Show simple item record

dc.contributor.advisorTekinay, Ayşe Begüm
dc.contributor.authorTümtaş, Yasin
dc.date.accessioned2016-04-29T13:47:49Z
dc.date.available2016-04-29T13:47:49Z
dc.date.copyright2015-05
dc.date.issued2015-05
dc.date.submitted11-06-2015
dc.identifier.urihttp://hdl.handle.net/11693/29020
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (leaves 142-163).en_US
dc.descriptionThesis (M.S.): Bilkent University, Materials Science and Nanotechnology Program, İhsan Doğramacı Bilkent University, 2015.en_US
dc.description.abstractDefects and impairments of tissues or organs affect millions of people, resulting in considerable losses in workforce and life quality. The treatment of major tissue injuries requires the development of advanced medical techniques that enhance the natural repair processes of the human body. Novel biomaterials can modulate the repair of organs and tissues by providing a suitable environment for the recruitment, proliferation and differentiation of stem and progenitor cells, allowing the recovery of degenerated or otherwise nonfunctional tissues. Peptide amphiphiles (PAs) serve as model biomaterials due to their capacity for self-assembly, which allows peptide monomers to form complex networks that approximate the structure and function of the natural extracellular matrix. Peptide networks can be further modified by the attachment of various epitopes and functional groups, allowing these materials to present bioactive signals to surrounding cells. Glycosaminoglycans (GAGs) are negatively charged, unbranched polysaccharides that constitute a substantial part of the ECM in various tissues and play an important role in maintaining tissue integrity. Therefore, mimicking GAGs presents a suitable means for modulating cell behavior and especially lineage commitment in stem cells. In this work, I describe the design and synthesis of several bioactive, three dimensional (3D) GAG-mimetic peptide amphiphile hydrogels for in vitro stem cell differentiation and in vivo pancreatic islet transplantation. In Chapter 1, I detail the extracellular environment of tissues and the importance of GAGs in maintaining cell and tissue function. In Chapter 2, I describe the in vitro experiments involving the effects of sulfonation and the presence of glucose units on the differentiation of mesenchymal stem cells. In Chapter 3, I utilize a heparin-mimetic PA to increase the survival of pancreatic islets transplanted into the rat omentum, and demonstrate that increased angiogenesis results in enhanced survival. Lastly, in Chapter 4, I summarize my results and describe the course of future experiments for the artificial regeneration of tissues through peptide amphiphile networks.en_US
dc.description.statementofresponsibilityby Yasin Tümtaş.en_US
dc.format.extentxx, 163 leaves : charts.en_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExtracellular matrixen_US
dc.subjectPeptide hydrogelsen_US
dc.subjectGlycosaminoglycansen_US
dc.subjectBiomimeticen_US
dc.subjectMesenchymal stem cellen_US
dc.subjectDifferentiationen_US
dc.subjectIslet transplantationen_US
dc.subjectAngiogenesisen_US
dc.titleThree dimensional glycosaminoglycan mimetic peptide amphiphile hydrogels for regenerative medicine applicationsen_US
dc.title.alternativeRejeneratif tıp uygulamaları için üç boyutlu glikozaminoglikan benzeri peptit amfifil hidrojelleren_US
dc.typeThesisen_US
dc.departmentGraduate Program in Materials Science and Nanotechnologyen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US
dc.identifier.itemidB150333
dc.embargo.release2017-05-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record