• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Deformation and finite size effects in cooperative molecular motors

      Thumbnail
      View / Download
      645.5 Kb
      Author(s)
      Taneri, Sencer
      Advisor
      Yalabık, M. Cemal
      Date
      2002-07
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      254
      views
      57
      downloads
      Abstract
      Motor protein systems have been of considerable interest lately. In these studies muscle contraction is modeled as the sliding of two filaments made of protein particles over one another, that is the sliding of the backbone filament on the track filament. In order to make the analytical analysis easy these filaments are assumed to be of infinite length or mass. This enables the understanding of the sliding of motility assays with constant velocity and generation of constant force. However, finite size in length and mass brings fluctuationsuctuations in velocity around certain values, and changes in direction through intermittent transitions. It is possible to associate time constants to this kind of behavior. It turns out that the magnitude of the time constant being created during the process is proportional to both the length of the filament and the mass of the protein particles. Deformation phenomenon stems from internally generated forces which so far has been examined as axonemal deformations. The elastic coupling of the protein particles to the backbone has been studied separately, which in fact is also related to the generation of internal forces. Instead of focusing on the axonemal deformations, we implemented an Ising-like potential contribution to our computation to study the elastic coupling which makes the computation easier. We found out that for certain range of parameters that measures the deformation strength, one attains a better motor because of more intense force generation at the expanse of getting a lower sliding velocity.
      Keywords
      Molecular motors
      Deformation
      Finite size effects
      Permalink
      http://hdl.handle.net/11693/35666
      Collections
      • Dept. of Physics - Ph.D. / Sc.D. 76
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy