Show simple item record

dc.contributor.advisorGoncharov, Alexanderen_US
dc.contributor.authorŞengül, Yaseminen_US
dc.date.accessioned2016-07-01T11:07:54Z
dc.date.available2016-07-01T11:07:54Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/11693/29886
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractIn generalization of [3] we will give the formula for the logarithmic dimension of any Cantor-type set. We will demonstrate some applications of the logarithmic dimension in Potential Theory. We will construct a polynomial basis in E(K(Λ)) when the logarithmic dimension of a Cantor-type set is smaller than 1. We will show that for any generalized Cantor-type set K(Λ), the space E(K(Λ)) possesses a Schauder basis. Locally elements of the basis are polynomials. The result generalizes theorems 1 and 2 in [12].en_US
dc.description.statementofresponsibilityŞengül, Yaseminen_US
dc.format.extent47 leavesen_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLogarithmic dimensionen_US
dc.subjectWhitney spacesen_US
dc.subjectTopological basesen_US
dc.subject.lccQA322 .S45 2006en_US
dc.subject.lcshLinear topological spaces.en_US
dc.titleLogarithmic dimension and bases in whitney spacesen_US
dc.typeThesisen_US
dc.departmentDepartment of Mathematicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US
dc.identifier.itemidBILKUTUPB100089


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record