Show simple item record

dc.contributor.authorKohls, M.en_US
dc.contributor.authorSezer, M.en_US
dc.date.accessioned2016-02-08T12:14:50Z
dc.date.available2016-02-08T12:14:50Z
dc.date.issued2012en_US
dc.identifier.issn0305-0041
dc.identifier.urihttp://hdl.handle.net/11693/28232
dc.description.abstractWe consider finite dimensional representations of the dihedral group D 2p over an algebraically closed field of characteristic two where p is an odd prime and study the degrees of generating and separating polynomials in the corresponding ring of invariants. We give an upper bound for the degrees of the polynomials in a minimal generating set that does not depend on p when the dimension of the representation is sufficiently large. We also show that p + 1 is the minimal number such that the invariants up to that degree always form a separating set. We also give an explicit description of a separating set. © Copyright Cambridge Philosophical Society 2011.en_US
dc.language.isoEnglishen_US
dc.source.titleMathematical Proceedings of the Cambridge Philosophical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1017/S030500411100065Xen_US
dc.titleInvariants of the dihedral group D2p in characteristic twoen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage1en_US
dc.citation.epage7en_US
dc.citation.volumeNumber152en_US
dc.citation.issueNumber1en_US
dc.identifier.doi10.1017/S030500411100065Xen_US
dc.publisherCambridge University Pressen_US
dc.identifier.eissn1469-8064


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record