Show simple item record

dc.contributor.authorOrhan, A.en_US
dc.date.accessioned2016-02-08T12:00:35Z
dc.date.available2016-02-08T12:00:35Z
dc.date.issued1996en_US
dc.identifier.urihttp://hdl.handle.net/11693/27740
dc.description.abstractA recursive algorithm is proposed to obtain an efficient regularized least squares solution to large linear system of equations which arises in many physical measurement models. The algorithm recursively updates the solution in an increasingly larger dimensional subspace whose basis vectors are chosen as a subset of a complete wavelet basis. Robust criterions on how to chose the basis vectors at each iteration, and when to stop the iterations are given.en_US
dc.language.isoEnglishen_US
dc.source.titleProceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysisen_US
dc.subjectAlgorithmsen_US
dc.subjectCalculationsen_US
dc.subjectComputational complexityen_US
dc.subjectIterative methodsen_US
dc.subjectLeast squares approximationsen_US
dc.subjectMathematical modelsen_US
dc.subjectParameter estimationen_US
dc.subjectRecursive functionsen_US
dc.subjectVectorsen_US
dc.subjectWavelet transformsen_US
dc.subjectAdaptive partitioning methodsen_US
dc.subjectRecursive reconstruction algorithmen_US
dc.subjectSignal processingen_US
dc.titleA wavelet based recursive reconstruction algorithm for linear measurementsen_US
dc.typeConference Paperen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.citation.spage33en_US
dc.citation.epage36en_US
dc.publisherIEEE (Institute of Electrical and Electronics Engineers)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record