• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Web-site-based partitioning techniques for efficient parallelization of the PageRank computation

      Thumbnail
      View / Download
      549.7 Kb
      Author(s)
      Cevahir, Ali
      Advisor
      Aykanat, Cevdet
      Date
      2006
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      166
      views
      43
      downloads
      Abstract
      Web search engines use ranking techniques to order Web pages in query results. PageRank is an important technique, which orders Web pages according to the linkage structure of the Web. The efficiency of the PageRank computation is important since the constantly evolving nature of the Web requires this computation to be repeated many times. PageRank computation includes repeated iterative sparse matrix-vector multiplications. Due to the enormous size of the Web matrix to be multiplied, PageRank computations are usually carried out on parallel systems. However, efficiently parallelizing PageRank is not an easy task, because of the irregular sparsity pattern of the Web matrix. Graph and hypergraphpartitioning-based techniques are widely used for efficiently parallelizing matrixvector multiplications. Recently, a hypergraph-partitioning-based decomposition technique for fast parallel computation of PageRank is proposed. This technique aims to minimize the communication overhead of the parallel matrix-vector multiplication. However, the proposed technique has a high prepropocessing time, which makes the technique impractical. In this work, we propose 1D (rowwise and columnwise) and 2D (fine-grain and checkerboard) decomposition models using web-site-based graph and hypergraph-partitioning techniques. Proposed models minimize the communication overhead of the parallel PageRank computations with a reasonable preprocessing time. The models encapsulate not only the matrix-vector multiplication, but the overall iterative algorithm. Conducted experiments show that the proposed models achieve fast PageRank computation with low preprocessing time, compared with those in the literature.
      Keywords
      PageRank
      Parallel Sparse-Matrix Vector Multiplication
      Graph and Hypergraph Partitioning
      Permalink
      http://hdl.handle.net/11693/29894
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy