culture and in vivo. Altogether, our results provide promising pre-clinical evidence for potential testing of T-DM1/volasertib combination in T-DM1 refractory HER2-positive breast cancer patients for whom there is currently no treatment available.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)