dc.contributor.advisor | Goncharov, Alexander | en_US |
dc.contributor.author | Şengül, Yasemin | en_US |
dc.date.accessioned | 2016-07-01T11:07:54Z | |
dc.date.available | 2016-07-01T11:07:54Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://hdl.handle.net/11693/29886 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description.abstract | In generalization of [3] we will give the formula for the logarithmic dimension of
any Cantor-type set. We will demonstrate some applications of the logarithmic
dimension in Potential Theory. We will construct a polynomial basis in E(K(Λ))
when the logarithmic dimension of a Cantor-type set is smaller than 1. We will
show that for any generalized Cantor-type set K(Λ), the space E(K(Λ)) possesses
a Schauder basis. Locally elements of the basis are polynomials. The result
generalizes theorems 1 and 2 in [12]. | en_US |
dc.description.statementofresponsibility | Şengül, Yasemin | en_US |
dc.format.extent | 47 leaves | en_US |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Logarithmic dimension | en_US |
dc.subject | Whitney spaces | en_US |
dc.subject | Topological bases | en_US |
dc.subject.lcc | QA322 .S45 2006 | en_US |
dc.subject.lcsh | Linear topological spaces. | en_US |
dc.title | Logarithmic dimension and bases in whitney spaces | en_US |
dc.type | Thesis | en_US |
dc.department | Department of Mathematics | en_US |
dc.publisher | Bilkent University | en_US |
dc.description.degree | M.S. | en_US |
dc.identifier.itemid | BILKUTUPB100089 | |