• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Phase-correcting denoising for diffusion magnetic resonance imaging

      Thumbnail
      Embargo Lift Date: 2019-05-14
      View / Download
      10.4 Mb
      Author(s)
      Kafalı, Sevgi Gökçe
      Advisor
      Çukur, Emine Ülkü Sarıtaş
      Date
      2018-05
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      120
      views
      65
      downloads
      Abstract
      Diffusion magnetic resonance imaging (MRI) is a low signal-to-noise ratio (SNR) acquisition technique when compared to anatomical MRI. Multiple acquisitions have to be averaged to overcome this SNR problem. However, subject motion and/or local pulsations during diffusion sensitizing gradients create varying phase offsets and k-space shifts between repeated acquisitions, prohibiting direct complex averaging due to local signal cancellations in the resultant images. When multiple acquisitions are magnitude averaged, these phase issues are avoided at the expense of noise accumulation. This thesis proposes a reconstruction routine to overcome the local signal cancellations, while increasing the SNR. First, a global phase correction algorithm is employed, followed by a partial Fourier reconstruction algorithm. Then, a novel phase-correcting non-local means (PC-NLM) filtering is proposed to denoise the images without losing structural details. The proposed PC-NLM takes advantage of the shared structure of the multiple acquisitions as they should only differ in terms of phase issues and noise. The proposed PC-NLM technique is rst employed on diffusion-weighted imaging (DWI) of the spinal cord, and is then modi ed to capture the joint information from different diffusion sensitizing directions in diffusion-tensor imaging (DTI). The results are demonstrated with extensive simulations and in vivo DWI and DTI of the spinal cord. These results show that the proposed PC-NLM provides high image quality without any local signal cancellations, while preserving the integrity of quantitative measures such as apparent diffusion coefficients (ADC) and fractional anisotropy (FA) maps. This reconstruction routine can be especially beneficial for the imaging of small body parts that require high resolution.
      Keywords
      Diffusion-Weighted İmaging
      Diffusion-Tensor İmaging
      Motion, Denoising
      Non-Local Means
      Phase Correction
      Spinal Cord
      Permalink
      http://hdl.handle.net/11693/46940
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 597
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy