Polybenzoxazine-based nanofibers by electrospinning

Date
2017
Authors
Ertaş, Yelda
Uyar, Tamer
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Elsevier Inc.
Volume
Issue
Pages
643 - 671
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In this chapter recent progress in the production of polybenzoxazine-based nanofibrous mats by electrospinning is highlighted. The benzoxazine monomers could easily form thermosetting polybenzoxazines by in situ thermally initiated ring-opening polymerization, hence, they are promising materials for both the surface modification of polymeric nanofibrous mats and the production of polybenzoxazine-based composite nanofibers. After curing, polybenzoxazines provide hydrophobic characteristic for the modified polymeric nanofiber surfaces by in situ polymerization of the benzoxazines because of their highly cross-linked structure. Also, they allow for the further functionalization of the surfaces as superhydrophobic and superleophilic by the incorporation of SiO2 nanoparticles into the benzoxazine solution. In addtion, benzoxazine monomers could be directly added into electrospinning solutions and the thermal curing of the obtained nanofibrous mat could yield hydrophobic composite nanofibers. Moreover, because of outstanding properties, such as near-zero volumetric change upon curing, low water absorption, high glass transition temperature, high char yield, and no by-products without any catalysts during curing, polybenzoxazines are good a candidate as a precursor for the production of carbon nanofibers. In addition, the molecular structure of polybenzoxazines facilitates immense design flexibility, which enables the tailoring of the properties of the cured material. Therefore, suitable polybenzoxazines can be synthesized, and cross-linked polybenzoxazine nanofibers, with enhanced thermal and mechanical properties, can be obtained by electrospinning without the blending of other polymers. By combining the unique properties of nanofibers and the facinating properties of polybenzoxazines, highly cross-linked polybenzoxazine-based nanofibrous mats can be obtained and these materials are quite useful, especially in filtration applications. © 2017 Elsevier Inc. All rights reserved.

Course
Other identifiers
Book Title
Advanced and emerging polybenzoxazine science and technology
Citation
Published Version (Please cite this version)