• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Semantic argument classification and semantic categorization of Turkish existential sentences using support vector learning

      Thumbnail
      View / Download
      1001.8 Kb
      Author(s)
      Koca, Aylin
      Advisor
      Akman, Varol
      Date
      2004
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      190
      views
      57
      downloads
      Abstract
      There are three types of sentences that form all existing natural languages: verbal sentences (e.g. “I read the book.”), copulative sentences (e.g. “The book is on the table.”), and existential sentences (e.g. “There is a book on the table.”). Syntactic and semantic recognition of these sentence types are crucially important in computational linguistics although there has not been any significant work towards this end. This thesis, in an attempt to fill this evident gap, is on identifying and assigning semantic categories of Turkish existential sentences in print. Existential sentences in Turkish are minimally characterized by the two existential particles var, meaning there is/are, and yok, meaning there is/are no. In addition to these most basic meanings, other senses of existential particles are possible, which can be categorized into groups such as case existentials and possession existentials. Our system does shallow semantic parsing in defining the predicate-argument relationships in an existential sentence on a word-byword basis, via utilizing Support Vector Machines, after which it proceeds with the semantic categorization of the whole sentence. For both of these tasks, our system produces promising results, in terms of accuracy and precision/recall, respectively. Part of this research contributes to the annotation of the METU-Sabancı Turkish Treebank with semantic information.
      Keywords
      shallow semantic parsing
      Turkish Treebank
      Turkish existential sentences
      support vector machines
      thematic roles
      semantic role labeling
      Permalink
      http://hdl.handle.net/11693/29553
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy