• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Multiphysics modeling of Ge2Sb2Te5 based synaptic devices for brain inspired computing

      Thumbnail
      Embargo Lift Date: 2021-07-10
      View / Download
      7.3 Mb
      Author
      Demirağ, Yiğit
      Advisor
      Özbay, Ekmel
      Date
      2018-07
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      129
      views
      0
      downloads
      Abstract
      Modeling nanoscale devices that emulate the functionality of synapses of the biological brain is a fundamental operation for developing brain-inspired computational systems. Phase-change material based synaptic devices offer promising performance in speed, spatial and power efficiency metrics, up to human brain level, when connected in a massively parallel crossbar array architecture. In this work, we modeled electrothermal characteristics of a single synaptic device consisting of phase-change material based memory and its selector. First, we proposed a finite element method based simulation framework for modeling electrical, thermal and probabilistic crystallization dynamics of the memory unit. Gradual phase transitions that form device memory between amorphous and crystalline states are studied under nanosecond voltage pulses. Second, we implemented time and temperature dependent resistance drift saturation model for phase-change material based selector device. Our model is in close agreement with the ultrafast saturation phenomena which is observed for the first time in fabricated devices with 8 nm node technology.
      Keywords
      Phase Change Memory
      Device Modeling
      Synaptic Device
      Neuromorphic Computing
      GST
      Multiphysics
      Permalink
      http://hdl.handle.net/11693/47694
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 594
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy