Show simple item record

dc.contributor.authorAlagoz, A. S.en_US
dc.contributor.authorGenisel, M. F.en_US
dc.contributor.authorFoss, Steinaren_US
dc.contributor.authorFinstad, T. G.en_US
dc.contributor.authorTuran, R.en_US
dc.date.accessioned2016-02-08T12:15:16Z
dc.date.available2016-02-08T12:15:16Z
dc.date.issued2011en_US
dc.identifier.issn0272-9172
dc.identifier.urihttp://hdl.handle.net/11693/28245
dc.description.abstractFlash type electronic memories are the preferred format in code storage at complex programs running on fast processors and larger media files in portable electronics due to fast write/read operations, long rewrite life, high density and low cost of fabrication. Scaling limitations of top-down fabrication approaches can be overcome in next generation flash memories by replacing continuous floating gate with array of nanocrystals. Germanium (Ge) is a good candidate for nanocrystal based flash memories due its small band gap. In this work, we present effect of silicon dioxide (SiO 2) host matrix density on Ge nanocrystals morphology. Low density Ge+SiO 2 layers are deposited between high density SiO 2 layers by using off-angle magnetron sputter deposition. After high temperature post-annealing, faceted and elongated Ge nanocrystals formation is observed in low density layers. Effects of Ge concentration and annealing temperature on nanocrystal morphology and mean size were investigated by using transmission electron microscopy. Positive correlation between stress development and nanocrystal size is observed at Raman spectroscopy measurements. We concluded that non-uniform stress distribution on nanocrystals during growth is responsible from faceted and elongated nanocrystal morphology.en_US
dc.language.isoEnglishen_US
dc.source.titleMaterials Research Society Symposium Proceedingsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1557/opl.2011.976en_US
dc.subjectAfter high temperatureen_US
dc.subjectAnnealing temperaturesen_US
dc.subjectCode storageen_US
dc.subjectComplex programsen_US
dc.subjectElectronic memoriesen_US
dc.subjectFloating gatesen_US
dc.subjectGe concentrationsen_US
dc.subjectGe nanocrystalsen_US
dc.subjectGermanium nanocrystalsen_US
dc.subjectHigh densityen_US
dc.subjectHost matricesen_US
dc.subjectLow costsen_US
dc.subjectLow densityen_US
dc.subjectMagnetron sputter depositionen_US
dc.subjectMatrix densityen_US
dc.subjectMean sizeen_US
dc.subjectMedia filesen_US
dc.subjectNanocrystal sizesen_US
dc.subjectNonuniform stress distributionen_US
dc.subjectOff-angleen_US
dc.subjectPortable electronicsen_US
dc.subjectPositive correlationsen_US
dc.subjectPost annealingen_US
dc.subjectScaling limitationen_US
dc.subjectSpectroscopy measurementsen_US
dc.subjectStress developmenten_US
dc.subjectTop-down fabricationen_US
dc.subjectArchitectural acousticsen_US
dc.subjectComputer architectureen_US
dc.subjectFilmsen_US
dc.subjectFlash memoryen_US
dc.subjectFunctional materialsen_US
dc.subjectGermaniumen_US
dc.subjectMagnetronsen_US
dc.subjectMorphologyen_US
dc.subjectNonvolatile storageen_US
dc.subjectRaman spectroscopyen_US
dc.subjectSemiconducting silicon compoundsen_US
dc.subjectSilicaen_US
dc.subjectSilicon oxidesen_US
dc.subjectStress concentrationen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectNanocrystalsen_US
dc.titleMatrix density effect on morphology of germanium nanocrystals embedded in silicon dioxide thin filmsen_US
dc.typeArticleen_US
dc.departmentDepartment of Chemistryen_US
dc.citation.spage21en_US
dc.citation.epage25en_US
dc.citation.volumeNumber1337en_US
dc.identifier.doi10.1557/opl.2011.976en_US
dc.publisherMaterials Research Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record