Show simple item record

dc.contributor.advisorBarker, Laurence J.
dc.contributor.authorDar, Elif Doğan
dc.date.accessioned2016-07-01T11:11:36Z
dc.date.available2016-07-01T11:11:36Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/11693/30064
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractWe review a theorem by Boltje and K¨ulshammer which states that under certain circumstances the endomorphism ring EndRG(RX) has only one block. We study the double Burnside ring, the Burnside ring and the transformations between two bases of it, namely the transitive G-set basis and the primitive idempotent basis. We introduce algebras Λ, Λdef and Υ which are quotient algebras of the inflation Mackey algebra, the deflation Mackey algebra and the ordinary Mackey algebra respectively. We examine the primitive idempotents of Z(Υ). We prove that the algebra Λ has a unique block and give an example where Λdef has two blocks.en_US
dc.description.statementofresponsibilityDar, Elif Doğanen_US
dc.format.extentvi, 26 leavesen_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectblocksen_US
dc.subjectdouble Burnside ringen_US
dc.subjectinflation Mackey algebraen_US
dc.subjectdeflation Mackey algebraen_US
dc.subjectordinary Mackey algebraen_US
dc.subject.lccB151116en_US
dc.titleBlocks of quotients of mackey algebrasen_US
dc.typeThesisen_US
dc.departmentDepartment of Mathematicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US
dc.identifier.itemidB151116


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record