Show simple item record

dc.contributor.authorAdil, G. K.en_US
dc.contributor.authorGhosh, J. B.en_US
dc.date.accessioned2016-02-08T10:41:04Z
dc.date.available2016-02-08T10:41:04Z
dc.date.issued1999en_US
dc.identifier.issn0030-364X
dc.identifier.urihttp://hdl.handle.net/11693/25215
dc.description.abstractRecently, Ahmadi and Tang (1991) demonstrated how various manufacturing problems can be modeled and solved as graph partitioning problems. They use Lagrangian relaxation of two different mixed integer programming formulations to obtain both heuristic solutions and lower bounds on optimal solution values. In this note, we point to certain inconsistencies in the reported results. Among other things, we show analytically that the first bound proposed is trivial (i.e., it can never have a value greater than zero) while the second is also trivial for certain sparse graphs. We also present limited empirical results on the behavior of this second bound as a function of graph density.en_US
dc.language.isoEnglishen_US
dc.source.titleOperations Researchen_US
dc.relation.isversionofhttps://doi.org/10.1287/opre.47.5.785en_US
dc.subjectCellular manufacturingen_US
dc.subjectGroup technologyen_US
dc.subjectHeuristic methodsen_US
dc.subjectInteger programmingen_US
dc.subjectMathematical modelsen_US
dc.subjectVLSI circuitsen_US
dc.subjectGraph partitioning problemen_US
dc.subjectLagrangian lower boundsen_US
dc.subjectGraph theoryen_US
dc.titleAnalysis of Lagrangian lower bounds for a graph partitioning problemen_US
dc.typeArticleen_US
dc.departmentDepartment of Management
dc.citation.spage785en_US
dc.citation.epage788en_US
dc.citation.volumeNumber47en_US
dc.citation.issueNumber5en_US
dc.identifier.doi10.1287/opre.47.5.785en_US
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.identifier.eissn1526-5463


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record