Graph problems in call models and switching networks

Date
2018-08
Editor(s)
Advisor
Aykanat, Cevdet
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In the first part of this dissertation, we focus on graph problems that arise in call models. Such models are used to study the combinatorial properties of certain types of calls that include unicast, multicast, and bicast interconnections. Here we focus on bicast calls, and provide closed-form expressions for the number of unlabeled bicast calls when either the number of callers or number of receivers is fixed to 2 or 3. We then obtain lower and upper bounds on the number of such calls by solving an open problem in graph theory, namely counting the number of unlabeled bipartite graphs. Next, these results are extended to left (right) set labeled and set labeled bipartite graphs. In the second part of the dissertation, we focus on wiring and routing problems for one-sided, binary tree switching networks. Specifically, we reduce the O(n) time complexity of the routing algorithm for the one-sided, binary tree switching networks to O(lg n). We also present a new wiring algorithm for one-sided, binary tree switching networks. Finally, an algorithm is presented to locate the cluster in which the terminals of the corresponding one-sided binary tree switching network are paired. The time complexity of this algorithm is shown to be O(lg n).

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)