Show simple item record

dc.contributor.authorSertöz, S.en_US
dc.date.accessioned2019-02-11T09:45:24Z
dc.date.available2019-02-11T09:45:24Z
dc.date.issued1993en_US
dc.identifier.issn0016-2736
dc.identifier.urihttp://hdl.handle.net/11693/49221
dc.description.abstractWe study the Schubert calculus on the space of d-dimensional linear subspaces of a smooth n-dimensional quadric lying in the projective space. Following Hodge and Pedoe we develop the intersection theory of this space in a purely combinatorial manner. We prove in particular that if a triple intersection of Schubert cells on this space is nonempty then a certain combinatorial relation holds among the Schubert symbols involved, similar to the classical one. We also show when these necessary conditions are also sufficient to obtain a nontrivial intersection. Several examples are calculated to illustrate the main results.en_US
dc.language.isoEnglishen_US
dc.source.titleFundamenta Mathematicaeen_US
dc.relation.isversionof10.4064/fm-142-3-201-220en_US
dc.titleA triple intersection theorem for the varieties of SO(n)/Pden_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage201en_US
dc.citation.epage220en_US
dc.citation.volumeNumber142en_US
dc.citation.issueNumber3en_US
dc.publisherPolish Academy of Sciences, Institute of Mathematicsen_US
dc.identifier.eissn1730-6329


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record