Show simple item record

dc.contributor.authorSerhatlioglu, Muraten_US
dc.contributor.authorElbuken, Çağlaren_US
dc.contributor.authorOrtac, Bülenden_US
dc.contributor.authorSolmaz, Mehmet E.en_US
dc.coverage.spatialSan Francisco, California, United Statesen_US
dc.date.accessioned2018-04-12T11:44:08Z
dc.date.available2018-04-12T11:44:08Z
dc.date.issued2017en_US
dc.identifier.isbn9781510605572
dc.identifier.issn1605-7422
dc.identifier.urihttp://hdl.handle.net/11693/37566
dc.descriptionDate of Conference: 28–29 January 2017en_US
dc.description.abstractMiniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems. © 2017 SPIE.en_US
dc.language.isoEnglishen_US
dc.source.titleProceedings of SPIE, Progress in Biomedical Optics and Imagingen_US
dc.relation.isversionofhttps://doi.org/10.1117/12.2252092en_US
dc.subjectAll-fiberen_US
dc.subjectFemtosecond laseren_US
dc.subjectFlow cytometryen_US
dc.subjectFused silicaen_US
dc.subjectHydrodynamic focusingen_US
dc.subjectMachiningen_US
dc.subjectMicrofluidicsen_US
dc.subjectOptofluidicen_US
dc.subjectBioassayen_US
dc.subjectBiochipsen_US
dc.subjectDiagnosisen_US
dc.subjectEmission spectroscopyen_US
dc.subjectFabricationen_US
dc.subjectFiber lasersen_US
dc.subjectFibersen_US
dc.subjectFlow cytometryen_US
dc.subjectForward scatteringen_US
dc.subjectGlassen_US
dc.subjectMachiningen_US
dc.subjectMicroarraysen_US
dc.subjectMicrofluidicsen_US
dc.subjectMiniature instrumentsen_US
dc.subjectOptical fiber fabricationen_US
dc.subjectOptical fibersen_US
dc.subjectSignal detectionen_US
dc.subjectSilicaen_US
dc.subjectSingle mode fibersen_US
dc.subjectTextile fibersen_US
dc.subjectUltrashort pulsesen_US
dc.subjectAll fiberen_US
dc.subjectDetection and diagnosticsen_US
dc.subjectFemtosecond laser machiningen_US
dc.subjectFlow cytometry systemsen_US
dc.subjectHydrodynamic focusingen_US
dc.subjectMonodisperse polystyreneen_US
dc.subjectOptofluidicen_US
dc.subjectThree-dimensional manufacturingen_US
dc.subjectFused silicaen_US
dc.titleFemtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applicationsen_US
dc.typeConference Paperen_US
dc.departmentUNAM - Institute of Materials Science and Nanotechnology
dc.citation.volumeNumber10058en_US
dc.identifier.doi10.1117/12.2252092en_US
dc.publisherSPIEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record