Show simple item record

dc.contributor.authorBirgül, Ö.en_US
dc.contributor.authorEyüboğlu, B. M.en_US
dc.contributor.authorİder, Y. Z.en_US
dc.date.accessioned2018-04-12T13:50:53Z
dc.date.available2018-04-12T13:50:53Z
dc.date.issued2003en_US
dc.identifier.issn0031-9155
dc.identifier.urihttp://hdl.handle.net/11693/38214
dc.description.abstractConventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a scale factor. EIT surface potential measurements are then used to scale the reconstructed image in order to find the true conductivity values. This process is iterated until a stopping criterion is met. Several simulations are carried out for opposite and cosine current injection patterns to select the best current injection pattern for a 2D thorax model. The contrast resolution and accuracy of the proposed algorithm are also studied. In all simulation studies, realistic noise models for voltage and magnetic flux density measurements are used. It is shown that, in contrast to the conventional EIT techniques, the proposed method has the capability of reconstructing conductivity images with uniform and high spatial resolution. The spatial resolution is limited by the larger element size of the finite element mesh and twice the magnetic resonance image pixel size.en_US
dc.language.isoEnglishen_US
dc.source.titlePhysics in Medicine and Biologyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0031-9155/48/5/307en_US
dc.subjectAlgorithmsen_US
dc.subjectComputer simulationen_US
dc.subjectCurrent densityen_US
dc.subjectElectric impedance tomographyen_US
dc.subjectImage reconstructionen_US
dc.subjectMagnetic fluxen_US
dc.subjectPhase imagesen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectAccuracyen_US
dc.subjectAlgorithmen_US
dc.subjectAnalytical erroren_US
dc.subjectComputer assisted impedance tomographyen_US
dc.subjectContrast enhancementen_US
dc.subjectControlled studyen_US
dc.subjectElectric conductivityen_US
dc.subjectElectric currenten_US
dc.subjectElectric potentialen_US
dc.subjectImage analysisen_US
dc.subjectImage processingen_US
dc.subjectImage reconstructionen_US
dc.subjectMathematical computingen_US
dc.subjectNoise measurementen_US
dc.subjectNuclear magnetic resonance imagingen_US
dc.subjectRadiation dose distributionen_US
dc.subjectSimulationen_US
dc.subjectThoraxen_US
dc.subjectAlgorithmsen_US
dc.subjectElectric Impedanceen_US
dc.subjectElectromagnetic Fieldsen_US
dc.subjectHumansen_US
dc.subjectImage Interpretation, Computer-Assisteden_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectRadiometryen_US
dc.subjectReproducibility of resultsen_US
dc.subjectSensitivity and specificityen_US
dc.subjectTomographyen_US
dc.titleCurrent constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patternsen_US
dc.typeReviewen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.citation.spage653en_US
dc.citation.epage671en_US
dc.citation.volumeNumber48en_US
dc.citation.issueNumber5en_US
dc.identifier.doi10.1088/0031-9155/48/5/307en_US
dc.publisherInstitute of Physics Publishingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record