• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Adenosine regulation of danger signaling

      Thumbnail
      View / Download
      1.3 Mb
      Author
      Akdemir, İmran
      Advisor
      Çekiç, Çağlar
      Date
      2017-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      51
      views
      0
      downloads
      Metadata
      Show full item record
      Abstract
      Metabolic and immune related activities converge as main triggers of adenosine accumulation in extracellular space. Adenosine by engaging adenosine A2A and A2B receptors strongly suppresses innate and adaptive immune responses. Although adenosine receptors are being targeted in preclinical and clinical studies, how different danger signals are regulated by adenosine is poorly understood. Here we showed that adenosine receptor stimulation strongly inhibited inflammatory responses while sparing Type-I interferon responses downstream of different danger signals in dendritic cells and macrophages. Mechanistically, danger signals associated with MyD88-dependent inflammatory pathways such as LPS and CpG but not the danger signals associated with IRF3/Type-I interferon pathways such as pA:U and cGAMP increase the expression of adenosine A2A and A2B receptors. Expression of anti-inflammatory NR4A1 was increased after adenosine receptor stimulation in the presence of TLR ligands known to activate MyD88 pathway but not in the presence of cGAMP and pA:U. Overall these results indicate that there is a differential modulation of danger signaling by adenosine rather than overall suppression. Our results have important implications for developing combinatorial approaches to target adenosine and danger signaling pathways to cure immune-related diseases.
      Keywords
      Adenosine receptors
      Danger signaling
      Dendritic cells
      Macrophages
      Embargo Lift Date
      2020-08-03
      Permalink
      http://hdl.handle.net/11693/33534
      Collections
      • Dept. of Molecular Biology and Genetics - Master's degree 127

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University | Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin