Show simple item record

dc.contributor.authorMorgül, Ömeren_US
dc.coverage.spatialLondon, United Kingdomen_US
dc.date.accessioned2016-02-08T12:26:28Zen_US
dc.date.available2016-02-08T12:26:28Zen_US
dc.date.issued2009en_US
dc.identifier.issn1474-6670en_US
dc.identifier.urihttp://hdl.handle.net/11693/28659en_US
dc.descriptionDate of Conference: 22-24 June 2009en_US
dc.descriptionConference Name: 2nd IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS 2009en_US
dc.description.abstractIn this paper we consider the stabilization problem of unstable periodic orbits of discrete time chaotic systems. We consider both one dimensional and higher dimensional cases. We propose a novel generalization of the classical delayed feedback law and present some stability results. These results show that for period 1 all hyperbolic periodic orbits can be stabilized with the proposed method. Although for higher order periods the proposed scheme may possess some limitations, some improvement over the classical delayed feedback scheme still can be achieved with the proposed scheme. The stability proofs also give the possible feedback gains which achieve stabilization. We will also present some simulation results.en_US
dc.language.isoEnglishen_US
dc.source.titleProceedings of the 2nd IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS 2009en_US
dc.relation.isversionofhttps://doi.org/10.3182/20090622-3-UK-3004.00062en_US
dc.subjectChaos controlen_US
dc.subjectChaotic systemsen_US
dc.subjectDelayed feedback systemen_US
dc.subjectPyragas controlleren_US
dc.subjectStabilityen_US
dc.subjectDelayed feedbacken_US
dc.titleA new delayed feedback control scheme for discrete time chaotic systemsen_US
dc.typeConference Paperen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage333en_US
dc.citation.epage338en_US
dc.citation.volumeNumber42en_US
dc.citation.issueNumber7en_US
dc.identifier.doi10.3182/20090622-3-UK-3004.00062en_US
dc.publisherIFACen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record