Show simple item record

dc.contributor.authorSaadaoui, K.en_US
dc.contributor.authorÖzgüler, A.B.en_US
dc.date.accessioned2016-02-08T11:39:41Z
dc.date.available2016-02-08T11:39:41Z
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/11693/26925
dc.description.abstractIn this paper we give an algorithm that determines the set of all stabilizing proportional-integral-derivative (PID) controllers that places the poles of the closed loop system in a desired stability region S. The algorithm is applicable to linear, time invariant, single-input single-output plants. The solution is based on a generalization of the Hermite-Biehler theorem applicable to polynomials with complex coefficients and the the application of a stabilizing gain algorithm to three auxiliary plants. ©2007 IEEE.en_US
dc.language.isoEnglishen_US
dc.source.title2007 Mediterranean Conference on Control and Automation, MEDen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/MED.2007.4433823en_US
dc.subjectChlorine compoundsen_US
dc.subjectClosed loop control systemsen_US
dc.subjectClosed loop systemsen_US
dc.subjectIndustrial engineeringen_US
dc.subjectSystem stabilityen_US
dc.subjectThree term control systemsen_US
dc.subjectTwo term control systemsen_US
dc.subjectComplex coefficientsen_US
dc.subjectControl and automationen_US
dc.subjectHermite-Biehler theoremen_US
dc.subjectPID controllersen_US
dc.subjectProportional-integral-derivative controllersen_US
dc.subjectSingle-input single-output plantsen_US
dc.subjectStability regionsen_US
dc.subjectTime invariantsen_US
dc.subjectProportional control systemsen_US
dc.titleOn stabilizing with PID controllersen_US
dc.typeConference Paperen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.identifier.doi10.1109/MED.2007.4433823en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record