Show simple item record

dc.contributor.authorEkin, Oyaen_US
dc.contributor.authorHammer, P. L.en_US
dc.contributor.authorKogan, A.en_US
dc.date.accessioned2016-02-08T10:40:42Z
dc.date.available2016-02-08T10:40:42Z
dc.date.issued1999en_US
dc.identifier.issn0166-218X
dc.identifier.urihttp://hdl.handle.net/11693/25194
dc.description.abstractA Boolean function is called (co-)connected if the subgraph of the Boolean hypercube induced by its (false) true points is connected; it is called strongly connected if it is both connected and co-connected. The concept of (co-)geodetic Boolean functions is de ned in a similar way by requiring that at least one of the shortest paths connecting two (false) true points should consist only of (false) true points. This concept is further strengthened to that of convexity where every shortest path connecting two points of the same kind should consist of points of the same kind. This paper studies the relationships between these properties and the DNF representations of the associated Boolean functions. ? 1999 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.source.titleDiscrete Applied Mathematicsen_US
dc.relation.isversionofhttps://doi.org/10.1016/S0166-218X(99)00098-0en_US
dc.subjectBoolean convexityen_US
dc.subjectBoolean functionen_US
dc.subjectComputational complexityen_US
dc.subjectConnectednessen_US
dc.subjectDisjunctive normal formen_US
dc.subjectGeodeticen_US
dc.subjectMonotoneen_US
dc.subjectRecognitionen_US
dc.subjectUnateen_US
dc.titleOn connected Boolean functionsen_US
dc.typeArticleen_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.citation.spage337en_US
dc.citation.epage362en_US
dc.citation.volumeNumber96-97en_US
dc.identifier.doi10.1016/S0166-218X(99)00098-0en_US
dc.publisherElsevieren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record